2023年河北普通高中会考数学真题及答案

合集下载

河北数学会考试题及答案

河北数学会考试题及答案

河北数学会考试题及答案一、选择题(每题4分,共40分)1. 若函数f(x)=x^2-4x+3,则f(1)的值为()。

A. 0B. 1C. 2D. 3答案:B2. 已知等差数列{an}的首项a1=1,公差d=2,求a5的值。

A. 9B. 10C. 11D. 12答案:A3. 若复数z满足|z|=1,且z的实部为1/2,则z的虚部为()。

A. √3/2B. -√3/2C. √3/2iD. -√3/2i答案:B4. 已知双曲线C:x^2/a^2 - y^2/b^2 = 1(a>0,b>0),若双曲线C的一条渐近线方程为y=√2x,则双曲线C的离心率为()。

A. √3B. √2C. 2D. 3答案:B5. 已知函数f(x)=2sin(x+π/4),若f(x)的图象关于点(π/2, 0)对称,则x的值为()。

A. π/4B. 3π/4C. 5π/4D. 7π/4答案:B6. 已知向量a=(1, 2),b=(2, -1),则向量a+2b的坐标为()。

A. (5, 3)B. (5, -1)C. (-1, 5)D. (-1, -5)答案:A7. 已知圆C的方程为(x-1)^2 + (y-2)^2 = 9,直线l的方程为y=2x+3,若圆C与直线l相切,则圆心C到直线l的距离为()。

A. 3B. 3√2C. √2D. 2√2答案:D8. 已知等比数列{bn}的首项b1=1,公比q=2,求前n项和Sn。

A. 2^n - 1B. 2^(n+1) - 2C. 2^n - 2^(n-1)D. 2^(n+1) - 1答案:D9. 若函数g(x)=x^3-3x,求g'(x)的值。

A. 3x^2 - 3B. 3x^2 + 3C. x^2 - 3xD. x^2 + 3x答案:A10. 已知抛物线y^2=4x的焦点为F,点P(1, 2)在抛物线上,求点P到焦点F的距离。

A. 1B. 2C. 3D. 4答案:C二、填空题(每题4分,共20分)11. 已知函数f(x)=x^2-6x+8,求f(x)的最小值。

2023年河北省普通高中学业水平合格性考试数学试题(高频考点版)

2023年河北省普通高中学业水平合格性考试数学试题(高频考点版)

一、单选题二、多选题1. 轴截面是正方形的圆柱叫做等边圆柱,已知某等边圆柱中,以底面圆为底面圆,的中点为顶点作圆锥,现在等边圆柱中随机取一点,则该点取自圆锥内的概率是( )A.B.C.D.2. 《九章算术》是我国古代的数学巨著,其中《方田》章给出了计算弧田面积所用的经验公式为:弧田面积(弦×矢+矢2),弧田(如图阴影部分所示)是由圆弧和弦围成,公式中的“弦”指圆弧所对的弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为,矢为4的弧田,按照上述方法计算出其面积是()A.B.C.D.3. 已知函数(,且)的图象恒过定点.若点在幂函数的图象上,则幂函数的图象大致是A .B .C .D .4. 2013年华人数学家张益唐证明了孪生素数猜想的一个弱化形式.孪生素数猜想是希尔伯特在1900年提出的23个问题之一,可以这样描述:存在无穷多个素数,使得是素数,素数对称为孪生素数.在不超过32的素数中,随机选取两个不同的数,能够组成孪生素数的概率是( ).A.B.C.D.5. 二项式的展开式中,项的系数为 ( )A.B.C.D.6. 已知个数的平均数为,方差为,则数据的平均数和方差分别为( )A.,B.,C.,D.,7. 甲、乙两个旅游景区某月初连续7天的日均气温数据如图所示(气温均取整数),则关于这7天的日均气温,下列判断正确的是()A .甲旅游景区日均气温的平均数与乙旅游景区日均气温的平均数相等2023年河北省普通高中学业水平合格性考试数学试题(高频考点版)2023年河北省普通高中学业水平合格性考试数学试题(高频考点版)三、填空题四、解答题B .甲旅游景区日均气温的中位数与乙旅游景区日均气温的中位数相等C .甲旅游景区的日均气温波动比乙城市的日均气温波动大D.乙旅游景区日均气温的极差为8. 如图是导函数的图象,则下列说法正确的是()A .为函数的单调递增区间B .为函数的单调递减区间C .函数在处取得极大值D .函数在处取得极小值9. 已知直线:与直线:平行,则______,直线,之间的距离为______.10. 中国南宋大数学家秦九韶提出了“三斜求积术”,即已知三角形的三条边长分别为,,,则三角形的面积可由公式求得,其中为三角形周长的一半,这个公式也被称为海伦—秦九韶公式,现有一个三角形的边长满足,则此三角形面积的最大值为______.11. 已知函数的值域为R ,则实数的范围是_________12. 若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0(a >0)的公共弦长为,则a =________.13.已知三点共线,求x 的值.14. 已知中,角,,的对应边分别为,,,其中,,且外接圆的半径为2.(1)求,,的值;(2)设,,,若,求的最大值.15.记为等差数列的前项和,已知,.(1)求的通项公式;(2)求.16. 在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如下表:分组频数4253029102合计100(1)请作出频率分布表,并画出频率分布直方图;(2)估计纤度落在中的概率及纤度小于1.40的概率是多少;(3)统计方法中,同一组数据常用该组区间的中点值(例如:区间的中点值是1.32)作为代表.据此,估计纤度的期望.。

2023年3月河北省高中数学学业水平合格考试卷六(含答案详解)

2023年3月河北省高中数学学业水平合格考试卷六(含答案详解)

2023年3月河北省普通高中学业水平合格性考试数学模拟试卷(六)一、选择题(本题共30小题,每题3分,共90分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知R 是实数集,集合{314},{10}A xx B x x =-<+≤=->∣∣,则下图中阴影部分表示的集合是()A .{43}x x -<≤∣B .{41}x x -<<∣C .{13}xx <≤∣D .{}4xx ≤-∣2.若a b >,c d >则()A .a c b d +>+B .a c b d ->-C .ac bd>D .ad bc>3.设集合{|04}A x x =<<,{2,3,4,5,6}B =,则A B = ()A .{2}B .{2,3}C .{3,4}D .{2,3,4}4.已知某圆柱体的底面半径为2,高为3,则该圆柱体的侧面的面积为()A .3πB .6C .6πD .12π5.下列统计量可用于度量样本1x ,2x ,3x ......,n x 离散程度的是()A .1x ,2x ,3x ......,n x 的众数B .1x ,2x ,3x ......,n x 的中位数C .1x ,2x ,3x ......,n x 的极差D .1x ,2x ,3x ......,n x 的平均数6.若()31i 2i z +=,则z =()A .iB .1i+C .1i-+D .22i-+7.从2022年北京冬奥会、冬残奥会志愿者的30000人中随机抽取10人,测得他们的身高分别为(单位:cm ):162、153、148、154、165、168、172、171、170、150,根据样本频率分布估计总体分布的原理,在所有志愿者中任抽取一人身高在155.5cm -170.5cm 之间的人数约为()A .18000B .15000C .12000D .100008.向量0a b ⋅= 是a b ⊥的()条件A .充分不必要B .必要不充分C .充分必要D .既不充分也不必要9.设复数i1iz =+,则复数z 的共轭复数z 在复平面内对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限10.已知向量a ,b满足1a = ,2b = ,a b -=,则2a b -等于()A .B C D .11.已知2x >,则函数42y x x =+-的最小值是()A .8B .6C .4D .212.将函数cos 23y x π⎛⎫=+ ⎪⎝⎭的图象向左平移ϕ个单位后,得到的函数图象关于y 轴对称,则ϕ的可能取值为()A .3πB .6πC .23πD .2π13.已知三棱锥-P ABC 的棱AB ,AC ,AP 两两互相垂直,AB AC AP ===A 为球心,1为半径作一个球,球面与该三棱锥的表面相交得到的交线最长为()A .π2B C .3D 14.函数2x y a a a =-+(0a >且1a ≠)的图象不可能是A .B .C .D .15.若函数()f x 的定义域是[0,4],则函数()2()1f xg x x =-的定义域是()A .{|02x x ≤≤且}1x ≠B .{|02x x <<且}1x ≠C .{|08x x ≤≤且}1x ≠D .{|08x x <<且}1x ≠16.已知四棱锥S ABCD -的所有顶点都在同一球面上,底面ABCD 是正方形且和球心O 在同一平面内,当此四棱锥体积取得最大值时,其表面积等于4+O 的体积等于()A .3B .3C D .317.直角坐标平面中除去两点(1,1)A 、(2,2)B -可用集合表示为()A .{(,)|1,1,2,2}x y x y x y ≠≠≠≠-B .1{(,)|1x x y y ≠⎧⎨≠⎩或2}2x y ≠⎧⎨≠-⎩C .2222{(,)|[(1)(1)][(2)(2)]0}x y x y x y -+--++≠D .2222{(,)|[(1)(1)][(2)(2)]0}x y x y x y -+-+-++≠18.在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c .)cos cos sin c B b C a A +=,ABC 的面积)222S a b c =+-,当a =时,ABC 的内切圆的面积为()A .4πB .3πC .2πD .π19.已知三棱锥S ABC -为正三棱锥,且6AB =,SA =,点M 、N 是线段AC 、SB 的中点,平面α与平面SBC 没有公共点,且A ∈平面α,若l 是平面α与平面ABC 的交线,则直线l 与直线MN 所成角的正切值为()A B C D 20.将函数2()2sin cos cos 2cos 1sin 222x x xf x ϕϕ⎛⎫=+- ⎪⎝⎭||2πϕ⎛⎫< ⎪⎝⎭的图象向左平移3π个单位长度后得到函数()g x 的图象,且函数()g x 的图象关于y 轴对称,则6g π⎛⎫= ⎪⎝⎭()A .2B .12C .D .12-21.已知函数3()log 3f x x x =+,()33x g x x =+,3()3h x x x =+的零点分别1x ,2x ,3x ,则1x ,2x ,3x 的大小关系为()A .231x x x <<B .123x x x <<C .213x x x <<D .321x x x <<22.已知定义在R 上的函数()[]f x x m =+,其中[]x 表示不超过x 的最大整数,m R ∈,给出下列四种说法:①m ∃∈R ,使得()f x 是一个增函数;②m ∃∈R ,使得()f x 是一个奇函数;③m ∃∈R ,使得()f x 在区间[0,1]上有唯一零点.其中,正确的说法个数是()A .0B .1C .2D .323.已知,,(0,)x y t ∈+∞,且11tx y+=,A .当2t =时,当且仅当2x y ==时,2x y +有最小值B .当8t =时,当且仅当253x y ==时,2x y +的最小值为25C .若2x y +的最小值为9,则t 的值为2D .若2x y +的最小值为25,则t 的值为624.甲、乙两人轮流投篮,每人每次投一球.甲先投且先投中者获胜,约定有人获胜或每人都已投球2次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.则投篮结束时,乙只投了1个球的概率为()A .13B .49C .59D .2325.在棱长为2的正方体1111ABCD A B C D -中,点E 、F 分别是棱11C D 、11B C 的中点,P 是上底面1111D C B A 内一点,若//AP 平面BDEF ,则线段AP 长度的取值范围是()A .⎣B .⎣⎦C .⎣D .⎣26.已知函数()()2log 41x f x ax =++是偶函数,函数()()22222f x x xg x m -=++⋅的最小值为3-,则实数m 的值为()A .3B .52-C .2-D .4327.已知函数()sin (0)f x x ωω=>在区间2,33ππ⎡⎤-⎢⎥⎣⎦上单调递增,且|()|1f x =在区间[]0,π上有且仅有一个解,则ω的取值范围是()A .30,4⎛⎫ ⎪⎝⎭B .33,42⎡⎫⎪⎢⎣⎭C .13,22⎡⎫⎪⎢⎣⎭D .13,24⎡⎤⎢⎥⎣⎦28.定义空间两个向量的一种运算sin ,a b a b a b ⊗=⋅,则关于空间向量上述运算的以下结论中恒成立的有()A .()()a b a b λλ⊗=⊗ B .()()a b c a b c ⊗⊗=⊗⊗ C .()()()a b c a c b c+⊗=⊗+⊗ D .若()11,a x y =r ,()22,b x y =r,则1221a b x y x y ⊗=-29.若对任意实数0,0x y >>,不等式()x a x y ≤+恒成立,则实数a 的最小值为()A .12B 1-C 1+D .1230.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π=,则a c +的取值范围是()A .⎝B .32⎛ ⎝C .⎣D .32⎡⎢⎣二、解答题(本题共1题,共10分,解答应写出文字说明,演算步骤或证明过程)31.已知平面向量1232a e e =-+ ,125b e e =+,其中()11,0e =u r ,()20,1e =u r .(1)求a 与b的夹角θ;(2)若1242c e e =- 与ka b +共线,求实数k 的值.1.D 【分析】化简集合A ,B ,根据给定的韦恩图,结合补集、交集的定义求解作答.【详解】依题意,{43},{1}A xx B x x =-<≤=<∣∣,由韦恩图知,阴影部分表示的集合是R ()ðA B ,而R {|4A x x =≤-ð或3}x >,所以{}R 4()xA B x =≤- ∣ð.故选:D 2.A 【分析】根据不等式的性质,或代入特殊值判断选项.【详解】A.根据不等式的性质可知,A 正确;B.若11>-,22>-,()1212-<---,可知B 不正确;C.若11>-,22>-,()()1212⨯=-⨯-,故C 不正确;D.若11>-,22>-,()()1212⨯-=-⨯,故D 不正确.故选:A 3.B 【分析】根据交集的概念可得答案.【详解】A B = {2,3}.故选:B 4.D 【分析】根据侧面积公式求解即可【详解】由题意,则该圆柱体的侧面的面积为22312ππ⨯⨯=故选:D 5.C 【分析】利用众数、中位数、极差、平均数的定义以及含义分析即可求解.【详解】解:众数是指统计分布上具有明显集中趋势的数值,代表数据的一般水平;中位数是统计数据中选取中间的数,是一种衡量集中趋势的数值;极差是用来表示统计资料中的变异数量,反应的是最大值与最小值之间的差距,刻画一组数据的离散程度;平均数是反应数据的平均水平是一种衡量集中趋势的数值.故选:C 6.C 【分析】利用复数运算性质计算即可【详解】32i 2i 2i(1i)=1i 1i 1i 2z +===-++-故选:C 7.C 【分析】根据给出的数据算出事件发生的概率,再乘以总数即可.【详解】在随机抽取10人中,身高在155.5cm -170.5cm 之间的人数为4人,所以从所有志愿者中任抽取一人身高在155.5cm -170.5cm 的概率为42=105,所以从2022年北京冬奥会、冬残奥会志愿者的30000人中随机抽取一人身高在155.5cm -170.5cm 之间的人数约为230000=120005⨯人.故A ,B ,D 错误.故选:C.8.B 【分析】利用数量积的定义||||cos ,a b a b a b ⋅=<>判断即可【详解】由题意,向量垂直是对非零向量而言的,故充分性不成立;若a b ⊥ ,则,2a b π<>= ,cos ,0a b <>= ,故||||cos ,0a b a b a b ⋅=<>= 因此必要性成立故向量0a b ⋅= 是a b ⊥的充要条件故选:B 9.D 【分析】先求出z ,再求出z ,直接得复数z 在复平面内对应的点.【详解】()()()i 1i i 11i 1i 1i 1i 22z -===+++-,则11i 22z =-∴z 在复平面内对应的点为11,22⎛⎫- ⎪⎝⎭,位于第四象限故选:D.10.A 【分析】通过平方的方法,结合向量数量积运算求得正确答案.【详解】由a b -=得a b -==两边平方得222525,0a a b b a b a b -⋅+=-⋅=⋅=,所以2a b -.故选:A 11.B 【分析】根据基本不等式可求得最小值.【详解】∵2x >,∴442+24+2622y x x x x =+=+-≥==--,当且仅当422x x =--,即4x =时等号成立.∴y 的最小值是6.故选:B .12.A 【分析】先求得平移后的函数为cos 223y x πϕ⎛⎫=++ ⎝⎭,再根据余弦函数的对称性列式求解即可【详解】将函数cos 23y x π⎛⎫=+ ⎪⎝⎭的图象向左平移ϕ个单位后,得到函数()cos 2cos 2233y x x ππϕϕ⎡⎤⎛⎫=++=++ ⎪⎢⎥⎣⎦⎝⎭,因为图象关于y 轴对称,所以23k πϕπ+=,k ∈Z ,则26k ππϕ=-,k ∈Z 故选:A.13.D 【分析】由条件可得球A 与三棱锥的表面,,ABC APC APB 的交线均为以点A 为顶点,半径为1,圆心角为π2的圆弧,然后利用等体积法算出点A 到平面PBC 的距离,然后可得球A 与表面PBC的交线为以PBC .【详解】因为三棱锥-P ABC 的棱AB ,AC ,AP 两两互相垂直,AB AC AP ===所以球A 与三棱锥的表面,,ABC APC APB 的交线均为以点A 为顶点,半径为1,圆心角为π2的圆弧,其长度为π2,设点A 到平面PBC 的距离为d ,因为AB AC AP ==,所以PBC 是边长为2的等边三角形,由P ABC A PBC V V --=可得11112232322d ⨯⨯⨯⨯⨯⨯,解得3d =,所以球A 与表面PBC 的交线为以PBC =的圆,其长度为3,因为π32>,所以以顶点A 为球心,1为半径作一个球,球面与该三棱锥的表面相交得到的交线最长为故选:D 14.D 【解析】分两类,当01a <<时,和1a >进行讨论,即可得到答案.【详解】当01a <<时,函数2x y a a a =-+为减函数,取0x =时,函数值22155244y a a a a ⎛⎫=-+=--+= ⎪⎝⎭,又01a <<,所以2021551244a a a a ⎛⎫<-+=--+≤ ⎪⎝⎭故C选项符合题意,D 选项不符合题意;当1a >时,函数2x y a a a =-+为增函数,取0x =时,函数值221524y a a a a ⎛⎫=-+=--+ ⎪⎝⎭,又1a >,所以20215124a a a a ⎛⎫-+=--+< ⎪⎝⎭,故A 选项符合题意,B 选项也符合题意.故选:D.【点睛】本题考查函数的图象的识别,分类讨论,属于基础题.15.A 【解析】由函数()f x 的定义域是[0,4],可得04x ≤≤,从而024x ≤≤,解得02x ≤≤,所以函数()2f x 的定义域是[0,2],又10x -≠,得1x ≠,取交集可得函数()21f x x -的定义域,即可得到答案.【详解】由函数()f x 的定义域是[0,4],可得04x ≤≤,从而024x ≤≤,解得02x ≤≤,所以函数()2f x 的定义域是[0,2]又10x -≠,得1x ≠,函数()2()1f xg x x =-的定义域是{|02x x ≤≤且}1x ≠故选:A.【点睛】方法点睛:求抽象函数的定义域的方法:(1)已知()f x 的定义域为[,]a b ,求[]()f g x 的定义域:求不等式()a g x b ≤≤的解x 的范围,即为[]()f g x 的定义域;(2)已知[]()f g x 的定义域为[,]a b ,求()f x 的定义域:由a x b ≤≤确定()g x 的取值范围,即为()f x 的定义域.(3)已知[]()f g x 的定义域,求[]()f h x 的定义域:先由[]()f g x 的定义域,求得()f x 的定义域,再由()f x 的定义域,求得[]()f h x 的定义域.16.C 【分析】由条件可得球心O 为正方形ABCD 的中心,当此四棱锥的高为球的半径时,此四棱锥体积取得最大值.设球O 的半径为R ,则AB ==,可得SBC △为等边三角形,根据条件可得R =.【详解】四棱锥S ABCD -的所有顶点都在同一球面上,底面ABCD 是正方形且和球心O 在同一平面内,所以球心O 为正方形ABCD 的中心,当此四棱锥的高为球的半径时,此四棱锥体积取得最大值.此时四棱锥为正四棱锥.设球O 的半径为R ,则AB ==,SB =SBC △为等边三角形,则221sin 602SBC S SB ==所以此四棱锥的表面积为22424SBC ABCD S S R +=+=+所以R =O 的体积3433V R π==.故选:C.【点睛】本题考查四棱锥的表面积和外接球的体积问题,属于中档题.17.C 【解析】直角坐标平面中除去两点(1,1)A 、(2,2)B -,其余的点全部在集合中,逐一排除法.【详解】直角坐标平面中除去两点(1,1)A 、(2,2)B -,其余的点全部在集合中,A 选项中除去的是四条线1,1,2,2x y x y ====-;B 选项中除去的是(1,1)A 或除去(2,2)B -或者同时除去两个点,共有三种情况,不符合题意;C 选项2222{(,)|[(1)(1)][(2)(2)]0}x y x y x y -+--++≠,则22(1)(1)0x y -+-≠且22(2)(2)0x y -++≠,即除去两点(1,1)A 、(2,2)B -,符合题意;D 选项2222{(,)|[(1)(1)][(2)(2)]0}x y x y x y -+-+-++≠,则任意点(),x y 都不能2222[(1)(1)][(2)(2)]0x y x y -+-+-++=,即不能同时排除A ,B 两点.故选:C 【点睛】本题考查了集合的基本概念,考查学生对集合的识别,属于中档题.18.D 【分析】利用三角形的面积公式与余弦定理可求得tan C 的值,进而可求得角C ,利用正弦定理结合两角和的正弦公式可求得sin A 的值,可求得角A 的值,可判断ABC 的形状,利用等面积法可求得ABC 的内切圆的半径,结合圆的面积公式可求得结果.【详解】)cos cos sin 2c B b C a A +=,由正弦定理可得)()2sin sin cos cos sin A B C B C B C A =+=+=,()0,A π∈ ,则sin 0A >,故sin A =,因为)222S a b c =+-,则1sin 2cos cos 242ab C ab C C ==,则tan C =()0,C π∈ ,故3C π=,则203A π<<,因此,3A π=,所以,ABC 为等边三角形,设等边ABC 的内切圆半径为r ,则()12ABCS a b c r =++△,则2224136ABC S r a a b c a ====++△,因此,ABC 的内切圆的面积为2r ππ=.故选:D.19.D 【分析】由题意可知平面//α平面SBC ,利用面面平行的性质定理可得出//l BC ,然后取线段AB 的中点D ,连接DM 、DN ,可得出//DM BC ,由此可得出直线l 与直线MN 所成的角为DMN ∠或其补角,在 Rt DMN 中计算出tan DMN ∠,即可得解.【详解】因为平面//α平面SBC ,平面α 平面=ABC l ,平面SBC I 平面ABC BC =,所以//l BC ,取AB 中点D ,连接DM ,DN ,D 、M 分别为AB 、AC 的中点,则//DM BC ,所以//l DM ,同理//DN SA ,所以异面直线l 和MN 所成角即为DMN ∠或其补角.取BC 中点O ,则SO BC ⊥,AO BC ⊥,又SO AO O = ,所以BC ⊥平面SOA ,又SA ⊂平面SOA ,所以BC SA ⊥,所以DM DN ⊥.在 Rt DMN 中,132DM BC ==,12DN SA =,所以tan 3DN DMN DM ∠==.所以直线l 和MN 所成角的正切值为3,故选:D.【点睛】本题考查异面直线所成角的正弦值的计算,考查了面面平行性质定理的应用,考查计算能力,属于中等题.20.A 【分析】根据三角函数的二倍角公式和和差角公式先对函数()f x 化简为()()sin f x x ϕ=+,再由图象的平移得出函数()g x 的解析式,由函数的对称性可求得ϕ,可得选项.【详解】函数()()22sin cos cos 2cos 1sin sin cos cos sin sin 222x xxf x x x xϕϕϕϕϕ⎛⎫=+-=+=+ ⎪⎝⎭的图象向左平移3π个单位长度后,所得图象对应的函数解析式为()sin 3g x x πϕ⎛⎫=++ ⎪⎝⎭.由()sin 3g x x πϕ⎛⎫=++ ⎪⎝⎭的图象关于y 轴对称,可得()g x 为偶函数,故32k ππϕπ+=+,Z k ∈,即6k πϕπ=+,Z k ∈.又2πϕ<,故6πϕ=,可得函数()sin cos 2g x x x π⎛⎫=+= ⎪⎝⎭,则6g π⎛⎫= ⎪⎝⎭故选:A.【点睛】本题考查三角函数的恒等变形,三角函数的图象平移,三角函数的奇偶性和对称性,属于中档题.21.A 【分析】先判断出三个函数的单调性,再分别判断三个函数函数值的正负情况,得出零点的值或范围,即可得到答案.【详解】解:因为函数3()log 3f x x x =+,()33x g x x =+,3()3h x x x =+,所以函数()f x ,()g x ,()h x 均为增函数,当0x >时,()330x g x x =+>恒成立,故()g x 的零点小于0,即20x <,当1x >时,3()log 30f x x x =+>恒成立,当13x =时,()0f x =,所以113x =,当0x =时,()0h x =,故30x =,故231x x x <<.故选:A .22.B 【分析】举反例(0)(0.5)f f =和()0.50f =,()0.51f -=-,得到①②错误,计算1m =-满足有唯一零点,得到答案.【详解】①(0)[0]f m m =+=,(0.5)[0.5]f m m =+=,故①错误;②若m ∃∈R ,使得()f x 是一个奇函数,则(0)[0]0f m m =+==,()[]f x x =,()0.50f =,()0.51f -=-,故假设不成立,②错误;③当[)0,1x ∈时,()[]f x x m m =+=,当1x =时,()[]1f x x m m =+=+,当1m =-时,满足()f x 在区间[0,1]上有唯一零点,③正确.故选:B.23.C 【解析】当2t =时,121x y +=,()1222x y x y x y ⎛⎫+=+ ⎪⎝⎭展开后利用基本不等式即可判断A ;当当8t =时,181x y +=,()2812x y x y x y ⎛⎫+=++ ⎪⎝⎭展开后利用基本不等式即可判断B ;()12212122122x y x y t t t x y x t y txy ⎛⎫+=++=+++≥++++ ⎪⎝⎭,分别令129t ++和1225t ++即可求出t 的值,可判断选项C 、D ,进而可得正确选项.【详解】对于选项A :当2t =时,121x y+=,()122225259x x y x y x y x y y ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当12122x y y x x y ⎧+=⎪⎪⎨⎪=⎪⎩即3x y ==时等号成立,所以3x y ==时,2x y +有最小值,故选项A 不正确;对于选项B :当8t =时,181x y+=,()188********25xx y x y x y x y y ⎛⎫+=++=++≥+ ⎪⎝⎭,当且仅当18128x y y x xy ⎧+=⎪⎪⎨⎪=⎪⎩即510x y =⎧⎨=⎩时等号成立,所以510x y =⎧⎨=⎩时,2x y +有最小值,故选项B 不正确;对于选项C :()12212221x y x t y tx y t t x y x y ⎛⎫+=++=+++≥++ ⎪⎝⎭12t =++129t ++即0==,即2t =,当且仅当12122x y y x x y ⎧+=⎪⎪⎨⎪=⎪⎩即3x y ==时等号成立,所以2t =,故选项C 正确;对于选项D :()12212221x y x t y tx y t t x y x y ⎛⎫+=++=+++≥++ ⎪⎝⎭12t =++1225t ++即0+==,即8t =,当且仅当12128x y y x x y ⎧+=⎪⎪⎨⎪=⎪⎩即510x y =⎧⎨=⎩时等号成立,所以8t =,故选项D 不正确;故选:C 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.24.B 【分析】根据题意,乙只投了1个球包括甲未投进乙投进结束,甲未投进乙未投进甲再投投进结束两个互斥事件的和,由互斥事件的和的概率及独立事件同时发生的概率求解.【详解】设k A ,k B 分别表示甲、乙在第k 次投篮时投中,则()13k P A =,()12k P B =,(1k =,2),记“投篮结束时,乙只投了1个球”为事件D .则()()()()()()()()1111111212P D P A B P A B A P A P B P A P B P A =+=+212114.323239=⨯+=故选:B 25.C 【解析】分别取11A D 、11A B 的中点M 、N ,连接AM 、AN 、MN 、FM ,推导出平面//AMN 平面BDEF ,可得出点P 的轨迹为线段MN ,进而可求得线段AP 长度的取值范围.【详解】如下图所示,分别取11A D 、11A B 的中点M 、N ,连接AM 、AN 、MN 、FM ,因为四边形1111D C B A 为正方形,则1111//B A C D 且1111A D B C =,因为M 、F 分别为11A D 、11B C 的中点,则11//A M B F 且11A M B F =,所以,四边形11A B FM 为平行四边形,则11//A B MF 且11A B MF =,在正方体1111ABCD A B C D -中,11//AB A B 且11AB A B =,//AB MF ∴且AB MF =,所以四边形ABFM 为平行四边形,可得//AM BF ,AM ⊄ 平面BDEF ,BF ⊂平面BDEF ,//AM ∴平面BDEF ,同理可证//AN 平面BDEF ,AM AN A = ,所以,平面//AMN 平面BDEF ,在线段MN 上任取一点P ,则AP ⊂平面AMN ,//AP ∴平面BDEF ,即点P 的轨迹为线段MN ,在AMN 中,AM AN ==MN =,当AP MN ⊥时,即当P 为MN 的中点,AP 的长度取最小值,即min2AP =,当点P 与点M 或点N 的重合时,AP 的长度取最大值,即max AP AM ==.因此,线段AP 长度的取值范围是2⎡⎢⎣.故选:C.【点睛】关键点点睛:本题考查线段长度取值范围的求解,解题的关键就是利用//AP 平面BDEF 推测出点P 的轨迹,一般利用线面平行的性质或面面平行的性质来找出动点P 的轨迹,在确定点P 的轨迹后,再利用几何知识求解.26.B 【分析】利用函数的奇偶性求出参数,在利用换元法把问题转化为含参的二次函数问题,再通过讨论参数来处理二次函数轴动区间定的问题进行求解.【详解】因为函数()()2log 41xf x ax =++是偶函数,所以()()f x f x -=,即()()22log 41log 41x x ax ax -+-=++,所以()()222log 41log 410x x ax -++-+=,其中()()()()()22222241441441log 41log 41log log log log 424141414x x x x x x xx x x x xx ---+⋅+⋅++-+====+++⋅,所以220ax x +=,解得1a =-,所以()()2log 41xf x x =+-,所以()()2log 414122222x x xf x x x x +--+===+,故函数()()222222x x x xg x m --=+++的最小值为3-.令22x x t -+=,则2t ≥,故函数()()222222x x x xg x m --=+++的最小值为3-等价于()()222h t t mt t =+-≥的最小值为3-,等价于()222223mh m ⎧-≤⎪⎨⎪=+=-⎩或22 22324mm m h ⎧->⎪⎪⎨⎛⎫⎪-=--=- ⎪⎪⎝⎭⎩,解得52m =-.故A ,C ,D 错误.故选:B .27.D 【分析】先利用整体代换思想以及正弦函数的单调递增区间求出函数()f x 的单调递增区间,结合集合的包含关系求出ω的范围,然后再利用正弦函数取最大值的性质可再得一个ω的范围,两个范围取交集即可求解.【详解】令2,222x k k ππωππ⎡⎤∈-+⎢⎣⎦,解得22,22k k x ππππωωωω⎡⎤∈-+⎢⎥⎣⎦,Z k ∈,而函数()sin (0)f x x ωω=>在区间2,33ππ⎡⎤-⎢⎥⎣⎦上单调递增,所以223230ππωππωω⎧-≤-⎪⎪⎪≥⎨⎪>⎪⎪⎩,解得304ω<≤,当[]0,x π∈时,[]0,x ωω∈π,因为|()|1f x =在区间[]0,π上有且仅有一个解,所以232πωππωπ⎧≥⎪⎪⎨⎪<⎪⎩,解得1322ω≤<.综上所述,ω的取值范围是1324ω≤≤.故选:D.【点睛】本题的核心是利用整体思想,首先根据正弦函数的单调性,以及已知单调性得ω的一个取值范围;然后根据取最值的个数,求得ω的另一个范围.这里要注意,|()|1f x =说明()1f x =±,而根据题意,|()|1f x =只有一个解,所以()f x 只能取一个值,而根据函数本身的图象可以发现()f x 只能等于1.如果能够取到1-,那么根据自变量的范围,此时()f x 肯定也可以取1,所以舍去.28.D【分析】A .按λ的正负分类讨论可得,B .由新定义的意义判断,C .可举反例说明进行判断,D .与平面向量的数量积进行联系,用数量积求出两向量夹角的余弦值,转化为正弦值,代入计算可判断.【详解】A .()sin ,a b a b a b λλλ⊗=<> ,0λ>时,,,a b a b λ<>=<> ,()sin ,()a b a b a b a b λλλ⊗=<>=⊗ ,0λ=时,()()0,0a b a b λλ⊗=⊗=,成立,0λ<时,,,a b a b λπ<>=-<>,sin ,sin(,)sin ,a b a b a b λπ<>=-<>=<>()sin ,()a b a b a b a b λλλ⊗=-<>=-⊗ ,综上,A 不恒成立;B .a b ⊗ 是一个实数,()a b c ⊗⊗ 无意义,B 不成立;C .若(0,1),(1,0)a b == ,(1,1)c = ,则(1,1)a b += ,,0a b c <+>= ,()sin 000a b c a b c +⊗=+== ,,,,44a c b c ππ<>=<>= ,()()1sin 1sin 244a cbc ππ⊗+⊗=+= ,()()()a b c a c b c +⊗≠⊗+⊗ ,C 错误;D .若()11,a x y =r ,()22,b x y =r,则a =b =cos ,a b <>=,sin ,a b <>== ,所以1221sin ,a b a b a b x y x y ⊗=<>=- ,成立.故选:D .【点睛】本题考查向量的新定义运算,解题关键是理解新定义,并能运用新定义求解.解题方法一种方法是直接利用新定义的意义判断求解,另一种方法是把新定义与向量的数量积进行联系,把新定义中的sin ,a b <> 用cos ,a b <> ,而余弦可由数量积进行计算.29.D【分析】分离变量将问题转化为a 0,0x y >>的最(0)t t =>及1(1)t m m +=>,然后通过基本不等式求得答案.【详解】由题意可得,a 0,0x y >>恒成立,1x =+(0)t t =>2111t t x +=++,再设1(1)t m m +=>,则22111(1)1t m y t m x+===++-+212222m m m m m =-++-12≤==,当且仅当21m m ==时取得“=”.所以212a ≥,即实数a故选:D.30.A 【分析】利用三角恒等变换及正弦定理将cos cos sin sin()sin B C A A C b c C⎛⎫++= ⎪⎝⎭进行化简,可求出b 的值,再利用边化角将a c +化成角,然后利用辅助角公式及角的范围即可得到答案.【详解】由题知cos cos sin sin()sin B C A A C bc C ⎛⎫++= ⎪⎝⎭,3B π=∴cos cos sin sin sin B C A B b c C⎛⎫+= ⎝⎭即cos cos 3sin B C A b c C+=由正弦定理化简得∴sin cos cos 3sin 3A cB bC C ⋅+⋅==∴sin cos cos sin C B C B +=∴sin()sin B C A +==∴b = 3B π=∴1sin sin sin a b c A B C===∴23sin sin sin sin()sin )326a c A C A A A A A ππ+=+=+-==+ 203A π<<∴5666A πππ<+<∴26A π<+≤即2a c <+≤故选:A .【点睛】方法点睛:边角互化的方法(1)边化角:利用正弦定理2sin sin sin a b c r A B C===(r 为ABC 外接圆半径)得2sin a r A =,2sin b r B =,2sin c r C =;(2)角化边:①利用正弦定理:sin 2a A r =,sin 2b B r =,sin 2c C r=②利用余弦定理:222cos 2b c a A bc+-=31.(1)3π4;(2)7-.【分析】(1)根据向量的坐标运算及向量的夹角公式计算求解即可;(2)由共线向量的坐标表示求解即可.【详解】(1)因为()11,0e =u r ,()20,1e =u r ,所以1232(3,2)a e e =-+=- ,125(5,1)b e e =+= ,35213a b →→⋅=-⨯+=-,||||a b →→==,cos2||||a ba b θ→→→→⋅∴==-,0θπ≤≤Q ,3π4θ∴=.(2)1242(4,0)(0,2)(4,2)c e e =-=-=- ,(3,2)(5,1)(53,21)ka b k k k +=-+=-+ ,1242c e e =- 与ka b + 共线,4(21)2(53)0k k ∴++-=,解得7k =-.即实数k 的值为7-.。

2023年河北省普通高中学业水平合格性考试数学试题

2023年河北省普通高中学业水平合格性考试数学试题

一、单选题二、多选题1. 已知抛物线的焦点为F ,C上一点满足,则抛物线C 的方程为( )A.B.C.D.2. 已知是椭圆的两个焦点,点在上,则的取值范围是( )A.B.C.D.3. 若a >b >0,0<c <1,则A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b4. 已知,,,则( )A.B.C.D.5. 已知椭圆(a >b >0)的离心率为,则=( )A.B.C.D.6. 已知双曲线的一条渐近线的方程为,则的值为( )A.B.C .4D .67. 已知函数的零点为m ,若存在实数n 使且,则实数a 的取值范围是( )A.B.C.D.8. 设F 1,F 2分别是双曲线的左、右焦点,若双曲线右支上存在一点,使,O 为坐标原点,且,则该双曲线的离心率为( ).A.B.C.D.9.已知双曲线的左、右焦点分别为,,点P 在双曲线的右支上,现有四个条件:①;②;③PO 平分;④点P 关于原点对称的点为Q ,且,能使双曲线C的离心率为的条件组合可以是( )A .①②B .①③C .②③D .②④10.如图,在四棱柱中,平面,,,,为棱上一动点,过直线的平面分别与棱,交于点,,则下列结论正确的是()A .对于任意的点,都有B .对于任意的点,四边形不可能为平行四边形C .存在点,使得为等腰直角三角形D .存在点,使得直线平面2023年河北省普通高中学业水平合格性考试数学试题三、填空题四、解答题11. 已知函数对都有,若函数的图象关于直线对称,且对,当时,都有,则下列结论正确的是( )A.B .是偶函数C .是周期为4的周期函数D.12. 某次数学考试后,为分析学生的学习情况,某校从某年级中随机抽取了名学生的成绩,整理得到如图所示的频率分布直方图.为进一步分析高分学生的成绩分布情况,计算得到这名学生中,成绩位于内的学生成绩方差为,成绩位于内的同学成绩方差为.则( )参考公式:样本划分为层,各层的容量、平均数和方差分别为:、、;、、.记样本平均数为,样本方差为,.A.B.估计该年级学生成绩的中位数约为C.估计该年级成绩在分及以上的学生成绩的平均数为D.估计该年级成绩在分及以上的学生成绩的方差为13. 已知集合,集合,若,则______.14.已知展开式的二项式系数之和为256,则其展开式中的系数为_____________.(用数字作答)15.设空间向量,,且,则______,______.16.已知函数.(1)当时,求函数的单调区间;(2)是否存在正整数m ,使得恒成立,若存在求出m 的最小值,若不存在说明理由.17. 2023年春节期间,科幻电影《流浪地球2》上映,获得较好的评价,也取得了很好的票房成绩.某平台为了解观众对该影片的评价情况(评价结果仅有“好评”“差评”),从平台所有参与评价的观众中随机抽取200人进行调查,数据如下表所示(单位:人):好评差评合计男性8030110女性306090合计11090200(1)判断是否有99.9%的把握认为对该部影片的评价与性别有关?(2)若将频率视为概率,从所有给出“差评”的观众中随机抽取3人,用随机变量X 表示被抽到的男性观众的人数,求X 的分布列和数学期望.参考公式:,其中.参考数据:0.100.050.0250.0100.0050.0012.7063.841 5.024 6.6357.87910.82818. 如图,四棱锥的底面是边长为2的菱形,底面.(1)求证:平面平面;(2)若,求直线与平面所成角的正弦值.19. 小强和小基两位同学组成“联盟队”参加两轮猜灯谜活动.每轮活动由小强、小基各猜一个灯谜,他们猜对与否互不影响.若两人都猜对,则得3分;若仅一人猜对,则得1分;若两人都没猜对,则得0分.已知小强每轮猜对的概率是,小基每轮猜对的概率是,各轮结果互不影响.(1)求“联盟队”猜对4个灯谜的概率;(2)求“联盟队”两轮得分之和的分布列和数学期望.20. 已知函数.(1)讨论的单调性.(2)若存在两个零点,且曲线在和处的切线交于点.①求实数的取值范围;②证明:.21. 如图,在三棱柱ABC﹣A1B1C1中,平面A1ACC1⊥平面ABC,△ABC和△A1AC都是正三角形,D是AB的中点(1)求证:BC1∥平面A1DC;(2)求直线AB与平面DCC1所成角的正切值.。

2023年河北省普通高中学业水平合格性考试数学试题

2023年河北省普通高中学业水平合格性考试数学试题

一、单选题二、多选题1.已知函数,则( )A .14B .5C .1D.2. 函数在区间内的零点个数是( )A .2B .3C .4D .53.已知定义在上的奇函数恒有,当时,,已知,则函数在上的零点个数为( )A .4个B .5个C .3个或4个D .4个或5个4.在等比数列中,,若,,成等差数列,则的公比为( ).A .2B .3C .4D .55. 已知空间向量两两相互垂直,且,若则的取值范围是( )A.B.C.D.6.已知函数,现将的图象向左平移个单位,再将所得图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图象,则的解析式为( )A.B.C.D.7. 甲、乙、丙、丁、戊共5名同学参加劳动技术比赛,决出第一名到第五名的名次.甲和乙去询问成绩,回答者对甲说:“很遗憾,你和乙都没有得到冠军,”对乙说:“你不是最差的.”从这两个回答分析,5人的名次排列可能有( )不同的排列A .36B .54C .60D .728.已知,则( )A .1B .2C .3D .49. 已知函数,.若实数a ,b (a ,b 均大于1)满足,则下列说法正确的是( )A .函数在R 上单调递增B.函数的图象关于中心对称C.D.10. 已知空间中三条不同的直线a 、b 、c,三个不同的平面,则下列说法中正确的是( )A .若,,则B.若,,,则C .若,,,则D .若,,则11. 已知点P 在:上,点,则( )A .点P 到直线AB的距离最大值是B.满足的点P 有2个2023年河北省普通高中学业水平合格性考试数学试题2023年河北省普通高中学业水平合格性考试数学试题三、填空题四、解答题C .过直线AB 上任意一点作的两条切线,切点分别为M ,N ,则直线MN过定点D.的最小值为12. 已知函数,则下列说法正确的是( )A.若函数的最小值为,则B .若),则使得成立C .若,都有成立,则D .若函数在上存在最大值,则正实数的取值范围是13. 南宋晚期的龙泉窑粉青釉刻花斗笠盏如图1所示,忽略杯盏的厚度,这只杯盏的轴截面如图2所示,其中光滑的曲线是抛物线的一部分,已知杯盏盛满茶水时茶水的深度为3cm ,则该抛物线的焦点到准线的距离为______cm.14. 等差数列的公差,其前n项和为,若,则中不同的数值有________个.15. 某电子产品的成本价格由两部分组成,一是固定成本,二是可变成本,为确定该产品的成本.进行5次试验,收集到的数据如表:产品数个1020304050产品总成本(元)62a758189由最小二乘法得到回归方程,则______.16. 2021年奥运会我国射击项目收获丰盛,在我国射击也是一项历史悠久的运动.某射击运动爱好者甲来到靶场练习.(1)已知用于射击打靶的某型号枪支弹夹中一共有发子弹,甲每次打靶的命中率均为,一旦出现子弹脱靶或者子弹打光便立即停止射击.记标靶上的子弹数量为随机变量,求的分布列和数学期望;(2)若某种型号的枪支弹巢中一共可装填6发子弹,现有一枪支其中有发为实弹,其余均为空包弹,现规定:每次射击后,都需要在下一次射击之前填充一发空包弹,假设每次射击相互独立且均随机,在进行次射击后,记弹巢中空包弹的发数为,①当时,请直接写出数学期望与的关系;②求出关于的表达式.17. 中,角A ,B ,C 的对边分别为a ,b ,c,且满足.(1)求证:;(2)若为锐角三角形,求的取值范围.18.如图,是正方形,是正方形的中心,底面是的中点.(1)求证:平面;(2)若,求三棱锥的体积.19. 在①函数的图像关于直线对称;②函数的图像关于点对称;③函数的图像经过点;这三个条件中任选一个,补充在下面问题中并解答.问题:已知函数最小正周期为,(1)求函数的解析式;(2)函数在上的最大值和最小值.注:如果选择多个条件分别解答,按第一个解答计分.20. 如图,在中,,D为AC边上一点且,.(1)若,求的面积;(2)求的取值范围.21. 求函数的最小值.。

2023年河北省普通高中学业水平合格性考试数学试题

2023年河北省普通高中学业水平合格性考试数学试题

2023年河北省普通高中学业水平合格性考试数学试题(正文开始)第一部分:选择题(共30题,每题4分,共120分)1. 已知函数f(x) = 2x + 5,求f(3)的值是多少?2. 设a = 3,b = -4,c = 2,计算a^2 + b^2 - c^2的结果。

3. 在直角三角形ABC中,∠C = 90°,a = 3,b = 4,求c的值。

4. 解方程2x + 7 = 15。

5. 已知函数y = 3x - 2,求当x = 4时,y的值。

6. 若x > 0,求不等式4x + 6 > 18的解集。

7. 已知a:b = 3:4,b:c = 5:6,求a:b:c的比值。

8. 在平面直角坐标系中,点A的坐标为(3, 4),点B的坐标为(-5, -2),求AB的距离。

9. 设x = 5,求x的倒数的平方。

10. 已知函数y = 2x^2 + 3x - 5,求当x = 2时,y的值。

11. 设a = 3,b = 4,求a与b的算术平均数与几何平均数之差。

12. 用分数表示小数0.4。

13. 若x为一个正数且x ≠ 1,求(x - 1)^2 + 1的最小值。

14. 解方程5x + 3 = x^2。

15. 在平面直角坐标系中,点A(3, 4)关于y轴的对称点为A',求A'的坐标。

16. 若a:b = 2:5,b:c = 3:4,求(a + b + c):(a - b - c)的值。

17. 设a为一个正整数,且a ≠ 1,求(a^2 + 5a + 4) ÷ (a + 2)的值。

18. 解方程4(2x - 3) - 2(x + 1) = 5。

19. 已知函数y = 3x^2 + 2x + 1,求当x = -1时,y的值。

20. 计算4!(4的阶乘)的值。

21. 在平面直角坐标系中,点A的坐标为(-3, 2),点B的坐标为(2, -1),求AB的中点坐标。

22. 若x为正整数,求使得(x^2 + 2) ÷(x - 1)为整数的最小正整数x。

河北省普通高中学业水平考试数学试卷(含答案)精选全文

可编辑修改精选全文完整版2020年12月河北省普通高中学业水平考试数学试卷(含答案)参考公式:柱体的体积公式:V=Sh(其中S 为柱体的底面面积,h 为高)锥体的体积公式:V=31Sh(其中S 为锥体的底面面积,h 为高) 台体的体积公式:V=)(31''S S S S ++h(其中S ′、S 分别为台体的上、下底面面积,h 为高)球的体积公式:V=π34R 3(其中R 为球的半径) 球的表面积公式:S=4πR 2(其中R 为球的半径)一、选择题 (本题共30道小题,1-10题,每题2分,11-30题,每题3分,共80分,在每小题给出四个选项中,只有一项是符合题目要求) 1.若集合A=N ,B={x ||x |≤1},则A ∩B=A .{0,1}B .{-1,0,1}C .{x|-1≤x ≤1}D .{x|0≤x ≤1} 2.tan120°=A .33-B .33C .3-D .3 3.等差数列{a n}的通项公式为a n =3n-1,则它的公差是A .1B .2C .3D .4 4.已知向量a =(1,-1),b =(-1,2),则|2a +b |=A .1B .2C .3D .4 5.若a>b ,则下列不等式成立的是A . a 2>b 2B .b a>1 C .b a 2121< D . lg(a-b)>0 6.在等差数列{a n }中,a 3=2,a 6+a 10=17,则a 13A .31B .64C .15D .30 7.对任意实数x ,不等式x 2-2x -a ≥0恒成立,则实数a 取值范围是A .a ≥-1B .a ≤-1C .a <-1D .a >-1 8.已知点A(2,-1),B(0,3),则线段AB 的垂直平分线的方程是A .2x 十y -3=0B .2x -y -1=0C .x -2y +1=0D .x +2y -3=0 9.函数f (x )=2x +3x 的一个零点所在的区间是A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)10.假设某车站每隔5分钟发一班车,若某乘客随机到达该车站,则其等车时间不超过3分钟概率是A .51 B .52 C . 53 D .54 11.已知平面α⊥平面β,α∩B=l ,若直线m ,n 满足m ∥α,n ⊥β,则A .m ∥lB .m ∥nC .m ⊥nD .n ⊥l12.若实数x ,y 满足 则z=x-3y 的最小值是 A .34-B .-10C .-8D .4 13.某几何体的三视图如图所示,则此几何体的体积是A .21B .33C .36D .45 14.若53cos -=α,παπ<<2,则sin α= A .2512 B .2512- C . 2524 D .2524-15.执行如图所示的程序框图,则输出S 的值是A .23B .3C .0D .21 16.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若 a tanC= c sinA ,则△ABC 一定是A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形17.函数f (x )=sin(ϕω+x )(ω>0,0<ϕ<π)的图象如图所示,则ω,ϕ的值分别是A .1,8πB .1,85πC .2,4πD .2,43π18.在直角三角形ABC 中,A=90°,AB=2,则AB ·BC =A .-4B .4x+2≥0y ≥x x+2y-2y ≤0C .-8D .819.已知数列{a n }的前n 项和S n ,满足S n =2-a n ,则S 5=A .31B .63C .1631 D .3263 20.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若B=60°,a =1,b =3,则c =A .1B .2C .2D .3 21.如图,在三棱柱ABC -A 1B 1C 1中,CA=CB=CC 1,CA ⊥CB ,CC 1⊥底面ABC ,则异面直线AB 1与BC 所成角的余弦值是A .33 B .36 C .22 D .32 22.右面茎叶图表示是甲、乙两人在5次综合测评成绩,其中一个数字被污损,则甲的平均成绩不超过乙的平均成绩概率是A .54B .53C .52D .5123.已知函数y =f (x )是奇函数,当x <0时,f (x )=x 2+ax ,且f (1)=2,则a =A .-1B .1C .-3D .3 24.若直线x+y+1=0与圆x2+y2-6y+m=0相切,则m=A .1B .17C .9-22D .9+22 25.已知函数f (x )=x 2-2ax -3在区间[2,+∞)上是增函数,则实数a 的取值范围是A .[1,+∞)B .[2,+∞)C .(-∞ ,1 ]D .(-∞ ,2 ] 26.若正数a ,b 满足a +4b =ab ,则a +b 的最小值是A .10B .9C .8D .627.如图,圆柱的底面直径与高都等于球的直径,则球的表面积与圆柱侧面积之比是A .3:2B .2:3C .1:2D .1:128.三角形三条中线的交点称之为三角形的重心,已知G 为△ABC 的 重心,AB =a ,AC =b ,则BG =A .32-a +31b B .31-a -31bC .32-a -31bD .31-a +32b29.过坐标原点O 的直线l 与圆C :4)32(22=+-y x 交于A ,B 两点,若OA OB 2=,A .63±B .33± C .±1 D .3±30.若对函数y =f (x )图象上任意一点A ,在其图象上均存在点B ,使得OA ⊥OB(O 为坐标原点)则称该函数为“好函数”,给出下列4个函数:①f(x)=x1; ②f (x )=x +1; ③f(x)=-x 2+2x +3; ④f (x )=2x 其中“好函数”的个数是A .0B .1C .2D .3二、解答題(本题共3道小题,31题6分,32题7分,33题7分,共20分,解答应写出文字说明、演算步驟或证明过程)31.已知数列{a n }为等比数列,且a 1=1,8a 2-a 5=0(I)求数列{a n }的通项公式;(Ⅱ)求数列{a n +1}的前n 项和S n 。

2023年3月河北省普通高中学业水平合格性考试模拟(八)数学试题(含答案解析)

2023年3月河北省普通高中学业水平合格性考试模拟(八)数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.设集合{}|3213A x x =-≤-<,{}|21,B x x k k Z ==+∈,则A B = ()A .{}|12x x -≤<B .{}|12x x -<≤C .{}1,1-D .{}1,0,1-2.已知复数z 在复平面内对应的点为()2,1,z 是z 的共轭复数,则zz=()A .34i55-+B .34i 55--C .34i55+D .34i55-3.新中国成立至今,我国一共进行了7次全国人口普查,历次普查得到的全国人口总数如图1所示,城镇人口比重如图2所示.下列结论不正确的是()A .与前一次全国人口普查对比,第五次总人数增长量高于第四次总人数增长量B .对比这7次全国人口普查的结果,我国城镇人口数量逐次递增C .第三次全国人口普查城镇人口数量低于2亿D .第七次全国人口普查城镇人口数量超过第二次全国人口普查总人口数4.如图,某几何体的平面展开图为6个小正方形组合而成的图形,则在原几何体中AB 与CD 所成角的大小为()A .6πB .4πC .3πD .2π5.复数z 满足||1z =,则|1i |z --的最大值为()A 1B .1C D 16.已知111333332,,555a b c -⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则,,a b c 的大小关系为()A .a b c <<B .b<c<aC .c<a<bD .a c b<<7.已知向量a ,b 满足||2||2b a == ,|2|2a b -=,则向量a ,b 的夹角为()A .30︒B .45︒C .60︒D .90︒8.“12x x >”是“3312x x >”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.已知集合{}1,2A =,{}2,3B a a =+,若{}1A B = ,则实数a 的值为()A .0B .1C .2D .310.已知向量()1,1a =- ,()2,b x =,若()2a a b ⊥+ ,则x 的值为()A .2B .-2C .6D .-611.从2022年北京冬奥会、冬残奥会志愿者的30000人中随机抽取10人,测得他们的身高分别为(单位:cm ):162、153、148、154、165、168、172、171、170、150,根据样本频率分布估计总体分布的原理,在所有志愿者中任抽取一人身高在155.5cm -170.5cm 之间的人数约为()A .18000B .15000C .12000D .1000012.已知2x >,则函数42y x x =+-的最小值是()A .8B .6C .4D .213.设集合{|04}A x x =<<,{2,3,4,5,6}B =,则A B = ()A .{2}B .{2,3}C .{3,4}D .{2,3,4}14.已知ln 2a =,ln 22b -=,()lg ln 2c =,则()A .a c b>>B .b c a>>C .b a c >>D .a b c>>15.若3π4sin 25α⎛⎫-= ⎪⎝⎭,则cos 2=α()A .2425-B .725C .725-D .242516.向量0a b ⋅= 是a b ⊥的()条件A .充分不必要B .必要不充分C .充分必要D .既不充分也不必要17.在四边形ABCD 中,若AC AB AD =+ ,且0AC BD ⋅=,则四边形ABCD 一定是()A .正方形B .平行四边形C .矩形D .菱形18.已知a ∈R ,若复数22i z a a a =++是纯虚数,则=a ()A .0B .2C .1-D .2-19.设复数122ω=-+,其中i 为虚数单位,则231ωωω+++=()A .0B .1C .i D .1-20.设向量a ,b的模分别为2和3,且夹角为120°,则a b + 等于()AB .13C .7D21.已知实数a ,b ,c 满足1ln ba e c==,则下列不等式中不可能成立的是()A .a b c >>B .a c b >>C .c a b >>D .c b a>>22.将函数cos 23y x π⎛⎫=+ ⎪⎝⎭的图象向左平移ϕ个单位后,得到的函数图象关于y 轴对称,则ϕ的可能取值为()A .3πB .6πC .23πD .2π23.已知复数21i 1z =+-,则=z ()A .0B .1C D .224.已知向量a ,b满足1a = ,2b = ,a b -= ,则2a b - 等于()A .BCD .25.若复数z 满足()2i z ⋅+=i 是虚数单位,则z z ⋅的值为()A B .2CD .326.下表为随机数表的一部分:080151772745318223742111578253772147740243236002104552164237已知甲班有60位同学,编号为00~59号,规定:利用上面的随机数表,从第1行第4列的数开始,从左向右依次读取2个数,则抽到的第8位同学的编号是()A .11B .15C .25D .3727.已知R 是实数集,集合{314},{10}A xx B x x =-<+≤=->∣∣,则下图中阴影部分表示的集合是()A .{43}x x -<≤∣B .{41}x x -<<∣C .{13}xx <≤∣D .{}4xx ≤-∣28.函数1()sin 222f x x x =-的单调递增区间为()A .52,2()66k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z B .5,()1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z C .511,(Z)1212k k k ππππ⎡⎤++∈⎢⎥⎣⎦D .,()36k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z 29.设复数i1iz =+,则复数z 的共轭复数z 在复平面内对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限30.已知三棱锥-P ABC 的棱AB ,AC ,AP两两互相垂直,AB AC AP ===,以顶点A 为球心,1为半径作一个球,球面与该三棱锥的表面相交得到的交线最长为()A .π2B.3C.3D.3二、解答题31.已知函数()1010ax x f x x x-≥⎧⎪=⎨<⎪⎩,,且()20f =.(1)求()()1f f ;(2)若()f m m =-,求实数m 的值.参考答案:1.C【分析】利用集合的交集运算求解.【详解】因为集合{}{}|3213|12A x x x x =-≤-<=-≤<,{}|21,B x x k k Z ==+∈,所以A B = {}1,1-,故选:C 2.D【分析】依题意2i z =+,再根据复数代数形式的除法运算法则计算可得;【详解】解:由题知2i z =+,则2i z =-,所以()()()()()22i 2i 2i 2i 34=i 2i 2i 2i 555z z ----===-++-.故选:D.3.C【分析】对于A ,计算出第五次总人数增长量和第四次总人数增长量即可判断;对于B ,由题意可得我国城镇人口数量逐次递增即可判断;对于C ,计算出第三次全国人口普查城镇人口数即可判断;对于D,计算出第七次全国人口普查城镇人口数即可判断.【详解】解:对于A,与前一次全国人口普查对比,第五次总人数增长量为12658311336813215-=万,第四次总人数增长量为11336810081812550-=万,故A 正确.;对于B ,对比这7次全国人口普查结果,人口总数以及城镇人口比重都在增长,所以我国城镇人口数量逐次递增,故B 正确;对于C ,第三次全国人口普查城镇人口数约为10081820.91%2108120000⨯≈>万,故C 不正确;对于D,第七次全国人口普查城镇人口数约为14117863.89%9019870000⨯≈>万,D 正确.故选:C.4.C【分析】先得出该几何体的直观图,再由//AB ED 以及等边三角形的性质得出AB 与CD 所成角.【详解】该平面展开图为正方体的平面展开图,该几何体的直观图如图所示,把AB 平移到DE 位置,则CDE ∠为AB 与CD 所成的角,连接CE ,易知CDE 为等边三角形,所以3CDE π∠=.故选:C.5.D【分析】根据复数的几何意义求解即可.【详解】复数z 满足||1z =,其对应的点是以原点为圆心,1为半径的圆上的点,复数|1|z i --几何意义是复数z 对应的点到点(11)B ,的距离,所以|1i |z --的最大值为+1=OB 1,故选:D.6.C【分析】根据幂函数的单调性进行判断即可.【详解】11333355b -⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭,因为函数13y x =是实数集上的增函数,所以由531352>>可得:111333532355⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝>⎝⎭>⎭,即c<a<b ,故选:C 7.C【分析】对等式22a b -=两边平方即可求得夹角.【详解】 |2|2a b -= ,224a b ∴-= ,即22444a a b b -⋅+=,即2244cos 4a a b b θ-+=,又21b a == ,,48cos 44θ∴-+=,解得1cos 2θ=,[0,]θπ∈,所以60θ=︒.故选:C 8.A【分析】根据充分必要条件的定义判断.【详解】由不等式性质由12x x >得333122x x x >≥,充分性满足,但11x =,22x =-时,满足3312x x >,但不满足12x x >,不必要.应为充分不必要条件.故选:A .9.B【分析】由交集的结果,根据233a +≥及集合的性质,即可求a 的值.【详解】由{}1A B = ,而233a +≥,故1a =,故选:B.10.C【分析】根据向量的坐标运算,求得()24,2a b x +=-,结合向量垂直的条件和数量积的运算公式,列出方程,即可求解.【详解】由题意,向量()1,1a =- ,()2,b x = ,可得()24,2a b x +=-,因为()2a a b ⊥+ ,则()2420a a b x ⋅+=+-= ,解得6x =.故选:C .11.C【分析】根据给出的数据算出事件发生的概率,再乘以总数即可.【详解】在随机抽取10人中,身高在155.5cm -170.5cm 之间的人数为4人,所以从所有志愿者中任抽取一人身高在155.5cm -170.5cm 的概率为42=105,所以从2022年北京冬奥会、冬残奥会志愿者的30000人中随机抽取一人身高在155.5cm -170.5cm 之间的人数约为230000=120005⨯人.故A ,B ,D 错误.故选:C.12.B【分析】根据基本不等式可求得最小值.【详解】∵2x >,∴442+24+2622y x x x x =+=+-≥==--,当且仅当422x x =--,即4x =时等号成立.∴y 的最小值是6.故选:B .13.B【分析】根据交集的概念可得答案.【详解】A B = {2,3}.故选:B 14.D【分析】根据指数函数与对数函数的性质,得到a c >且b c >,令ln 2x =,设()2xf x x -=-,结合函数的单调性与最值,得出a b >,即可求解.【详解】根据指数函数与对数函数的性质,可得0ln1ln 2ln 1e =<<=,即01a <<,ln 2ln 212()02b -==>,()lg ln 2lg(ln )0c e =<=,所以a c >且b c>令ln 2x =,因为232e e <<,所以213x <<,设()2xf x x -=-,则函数()f x 在2(,1)3上为单调递增函数,所以()123322432()2336f x f --⨯>=-=,因为3464=且133(32)54⨯=,所以13334(32)>⨯,所以()132432()036f x f -⨯>=>,所以a b >,所以a b c >>.故选:D.15.B【分析】利用诱导公式得到4cos 5α=-,再利用二倍角公式计算得到答案.【详解】3π4sin cos 25αα⎛⎫-=-= ⎪⎝⎭,故4cos 5α=-,2247cos22cos 121525αα⎛⎫=-=⨯-= ⎪⎝⎭.故选:B16.B【分析】利用数量积的定义||||cos ,a b a b a b ⋅=<> 判断即可【详解】由题意,向量垂直是对非零向量而言的,故充分性不成立;若a b ⊥ ,则,2a b π<>= ,cos ,0a b <>= ,故||||cos ,0a b a b a b ⋅=<>= 因此必要性成立故向量0a b ⋅= 是a b ⊥的充要条件故选:B 17.D【分析】由向量的运算可得AD BC = ,四边形ABCD 为平行四边形;利用0AC BD ⋅=,说明四边形对角线互相垂直,然后得到结果.【详解】解:由AC AB AD =+,得AD AC AB BC =-= 可知,四边形ABCD 为平行四边形;又由0AC BD ⋅=可知,四边形对角线互相垂直,故四边形ABCD 为菱形.故选:D .18.D【分析】结合复数的概念得到2200a a a ⎧+=⎨≠⎩,解之即可求出结果.【详解】因为22i z a a a =++是纯虚数,所以220,0,a a a ⎧+=⎨≠⎩解得2a =-.故选:D.19.B【分析】利用复数的运算法则,直接计算即可.【详解】因为12ω=-+,所以ω2122i =--,ω3=(122--)(122i -+)=1,则1+ω+ω2+ω3=1112222i -+--+1=1.故选:B.20.D【分析】应用向量数量积的运算律求模长.【详解】2222222||||cos .4697a b a a b b a a b a b b +=+⋅+=+<>+=-+= ,所以a b +.故选:D 21.D【分析】由1ln ba e c==,得到0b e >,所以1a >,0c >,分别令a e =,3a e =和1b =-,结合选项,得到,,A B C 正确,即可求解.【详解】由题意,实数,,a b c 满足1ln ba e c==,可得0b e >,所以1a >,0c >,当a e =时,0b =,1c =,此时a c b >>,故B 可能成立;当3a e =时,ln 3(1,2)b =∈,1(0.5,1)ln 3c =∈,此时a b c >>,故A 可能成立;当1b =-时,c e =,1ea e =,此时c a b >>,故C 可能成立;所以由排除法得D 不可能成立.故选:D.22.A【分析】先求得平移后的函数为cos 223y x πϕ⎛⎫=++ ⎝⎭,再根据余弦函数的对称性列式求解即可【详解】将函数cos 23y x π⎛⎫=+ ⎪⎝⎭的图象向左平移ϕ个单位后,得到函数()cos 2cos 2233y x x ππϕϕ⎡⎤⎛⎫=++=++ ⎪⎢⎥⎣⎦⎝⎭,因为图象关于y 轴对称,所以23k πϕπ+=,k ∈Z ,则26k ππϕ=-,k ∈Z 故选:A.23.B【分析】根据复数的除法运算可得答案.【详解】()()()21i 2111i 1i i 11i 1i z ⨯--=+=+=--+=---+--,因此1z =.故选:B.24.A【分析】通过平方的方法,结合向量数量积运算求得正确答案.【详解】由a b -= 得a b -== 两边平方得222525,0a a b b a b a b -⋅+=-⋅=⋅= ,所以2a b - .故选:A25.B【分析】由已知得z =()i ,z a b a b =+∈R ,化简计算可得.【详解】因为()2i 2i z z ⋅+=⋅+==z =,故设()i ,z a b a b =+∈R ,则=()()222i i ||2z z a b a b a b z ⋅=+-=+==.故选:B.26.A【分析】根据随机数表法读取出前8位同学的编号,由此可得出结果.【详解】从第1行第4列的数开始,从左向右依次读取2个数,读取前8位同学的有效编号为15、17、53、18、22、37、42、11,因此,抽到的第8位同学的编号是11.故选:A.27.D【分析】化简集合A ,B ,根据给定的韦恩图,结合补集、交集的定义求解作答.【详解】依题意,{43},{1}A xx B x x =-<≤=<∣∣,由韦恩图知,阴影部分表示的集合是R ()ðA B ,而R {|4A x x =≤-ð或3}x >,所以{}R 4()xA B x =≤- ∣ð.故选:D28.B【分析】根据辅助角公式,化简三角函数式,结合正弦函数的图像与性质,即可求得其单调递增区间.【详解】由辅助角公式,化简三角函数式1()222f x x x =-可得1()sin 222f x x x =-sin 23x π⎛⎫=- ⎪⎝⎭由正弦函数的图像与性质可知其单调递增区间满足222,232k x k k Z πππππ-+≤-≤+∈解得5,1212k x k k Z ππππ-+≤≤+∈即单调递增区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,Z k ∈故选:B29.D【分析】先求出z ,再求出z ,直接得复数z 在复平面内对应的点.【详解】()()()i 1i i 11i 1i 1i 1i 22z -===+++-,则11i 22z =-∴z 在复平面内对应的点为11,22⎛⎫- ⎪⎝⎭,位于第四象限故选:D.30.D【分析】由条件可得球A 与三棱锥的表面,,ABC APC APB 的交线均为以点A 为顶点,半径为1,圆心角为π2的圆弧,然后利用等体积法算出点A 到平面PBC 的距离,然后可得球A 与表面PBC 的交线为以PBC .【详解】因为三棱锥-P ABC 的棱AB ,AC ,AP 两两互相垂直,AB AC AP ===所以球A 与三棱锥的表面,,ABC APC APB 的交线均为以点A 为顶点,半径为1,圆心角为π2的圆弧,其长度为π2,设点A 到平面PBC 的距离为d ,因为AB AC AP ==,所以PBC 是边长为2的等边三角形,由P ABC A PBC V V --=可得11112232322d ⨯⨯⨯⨯⨯⨯,解得3d =,所以球A 与表面PBC 的交线为以PBC =的圆,其长度为3,因为π32>,所以以顶点A 为球心,1为半径作一个球,球面与该三棱锥的表面相交得到的交线最长为3,故选:D31.(1)2-(2)23【分析】(1)直接代入求解即可;(2)根据分段函数解方程即可.【详解】(1)(2)210f a =-= 得12a =,11,02()1,0x x f x x x⎧-≥⎪⎪∴=⎨⎪<⎪⎩,1(1)2f ∴=-,1((1))22f f f ⎛⎫=-=- ⎪⎝⎭;(2)当0m ≥时,由()f m m =-得112m m -=-解得23m =;当m <0时,由()f m m =-得1m m =-,无实数解,综上所述,23m =.。

2023年河北省普通高等学校对口招生文化考试 数学试卷(五)(含详细答案)

2023年河北省普通高等学校对口招生文化考试数学试卷(五)―,选择题(本大题共15小题,每小题3分,共45分,每小题所给出的四个选项中,只有一个符合题目要求,多选、错选,均不得分)1.设集合M ={x ||x |<3},N ={x |x 2-2x +3=0},则M ∪N =( ). A .{x |-3≤x <3} B .{x |-3<x ≤3} C . ∅ D .{3}2.下列命题中正确的是( ).A .若|a |>|b |,则a >bB .若a 2>b 2,则|a |>|b |C .若a >b ,则ac 2>bc 2D .若a >b ,则lg (a -b )>0 3. 2log x <1是x <2的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知函数f (x )= sin()cos()22x x ππ++则f (x )是( ).A .周期为2π的奇函数B .周期为2π的偶函数C .周期为π的奇函数D .周期为π的偶函数5.若0≤a <1时,在同一坐标系中函数y =a x 与y =log x 的图象大致是( ).A. B. C. D .6.已知OA =(x ,2), OB =(-2,1),并且OA ⊥OB ,则AB 的长度是( ).A .B .1C .2D 7.在△ABC 中,cosB a =cosAb 则△ABC 是( ). A .等边三角形 B .等腰三角形 C .等腰或直角三角形 D .等腰直角三角形8.在等差数列{a n }中,a 1+a 2+a 3=6,a 7+a 8+a 9=14,则a 4+a 5+a 6=( ). A .12 B .10 C .8 D .49.已知在数列{a n }中,a 3=4,a n =2a n +1,则a 3=( ).A .2B .1C . 12D . 1410.下列各组函数中,表示同一个函数的是( ). A .y =x 和y=B .y =x 和y =e lneC .y =|x |和yD .y =cosx 和y =cos (2π-x )11.若圆2224x y x y a +-++=0与y 轴相切,则a 的值是( ). A .4B .2C .1D .9212.从3门不同的文化学科和6门不同的专业学科中任选4门,组成一个高考科目组,若要求这组科目中 文化和专业都有,则不同的选法种数是( ). A .126 B .111 C .96D .3613.在(3mx 的展开式中第9项为常数项,则n 的值为( ). A .10 B .11C .12D .1314.若方程2246x y k k +-+=1表示焦点在x 轴的椭圆,则k 的取值范围为( ). A .(-6,-1)B .(-6,4)C .(-1,4)D .(-∞,-1)15.在正方体ABCD -A 1B 1C 1D 1中,点O 是底面ABCD 的中心,E 、F ,G 分别是BB 1,DD 1,CC 1的中点,则异面直线EF 与OG 所成的角为( ). A .6π B .4π C .3π D .2π 二,填空题(本大题共15小题,每小题2分,共30分)16. 函数f (x )= 23,12,1x x x x -+>⎧⎨<⎩,则f [f (-2)]=______________.17.函数ff (x )=21log (21)x +的定义域为_____________.18.计算: 211220212022100!coss C π-+-+=_____________.19.已知不等式2ax +2x +c ≥0的解集为11(,)32-,则不等式﹣cx 2+2x -a ≥0的解集为(用区间表示) _____________.20.已知向量a 与b 的夹角为120°,a =(3,4),|b |=1,则|a +5b |=_____________. 21.已知{a ,}是等比数列,a 3和a 7是方程x 2-9x +4=0的两个根,则a 5的值为_____________.22.不等式2221()2x x +->2-x 的解集为_____________.23.已知1sin cos 8αα⋅=,则cosa -sinα=_____________.24.过双曲线22169x y -=1的右焦点F 2的直线与双曲线的右支交于A 、B 两点,若|AB |=6,则三角形ABF 1的周长为_____________.25.若直线3x -y +1=0与x +my -2=0互相垂直,则m =_____________.26.以等腰直角三角形斜边上的高为棱,折成直二面角,则折后两条直角边的夹角为_____________.27.在△ABC 中,若a 2+b 2<c 2,且sinC 则∠C =_____________. 28.一枚硬币连续抛3次,恰有1次出现反面的概率是_____________. 29.已知(x +b )5的展开式中x 2的系数是﹣80,则b 的值为_____________.30.4名学生和1名老师站成一列,如果老师必须站在中间,且学生甲必须与老师相邻,那么不同的排法有____________种.三、解答题( 本大题共 7 小题 , 共 45 分 , 要写出必要的文字说明 , 证明过程和演算步骤 )31 . ( 5 分 ) 已知集合 A= { x | x 2+ x ﹣12 ≤ 0 } , 集合 B= {x | x + m > 2 } , 若 A ∩ B =∅ , 求 m 的取值范围 .32 . ( 6 分 ) 某种商品每件成本为 160 元 , 经市场调查发现 , 若定价为 240 元 / 件 , 可以卖出 30 件 , 单价每下降 5 元 , 则销售量增加 10 件 . 问当售价定为多少元时投资少且利润最大 ? 最大利润为多少元 ? ( 为了结算方便 , 该商场的所有商品售价为整数 )33 . ( 7 分 ) 已知 {a n } 为等比数列 , a 1= 12,a 2< a 1 , 其前 n 项和为 S n , 且 S 1+ a 1 , S 2+a 2 , S 3+ a 3 成等差数列 .( 1 ) 求数列{a n }的通项公式 ;( 2 ) 若 bn = log 2a n , 求{bn } 的前 n 项和 T n . 34 . ( 6 分 ) 已知函数 f (x )=cos x x ωω + 2cos x ω﹣12( ω >0) 其最小正周期为2π. ( 1 ) 求 ω的值 ;( 2 ) 求使函数 f (x ) 取得最大值的 x 的集合 .35 . ( 7 分 ) 设抛物线的顶点在原点 , 焦点是圆222x y x +=的圆心 , 过抛物线焦点且斜率为 2 的直线与抛物线交于 A 、 B 两点 . (1)求此抛物线的标准方程和直线方程 ; (2)求线段AB 中点 M 的坐标 .36 . ( 8 分 ) 如图 , 已知 DA ⊥平面 ABC , ∠ ABC = 90 ° , 且 AD = AB , AM ⊥ DC 于 M ,N 为 BD 的中点 . 求证 : (1)平面 DBC ⊥平面 DAB ; (2)MN ⊥ DC .37 . ( 6 分 ) 现有 3 人去参加某娱乐活动 , 该活动有甲、乙两个游戏可供参加者选择 . 为增加趣味性 , 约定 :每人通过擦一枚质地均匀的骰子决定自己去参加哪个游戏 , 抑出点数为 1 或 2 的人去参加甲游戏 , 掷出点数大于 2 的人去参加乙游戏 .( 1 ) 求这3人中恰有 2 人去参加甲游戏的概率 ;( 2 ) 设 ξ表示参加甲游戏的人数 , 求随机变量 ξ的概率分布 .2023年河北省普通高等学校对口招生文化考试数学试卷(五)答案1.A2.B3.A4.C5.D6.D7.C8.B9.B 10.D 11.A 12.B 13.C 14.A 15.D 16.11 17.(-12)(0,+∞) 18.2025 19.(-2,3) 20.521.2 22.(-2,1) 23.±24.28 25.3 26. 60︒ 27. 120︒ 28.3829.-2 30.1231.解:A =[-4,3],B =(2-m ,+∞).∵A ∩B =∅,∴2-m ≥3.解得m ≤-1. 故m 的取值范围是(―∞,-1].32.解:设单价下降了x 个5元,则单价为(240-5x )元,销售量为(30+10x )件,利润为y 元.y =[(240-5x )-160](30+10x )=-50x 2+650x +2400=-50(x -6.5)2+4512.5因为商品售价为整数,所以当x =6,即售价定为210元时,投资最少且利润最大,最大利润为4500元.33.解:(1)设此等比数列的公比为q .∵S 1+a 1+S 2+a 2,S 3+a 3成等差数列, ∴2(S 2+a 2)=(S 1+a 1)+(S 3+a 3),∴S 2-S 1+2a 2=a 1+S 3-S 2+a 3,即3a 2=a 1+2a 3,∵a 1=12,32∴q =12+q 2解得q =1或q =12.又∵a 2<a 1, q =12.a n =a 11n q -=12n⎛⎫ ⎪⎝⎭数列{a n }的通项公式为a n =(1)2n(2)b n =log 2a n =log 2(1)2n =-n .∵b 1=-1, b n -b n ﹣1=-1,∴数列{ b n }是首项为―1,公差为―1的等差数列.T n =(1)2n n --=-22n n +34.解:(1)原式2x ω +1cos 22x ω =sin(2).6x πω+最小正周期为2π,∵22πω=2π,解得ω=2. (2)当4x +6π=2π+2k π (k ∈Z )即x =12π+2k π (k ∈Z )时,函数取得最大值是1,所以取得最大值时x 的集合为|,122k x x k Z ππ⎧⎫=+∈⎨⎬⎩⎭35.解:(1)由圆的方程可知,圆心坐标为(1,0),所以抛物线的焦点坐标为(1,0).因此抛物线的标准方程为y 2=4x .因为直线过点(1,0)且斜率为2,所以直线方程为y -0=2(x -1),即2x -y -2=0.(2)设抛物线与直线的交点分别为A (x 1,y 1),B (x 2,y 2),解方程组24,220,y x x y ⎧=⎨--=⎩化简为x 2-3x +1=0.根据韦达定理得x 1+x 2=3. 设线段AB 中点M (x 0,y 0),则x 0=122x x +=32又点M 在直线2x -y -2=0上,所以y 0=1,即中点M (32,1) 36.证明:(1)因为DA ⊥平面ABC ,所以DA ⊥BC .因为∠ABC =90°,所以AB ⊥BC .又DA ∩AB =A ,所以BC ⊥平面DAB .因为BC ⊆平面DBC ,所以平面DBC ⊥平面DAB .(2)因为AD =AB ,N 为BD 的中点,所以AN ⊥DB .因为平面DBC ⊥平面DAB ,所以AN ⊥平面DBC ,所以AN ⊥DC .又AM ⊥DC 于M ,所以DC ⊥平面AMN ,所以MN ⊥DC . 37.解:(1)掷出点数为1或2的概率为26=13,从而挪出点数大于2的概率为23. 设事件A 表示事件“3人中恰有2人去参加甲游戏”.则P (A )= 2231233C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=29(2)依题意知ξ的所有可能取值为0,1,2,3.P (ξ=0)= 03031233C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=827,P (ξ=1)= 2131233C ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭=49 P (ξ=2)= 2231233C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=29,P (ξ=3)= 3331233C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=127 所以ξ的概率分布为:角形OMN 的面积为1||2MN d ⋅⋅=123⨯43。

2023年河北省普通高中学业水平合格性考试数学试题 (2)

一、单选题二、多选题1. 平面直角坐标系中有两点和,以为圆心,正整数i 为半径的圆记为,以O 2为圆心,正整数j为半径的圆记为.对于正整数(),点是圆与圆的交点,且,,,,都位于第二象限,则这5个点都在同一( )A .直线上B .椭圆上C .抛物线上D .双曲线上2. 已知直线a ,b 和平面,下列推论错误的是( )A .,B .,C .,或D .,3.已知复数,则复数的共轭复数在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限4. 在三个地区暴发了流感,这三个地区分别有的人患了流感.假设这三个地区的人口数的比为,现从这三个地区中任意选取一人,则这个人患流感的概率为( )A.B.C.D.5.已知双曲线的左、右焦点分别为,点是的一条渐近线上的两点,且(为坐标原点),.若为的左顶点,且,则双曲线的离心率为( )A.B .2C.D.6.集合,,则( )A.B.C.D.7.设为等差数列的前项和,若,,则( )A .26B .27C .28D .298. 已知i 是虚数单位,则“”是“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9. 气象意义上从春季进入夏季的标志为“连续5天的日平均温度均不低于22 ℃”.现有甲、乙、丙三地连续5天的日平均温度(单位:℃)的记录数据(记录数据都是正整数):①甲地:5个数据的中位数为24,众数为22;②乙地:5个数据的中位数为27,总体平均数为24;③丙地:5个数据中有一个数据是32,总体平均数为26,总体方差为10.8.则肯定进入夏季的地区有( )A .一个都没有B .甲地C .乙地D .丙地10. 下列函数,在区间上单调递增的是( )A.B.C.D.11. 不透明的袋中装有5个大小质地完全相同的小球,其中3个红球、2个白球,从袋中一次性取出2个球,记事件“两球同色”,事件2023年河北省普通高中学业水平合格性考试数学试题 (2)2023年河北省普通高中学业水平合格性考试数学试题 (2)三、填空题四、解答题“两球异色”,事件 “至少有一红球”,则( )A.B.C .事件A 与事件B 是对立事件D .事件A 与事件B 是相互独立事件12.已知为圆上的两点,为直线上一动点,则( )A .直线与圆相离B.当为两定点时,满足的点有2个C .当时,的最大值是D .当为圆的两条切线时,直线过定点13. 命题,则命题的否定为__________.14. __________.15. 已知平面向量,,若,则实数的值为______.16. 已知函数,其中常数.(1)当时,求函数的单调区间.(2)设定义在上的函数在点处的切线方程为.当时,若在内恒成立,则称为函数的“类对称点”.当时,是否存在“类对称点”?若存在,请求出一个“类对称点”的横坐标;若不存在,请说明理由.17.在锐角中,内角A ,B ,C 的对边分别为a ,b ,c ,且,.(1)求角的大小;(2)若,,求c 的值.18.已知函数,(1)若,为偶函数,求a ,b ,c 的值;(2)若对任意实数x ,不等式恒成立,求的取值范围;(3)当时,对任意,,恒有,求实数b 的取值范围.19. 已知如图,四边形为矩形,为梯形,平面平面,,,.(1)若为中点,求证:平面;(2)求直线与平面所成角的正弦值;(3)在线段上是否存在一点(除去端点),使得平面与平面所成锐二面角的大小为?若存在,请说明点的位置;若不存在,请说明理由.20. 已知是奇函数.(Ⅰ) 求a 的值;(Ⅱ) 若关于x的方程有实解,求m的取值范围.21.四棱锥中,底面为矩形,,,平面与平面的交线为.(1)求证:直线平行于平面;(2)求二面角的余弦值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2023年河北普通高中会考数学真题及答案
一、选择题
1.下列四个数中,最大的是:
a. 3
b. 5
c. 8
d. 9
答案:d. 9
2.若a + b = 4,且ab = 3,则a的平方加上b的平方等于:
a. 4
b. 5
c. 6
d. 7
答案:d. 7
3.三角形ABC的三个内角分别为60°,80°,40°,则这个三角形的最长边对应的角为:
a.60°
b. 80°
c. 40°
d. 无法确定
答案:b. 80°
4.已知函数f(x) = 2x + 1,那么f(-3)的值为:
a.-5
b. -4
c. -3
d. -2
5.一张纸的厚度为0.1毫米,折叠10次后的厚度大约是:
a.10毫米
b. 1厘米
c. 1米
d. 1千米
答案:d. 1千米
二、填空题
1.设a = 2,b = 3,那么a的平方加上b的平方等于___ 。

答案:13
2.几何中,两角的和为180°的两个角称为 ___ 角。

答案:补
3.若f(x) = 3x - 4,则f(-1)的值为 ___ 。

答案:-7
4.在平面直角坐标系中,点(3, -4)的 x 坐标为 ___ ,y 坐标为 ___ 。

5.设集合A = {1, 2, 3},集合B = {2, 3},则集合A与集合B的交集为 ___ 。

答案:{2, 3}
三、解答题
1.解方程:2x - 5 = x + 3
解答:首先将此方程化简:2x - x = 3 + 5 化简为:x = 8 所以方程的解为 x = 8
2.计算:15 × (8 + 6)
解答:首先计算括号中的数:8 + 6 = 14 再将15乘以14:15 × 14 = 210 所以计算的结果为 210
3.求直角三角形斜边的长度。

已知直角三角形两个直角边的长度分别为3cm和4cm。

斜边的长度如何求解?
解答:根据毕达哥拉斯定理,直角三角形斜边的平方等于两个直角边长度的平方和。

即斜边的长度= √(3^2 + 4^2) = √(9 + 16) = √25 = 5 所以直角三角形斜边的长度为5cm。

四、总结
本文介绍了2023年河北普通高中会考数学真题及答案。

题目涵盖了选择题、填空题和解答题。

选择题主要考察了基础的数学概念和运算能力,填空题要求考生根据给定条件计算出具体数值,解答题则需要考生运用已学知识求解具体问题。

通过解题过程,我们可以巩固对数学基础知识的掌握,并且锻炼了分析和解决问题的能力。

希望本文对您在备考河北普通高中会考数学方面有所帮助。

相关文档
最新文档