初三数学圆知识点大全
初三数学圆的知识点总结及经典例题详解

圆的根本性质1.半圆或直径所对的圆周角是直角.2.随意一个三角形肯定有一个外接圆.3.在同一平面内,到定点的间隔等于定长的点的轨迹,是以定点为圆心,定长为半径的圆. 4.在同圆或等圆中,相等的圆心角所对的弧相等.5.同弧所对的圆周角等于圆心角的一半.6.同圆或等圆的半径相等.7.过三个点肯定可以作一个圆.8.长度相等的两条弧是等弧.9.在同圆或等圆中,相等的圆心角所对的弧相等.10.经过圆心平分弦的直径垂直于弦。
直线及圆的位置关系1.直线及圆有唯一公共点时,叫做直线及圆相切.2.三角形的外接圆的圆心叫做三角形的外心.3.弦切角等于所夹的弧所对的圆心角.4.三角形的内切圆的圆心叫做三角形的内心.5.垂直于半径的直线必为圆的切线.6.过半径的外端点并且垂直于半径的直线是圆的切线.7.垂直于半径的直线是圆的切线.8.圆的切线垂直于过切点的半径.圆及圆的位置关系1.两个圆有且只有一个公共点时,叫做这两个圆外切.2.相交两圆的连心线垂直平分公共弦.3.两个圆有两个公共点时,叫做这两个圆相交.4.两个圆内切时,这两个圆的公切线只有一条.5.相切两圆的连心线必过切点.正多边形根本性质1.正六边形的中心角为60°.2.矩形是正多边形.3.正多边形都是轴对称图形.4.正多边形都是中心对称图形.圆的根本性质1.如图,四边形ABCD内接于⊙O,∠C=80°,那么∠A的度数是 .A. 50°B. 80°C. 90°D. 100°2.:如图,⊙O中, 圆周角∠BAD=50°,那么圆周角∠BCD的度数是 . °°°°3.:如图,⊙O中, 圆心角∠BOD=100°,那么圆周角∠BCD的度数是 . °°°°4.:如图,四边形ABCD内接于⊙O,那么以下结论中正确的选项是 .••CBAO•BOCAD •DBCAOA.∠A+∠C=180°B.∠A+∠C=90°C.∠A+∠B=180°D.∠A+∠B=905.半径为5cm 的圆中,有一条长为6cm 的弦,那么圆心到此弦的间隔 为 . A.3cm B.4cm C.5cm6.:如图,圆周角∠BAD=50°,那么圆心角∠BOD 的度数是 . °°° 7.:如图,⊙O 中,弧AB 的度数为100°,那么圆周角∠ACB 的度数是 . °°° 8. :如图,⊙O 中, 圆周角∠BCD=130°,那么圆心角∠BOD 的度数是 . °°°°9. 在⊙O 中,弦AB 的长为8cm,圆心O 到AB 的间隔 为3cm,那么⊙O 的半径为 cm.A.3B.4C.5D. 10点、直线和圆的位置关系1.⊙O 的半径为10㎝,假如一条直线和圆心O 的间隔 为10㎝,那么这条直线和这个圆的位置关系为 .2.圆的半径为 6.5cm,直线l 和圆心的间隔 为7cm,那么这条直线和这个圆的位置关系是 .A.相切B.相离C.相交D. 相离或相交3.圆O 的半径为6.5cm,PO=6cm,那么点P 和这个圆的位置关系是4.圆的半径为6.5cm,直线l 和圆心的间隔 为4.5cm,那么这条直线和这个圆的公共点的个数是 .5.一个圆的周长为a cm,面积为a cm 2,假如一条直线到圆心的间隔 为πcm,那么这条直线和这个圆的位置关系是 .A.相切B.相离C.相交D. 不能确定6.圆的半径为 6.5cm,直线l 和圆心的间隔 为6cm,那么这条直线和这个圆的位置关系是 .7. 圆的半径为 6.5cm,直线l 和圆心的间隔 为4cm,那么这条直线和这个圆的位置关系是 .A.相切B.相离C.相交D. 相离或相交 8. ⊙O 的半径为7cm,PO=14cm,那么PO 的中点和这个圆的位置关系是 .圆及圆的位置关系1.⊙O 1和⊙O 2的半径分别为3cm 和4cm ,假设O 1O 2=10cm ,那么这两圆的位置关系是 . A. 外离 B. 外切 C. 相交 D. 内切2.⊙O 1、⊙O 2的半径分别为3cm 和4cm,假设O 1O 2=9cm,那么这两个圆的位置关系是 . A.内切 B. 外切 C. 相交 D. 外离3.⊙O 1、⊙O 2的半径分别为3cm 和5cm,假设O 1O 2=1cm,那么这两个圆的位置关系是 .•BOCAD•BOCAD•D BCAO •DBCAOA.外切B.相交C. 内切D. 内含4.⊙O 1、⊙O 2的半径分别为3cm 和4cm,假设O 1O 2==7cm,那么这两个圆的位置关系是 .5.⊙O 1、⊙O 2的半径分别为3cm 和4cm ,两圆的一条外公切线长43,那么两圆的位置关系是 .A.外切B. 内切C.内含D. 相交6.⊙O 1、⊙O 2的半径分别为2cm 和6cm,假设O 1O 2=6cm,那么这两个圆的位置关系是 . A.外切 B.相交 C. 内切 D. 内含公切线问题1.假如两圆外离,那么公切线的条数为 .2.假如两圆外切,它们的公切线的条数为 . A. 1条 B.3.假如两圆相交,那么它们的公切线的条数为 . A. 1条 B.4.假如两圆内切,它们的公切线的条数为 . A. 1条 B.5. ⊙O 1、⊙O 2的半径分别为3cm 和4cm,假设O 1O 2=9cm,那么这两个圆的公切线有 条. A.1条 B. 2条 C. 3条 D. 4条6.⊙O 1、⊙O 2的半径分别为3cm 和4cm,假设O 1O 2=7cm,那么这两个圆的公切线有 条. A.1条 B. 2条 C. 3条 D. 4条正多边形和圆1.假如⊙O 的周长为10πcm ,那么它的半径为 . A. 5cm B 10 C.10cm πcm2.正三角形外接圆的半径为2,那么它内切圆的半径为 . A. 2 B.3 C.1 D.23.,正方形的边长为2,那么这个正方形内切圆的半径为 . A. 2 B. 1 C.2 D.3 4.扇形的面积为32π,半径为2,那么这个扇形的圆心角为= . °°° D. 120°5.,正六边形的外接圆半径为R,那么这个正六边形的边长为 . A.21R B.R C.2R D.R 3 6.圆的周长为C,那么这个圆的面积S= .A.2C π B.π2C C.π22C D.π42C7.正三角形内切圆及外接圆的半径之比为 . A.1:2 B.1:3 C.3:2 D.1:2 8. 圆的周长为C,那么这个圆的半径R= .C π B. C π C.π2C D. πC 9.,正方形的边长为2,那么这个正方形外接圆的直径为 .2310.,正三角形的外接圆半径为3,那么这个正三角形的边长为 . A. 3 B.323。
初三数学圆知识点归纳最新

初三数学圆知识点归纳最新(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!初三数学圆知识点归纳最新数学是研究数量、结构、变化、空间以及信息等概念的一门学科。
九年级圆的全部知识点归纳

九年级圆的全部知识点归纳圆是几何学中的重要概念,具有广泛的应用价值。
在九年级的学习中,我们需要对圆的相关知识进行全面的了解,包括定义、性质、定理等方面。
本文将对九年级学习中的圆相关知识点进行归纳总结。
一、定义与基本术语1. 圆:由平面上到定点的距离相等的所有点的轨迹称为圆。
2. 圆心:圆上所有点到圆心的距离相等,圆心是圆的中心点。
3. 半径:连接圆心和圆上任意一点的线段称为半径,用字母r 表示。
4. 直径:通过圆心并且两端点都在圆上的线段称为直径,直径的长度等于半径的两倍。
5. 弧:圆上的两点间的部分称为弧。
6. 弦:圆上任意两点之间的线段称为弦。
二、圆的性质与定理1. 弧长公式:在圆心角相等的情况下,弧长和半径的乘积是相等的。
即L = rθ,其中L为弧长,r为半径,θ为对应的圆心角的度数。
2. 弧度制:1个圆周角对应的弧长等于圆周长的2π,使用弧度制时,1个圆周角对应的弧长等于半径的2π,即1圆周角= 2π弧度。
3. 弦弧定理:在圆上,相等弧所对应的弦相等,弦所对应的弧相等。
4. 弦切定理:一条弦上的两个切线所截的弧相等。
5. 切线与半径的关系:切线与半径的垂直分离定理,切线切圆的点与圆心连线垂直。
三、圆的重要定理与推论1. 中心角定理:圆上的中心角的度数等于它所对应的弧的度数。
2. 弧度的定义与利用:弧度是角度制的单位,通过弧长和半径之间的比值得到。
利用弧度可以简便地描述与计算圆的相关问题。
3. 圆周角定理:圆周角的度数等于360度,对应的弧度等于2π。
4. 平行弦定理:平行弦所对应的圆心角相等。
5. 弦割定理:当两条弦交于圆的内部一点时,各自所对应的弧之积相等。
四、圆的应用圆具有广泛的应用价值,在日常生活中有很多应用场景。
比如在建筑领域,圆经常用于设计弧形的拱门、圆顶等;在工程测量中,圆常被用于测量水井、桥梁等的半径;在电子工程中,圆被运用于制作集成电路的微缩线路等。
总结:通过本文对九年级学习中的圆相关知识点进行归纳总结,我们了解了圆的定义与基本术语、性质与定理以及应用。
九年级数学圆知识点汇总

九年级数学圆知识点汇总在九年级数学学习中,圆是一个重要的概念,它涉及到很多数学知识和技巧。
本文将对九年级数学课程中的圆相关知识点进行汇总,并提供一些有助于理解和掌握这些知识的例子和解析。
一、圆的定义和性质圆是平面上的一个几何图形,由与一个固定点的距离相等的所有点组成。
圆的性质有以下几点:1. 圆的半径:圆心到圆上任一点的距离都相等,这个距离称为圆的半径。
2. 圆的直径:通过圆心的一条线段,它的两个端点都在圆上,这个线段叫做圆的直径。
直径是圆的长的两倍。
3. 圆的周长:圆的周长是圆的一条边上的长度,也可以说是一条线段围绕圆的一周所走的距离。
周长的计算公式是C=2πr,其中r是圆的半径,π是一个常数,约等于3.14。
4. 圆的面积:圆的面积是指圆内部的部分,计算圆的面积可以使用公式A=πr^2,其中A表示面积,r表示半径。
二、圆的相关定理和公式1. 弧与圆心角的关系:圆上的任意两点确定一个弧,对应的圆心角的大小等于弧所对的圆弧的一半。
2. 弧长和圆周角的关系:弧长是圆周的一部分,弧长和圆周角的关系可以使用公式L=2πr(θ/360),其中L表示弧长,θ表示圆周角的度数。
3. 弦和弦长的关系:弦是圆上的两个点之间所确定的线段,而弦长则是这个弦的长度。
在同一个圆中,等长的弦所对应的圆周角是相等的。
4. 切线和切点的关系:切线是与圆只有一个交点的直线,这个交点叫做切点。
切线与半径垂直。
三、九年级数学例题解析例题一:已知半径为6 cm 的圆,求其周长和面积。
解析:根据圆的周长公式C=2πr,将半径r=6 cm代入,可以计算出周长C=2π(6)=12π≈37.7 cm。
再根据圆的面积公式A=πr^2,将半径r=6 cm代入,可以计算出面积A=π(6)^2=36π≈113.1 cm^2。
例题二:在半径为8 cm 的圆中,一条弦的长度为10 cm,求此弦所对应的圆周角的度数。
解析:根据弦长和圆周角的关系公式L=2πr(θ/360),将弦长L=10 cm和半径r=8 cm代入,可以计算出θ=360*(L/2πr)=360*(10/2π*8)≈142.9°。
圆的知识点初三

圆的知识点初三圆是初中数学中重要的几何图形之一,它具有许多独特的性质和特点。
本文将从圆的定义、圆的元素、圆的性质和圆的应用等方面进行探讨。
一、圆的定义和元素圆是平面上的一个几何图形,它由平面上距离某一点固定距离的所有点组成。
这个固定距离叫做圆的半径,记作r。
圆心是到圆上任意一点的距离都等于半径的点。
圆的元素有圆心、半径、直径和弧长等。
圆心是圆的中心点,通常用字母O表示。
半径是圆心到圆上任意一点的距离,用字母r表示。
直径是通过圆心的一条线段,它的两个端点在圆上,直径的长度等于半径的两倍,即d=2r。
弧长是圆上两点之间的弧所对应的弧长,用字母l表示。
二、圆的性质1. 圆的任意两点之间的距离都等于半径的长度,即圆上任意两点之间的距离是固定的。
2. 圆的直径是圆的特殊性质之一,它等于半径的两倍。
直径是圆的最长的线段,且通过圆心。
3. 圆的弧长是圆的另一个重要性质,弧长与圆心角的大小成正比。
当圆心角为360度时,弧长等于圆的周长。
4. 圆的周长是圆上所有点到圆心的距离之和,也称为圆的周长。
周长的计算公式为C=2πr,其中π≈3.14。
5. 圆的面积是圆所包围的平面区域的大小,面积的计算公式为A=πr^2,其中^2表示半径的平方。
三、圆的应用圆在生活中有着广泛的应用。
以下列举几个常见的例子:1. 圆形的轮胎和车轮:汽车、自行车等的轮胎和车轮都是圆形的,这是因为圆形的轮胎和车轮能更好地保证车辆的稳定性和平衡性。
2. 圆形的钟表和计时器:钟表和计时器通常都是圆形的,因为圆形的刻度能更直观地显示时间的流逝。
3. 圆形的光学器件:如镜片和透镜等,它们的表面通常是圆形的,这是因为圆形的表面能更好地聚焦光线。
4. 圆形的篮球场和足球场:篮球场和足球场的形状通常是圆形的,这是为了保证比赛的公平性和平衡性,使运动员能够更好地进行比赛。
圆是初中数学中的重要知识点之一。
通过对圆的定义、元素、性质和应用的了解,我们可以更好地理解和应用圆的相关概念,为日常生活和学习中的问题提供解决方案。
九年级数学圆的知识点总结大全

第四章:《圆》一、知识回顾圆的周长: C=2πr 或C=πd 、圆的面积:S=πr ²圆环面积计算方法:S=πR ²-πr ²或S=π(R ²-r ²)(R 是大圆半径,r 是小圆半径)二、知识要点 一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;固定的端点O 为圆心。
连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。
圆上任意两点之间的部分叫做圆弧,简称弧。
2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线;3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆外; 三、直线与圆的位置关系1、直线与圆相离 ⇒ d r > ⇒ 无交点;2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点;四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+;A内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
初三数学九年级上《圆》整章知识点复习
数学九年级上《圆》复习一、知识点总结1.垂径定理:垂直于弦的直径 这条弦,并且 弦所对的两条弧.平分弦( )的直径垂直于弦,并且平分弦所对的两条弧.2.同圆或等圆中:(1)两个圆心角相等;(2)两条弧相等;(3)两条弦相等.三项中有一项成立,则其余对应的两项也成立.3.圆心角与圆周角性质(1)圆心角的度数等于它所对的______的度数.(2)一条弧所对的圆周角的度数等于它所对________的度数的一半.(3)同弧或等弧所对的圆周角________,同圆或等圆中相等的圆周角所对的弧________. (4)半圆(或直径)所对的圆周角是______,90°的圆周角所对的弦是________. 4.过 点确定一个圆。
5.直线和圆的位置关系________.________.________.6.切线的判定方法(1)经过半径的________并且垂直于这条半径的直线是圆的切线; (2)到圆心的距离________半径的直线是圆的切线. 7.切线的性质圆的切线垂直于经过________的半径.8.切线长定理:过圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角.9.(1)如果弧长为l ,圆心角的度数为n °,圆的半径为r ,那么弧长的计算公式为l =__________.此时该弧所围成的扇形的面积是计算公式是S= = (2)圆锥的轴截面为由母线.底面直径组成的等腰三角形.圆锥的侧面展开图是一个__________,扇形的弧长等于圆锥的底面圆的__________,扇形的半径等于圆锥的__________.因此圆锥的侧面积:S 侧=12l ·2πr =πrl(l 为母线长,r 为底面圆半径);圆锥的全面积:S 全=S 侧+S 底=πrl +πr 2.10.和三角形各边都 的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心. 三角形的内心是三角形三条 的交点,它到三边的距离相等,且在三角形内部.二、知识小检测1.在圆中80°的弧所对的圆心角的度数是_________________. 2.如图,A 、B 、C 是⊙O 上的三点,∠BAC=30°, ∠COB=_______°DF EBAOP3.在直径为10的圆柱形油槽内装入一些油后,截面如下图所示,如果油面宽AB=8,那么油的最大深度是________________.4.如图,在△ABC 中,∠ACB=90°,AC=2,AB=4,CM 是斜边AB 的中线,以C 为圆心、2为半径画圆,则A 、B 、M 三点中在圆外的是_______________,在圆上的是________________. 5.如图,在⊙O 中,弦AB=1.8,圆周角∠ACB=30°,则⊙O 的直径等于_______________. 6.如图, PA 、PB 、DE 都为⊙O 的切线,切点分别为A 、B 、F ,且PA=6,∠DOE=65º. 则△PDE 的周长为 ;∠APB = ;7.如图,已知AB 是⊙O 的直径,AD ∥半径OC ,弧AD 的度数为800,则∠BOC = 。
初中数学中考圆的知识点总结归纳(中考必备)
中考数学圆的知识点总结归纳一、圆的定义(1)平面上到定点的距离等于定长的所有点组成的图形叫做圆。
(2)平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。
二、圆心(1)如定义(1)中,该定点为圆心(2)如定义(2)中,绕的那一端的端点为圆心。
(3)圆任意两条对称轴的交点为圆心。
(4)垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。
注:圆心一般用字母O表示直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。
直径一般用字母d表示。
半径:连接圆心和圆上任意一点的线段,叫做圆的半径。
半径一般用字母r表示。
圆的直径和半径都有无数条。
圆是轴对称图形,每条直径所在的直线是圆的对称轴。
在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=二分之d。
圆的半径或直径决定圆的大小,圆心决定圆的位置。
圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。
圆的周长与直径的比值叫做圆周率。
圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。
计算时,通常取它的近似值,π≈3.14。
直径所对的圆周角是直角。
90°的圆周角所对的弦是直径。
圆的面积公式:圆所占平面的大小叫做圆的面积。
πr^2,用字母S表示。
一条弧所对的圆周角是圆心角的二分之一。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。
三、周长计算公式1.、已知直径:C=πd2、已知半径:C=2πr3、已知周长:D=c\π4、圆周长的一半:1\2周长(曲线)5、半圆的长:1\2周长+直径四、面积计算公式1、已知半径:S=πr平方2、已知直径:S=π(d\2)平方3、已知周长:S=π(c\2π)平方五、点、直线、圆和圆的位置关系1、点和圆的位置关系①点在圆内<=>点到圆心的距离小于半径②点在圆上<=>点到圆心的距离等于半径③点在圆外<=>点到圆心的距离大于半径2.过三点的圆不在同一直线上的三个点确定一个圆。
初三圆的知识点归纳总结
初三圆的知识点归纳总结圆是初中数学中一个重要的几何概念,它涉及到的知识点较多。
下面将对初三圆的知识点进行归纳总结,以便于读者更好地理解和掌握。
1. 圆的定义与性质圆是平面上的一条曲线,其上的任意两点到圆心的距离相等。
圆由无数点组成,其中最重要的是圆心和半径。
- 圆心:圆上所有点到圆心的距离相等,通常用字母O表示。
- 半径:连接圆心和圆上任意一点的线段,通常用字母r表示。
2. 相关公式与计算圆的周长和面积是初三学习中需要重点掌握的计算公式。
- 圆的周长公式:C = 2πr,其中π取近似值3.14,r为半径。
- 圆的面积公式:S = πr²,其中π取近似值3.14,r为半径。
3. 弧与弦圆上的弧是圆上两点之间的曲线段,弧由圆心角所确定。
圆上任意两点之间的线段称为弦。
- 弧长:弧长可以通过圆心角与圆的周长的比例来计算,通常用字母l表示。
l = (θ/360) × 2πr,其中θ为圆心角的度数。
- 弦长:弦长可以通过半径和圆心角来计算,通常用字母s表示。
s = 2r × sin(θ/2),其中θ为圆心角的度数。
4. 切线与切点在圆上,过圆上一点的直线称为切线,该点称为切点。
圆的切线与半径的关系如下:- 切线与半径的垂直关系:切线与通过切点的半径垂直相交。
- 切线的长度:切线的长度可以通过直角三角形的定理计算。
假设切点坐标为(x₀, y₀),半径为r,则切线长为L = √(x₀² +y₀²)。
5. 弧度制与角度制圆的度量可以用角度制和弧度制来表示。
- 角度制:一个圆的360°被等分为若干个小部分,每个小部分被称为1度(1°)。
- 弧度制:一个圆的一周对应的弧长为2π,定义为2π弧度(2π rad),因此1弧度约等于57.3°。
6. 圆的其他性质- 在同一个圆上,相等弧所对圆心角相等,圆心角相等则所对弧相等。
- 在同一个圆上,位于圆上的两条弦相等,则其所对的圆心角相等。
初三数学圆的知识点和公式总结
初三数学圆的知识点和公式总结数学圆的知识点和公式总结如下:1. 圆的定义:圆是由平面上所有到一个固定点的距离等于一个常数的点的集合。
2. 圆的要素:- 圆心:到圆上任意一点的距离相等的点,通常用大写字母O表示。
- 圆的半径:连接圆心和圆上任意一点的线段的长度,通常用小写字母r表示。
- 圆的直径:通过圆心的两个点之间的距离的两倍,即2r。
- 圆周:圆上所有的点构成的曲线。
- 圆内部:圆周所围成的区域。
3. 圆的相关公式:- 圆的周长:C=2πr,其中π≈3.14。
- 圆的面积:A=πr²。
- 圆的直径与周长的关系:C=πd,其中d为直径。
- 圆的直径与面积的关系:A=π(d/2)²。
4. 圆与圆的位置关系:- 相离:两个圆没有交点,且两个圆心之间的距离大于两个半径之和。
- 外切:两个圆内切于一个切点,且两个圆心之间的距离等于两个半径之和。
- 相交:两个圆有两个交点,且两个圆心之间的距离小于两个半径之和。
- 内切:一个圆在另一个圆的内部,且两个圆心之间的距离等于两个半径之差。
- 同心:两个圆的圆心重合,半径可以相等也可以不相等。
5. 圆的常用定理:- 弧长公式:弧长L=2πr(θ/360°),其中θ为所对的圆心角的度数。
- 弦长公式:弦长l=2r*sin(θ/2),其中θ为所对的圆心角的度数。
- 弧度制与角度制的转换:1弧度=180°/π,1°=π/180弧度。
- 正弦定理:在任意三角形ABC中,a/sinA=b/sinB=c/sinC。
- 余弦定理:在任意三角形ABC中,c²=a²+b²-2ab*cosC。
- 勾股定理:在直角三角形ABC中,a²+b²=c²。
希望以上总结对你有帮助!如有其他问题,请随时提问。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学圆知识点大全
1、 圆的有关概念:
(1)、确定一个圆的要素是圆心和半径。
(2)①连结圆上任意两点的线段叫做弦。②经过圆心的弦叫做直径。③圆上
任意两点间的部分叫做圆弧,简称弧。④小于半圆周的圆弧叫做劣弧。⑤大于半
圆周的圆弧叫做优弧。⑥在同圆或等圆中,能够互相重合的弧叫做等弧。⑦顶点
在圆上,并且两边和圆相交的角叫圆周角。⑧经过三角形三个顶点可以画一个圆,
并且只能画一个,经过三角形三个顶点的圆叫做三角形的外接圆,三角形外接圆
的圆心叫做这个三角形的外心,这个三角形叫做这个圆的内接三角形,外心是三
角形各边中垂线的交点;直角三角形外接圆半径等于斜边的一半。⑨与三角形各
边都相切的圆叫做三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,
这个三角形叫做圆外切三角形,三角形的内心就是三角形三条内角平分线的交
点。
2、 圆的有关性质
(1)定理在同圆或等圆中,如果圆心角相等,那么它所对的弧相等,所对的
弦相等,所对的弦的弦心距相等。推论在同圆或等圆中,如果两个圆心角、两条
弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对的其余各组量都分
别相等。
(2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧。③平分弦所对的一条弧
的直径,垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
(3)圆周角定理:一条弧所对的圆周角等于该弧所对的圆心角的一半。推论1
在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等。
推论2半圆或直径所对的圆周角都相等,都等于90 。90 的圆周角所对的弦是
圆的直径。推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是
直角三角形。
(4)切线的判定与性质:判定定理:经过半径的外端且垂直与这条半径的直
线是圆的切线。性质定理:圆的切线垂直于经过切点的半径;经过圆心且垂直于
切线的直线必经过切点;经过切点切垂直于切线的直线必经过圆心。
(5)定理:不在同一条直线上的三个点确定一个圆。
(6)圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长;切线长
定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连
线平分这两条切线的夹角。
(7)圆内接四边形对角互补,一个外角等于内对角;圆外切四边形对边和相等;
(8)弦切角定理:弦切角等于它所它所夹弧对的圆周角。
(9)和圆有关的比例线段:相交弦定理:圆内的两条相交弦,被交点分成的
两条线段长的积相等。如果弦与直径垂直相交,那么弦的一半是它分直径所成的
两条线段的比例中项。切割线定理:从圆外一点引圆的切线和割线,切线长是这
点到割线与圆交点的两条线段长的比例中项。从圆外一点引圆的两条割线,这一
点到每条割线与圆交点的两条线段长的积相等。
(10)两圆相切,连心线过切点;两圆相交,连心线垂直平分公共弦。