七年级数学竞赛班资料(最新编)
七年级竞赛数学培优辅导——乘法公式(word打印版)

七年级竞赛数学培优辅导——乘法公式甲内容提要1.乘法公式也叫做简乘公式,就是把一些特殊的多项式相乘的结果加以总结,直接应用。
公式中的每一个字母,一般可以表示数字、单项式、多项式,有的还可以推广到分式、根式。
公式的应用不仅可从左到右的顺用(乘法展开),还可以由右到左逆用(因式分解),还要记住一些重要的变形及其逆运算――除法等。
2.基本公式就是最常用、最基礎的公式,并且可以由此而推导出其他公式。
完全平方公式:(a±b)2=a2±2ab+b2,平方差公式:(a+b)(a-b)=a2-b2立方和(差)公式:(a±b)(a2 ab+b2)=a3±b33.公式的推广:①多项式平方公式:(a+b+c+d)2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd即:多项式平方等于各项平方和加上每两项积的2倍。
②二项式定理:(a±b)3=a3±3a2b+3ab2±b3(a±b)4=a4±4a3b+6a2b2±4ab3+b4)(a±b)5=a5±5a4b+10a3b2 ±10a2b3+5ab4±b5)…………注意观察右边展开式的项数、指数、系数、符号的规律③由平方差、立方和(差)公式引伸的公式(a+b)(a3-a2b+ab2-b3)=a4-b4(a+b)(a4-a3b+a2b2-ab3+b4)=a5+b5(a+b)(a5-a4b+a3b2-a2b3+ab4-b5)=a6-b6…………注意观察左边第二个因式的项数、指数、系数、符号的规律在正整数指数的条件下,可归纳如下:设n为正整数(a+b)(a2n-1-a2n-2b+a2n-3b2-…+ab2n-2-b2n-1)=a2n-b2n(a+b)(a2n-a2n-1b+a2n-2b2-…-ab2n-1+b2n)=a2n+1+b2n+1类似地:(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)=a n-b n4.公式的变形及其逆运算由(a+b)2=a2+2ab+b2得a2+b2=(a+b)2-2ab由(a+b)3=a3+3a2b+3ab2+b3=a3+b3+3ab(a+b) 得a3+b3=(a+b)3-3ab(a+b)由公式的推广③可知:当n为正整数时a n-b n能被a-b整除,a2n+1+b2n+1能被a+b整除,a2n-b2n能被a+b及a-b整除。
最新数学竞赛专题讲座七年级第5讲-计算—工具与算法的变迁(含答案)

第五讲 计算——工具与算法的变迁研究数学、学习数学总离不开计算,随着时代的变迁,计算工具在不断地改变,从中国古老的算盘、纸笔运算发展到利用计算器、计算机运算.初中代数中运算贯穿于始终,运算能力是运算技能与逻辑能力的结合,它体现在对算理算律的理解与使用,综合运算的能力及选择简捷合理的运算路径上,这要求我们要善于观察问题的结构特点,灵活选用算法和技巧,有理数的计算常用的方法与技巧有: 1.巧用运算律; 2.用字母代数; 3.分解相约; 4.裂项相消; 5.利用公式; 6.加强估算等.“当今科学活动可以分成理论、实验和计算三大类,科学计算已经与理论研究、科学实验一起,成为第三种科学方法.——威尔逊注:威尔逊,著名计算物理学家,20世纪80年代诺贝尔奖获得者.【例1】 现有四个有理数3,4,6-,l0,将这4个数(每个数用且只用一次)进行加、减、乘、除四则运算,使其结果等于24,其三种本质不同的运算式有:(1) ;(2) ;(3) . (浙江省杭州市中考题) 思路点拨 从24最简单的不同表达式人手,逆推,拼凑.链接: 今天,计算机泛应用于社会生活各个方面,计算机技术在数学上的应用,不但使许多繁难计算变得简单程序化,而且还日益改变着我们的观念与思维. 著名的计算机专家沃斯说过:“程序=算法十数据结构”. 有理数的计算与算术的计算有很大的不同,主要体现在: (1)有理数的计算每一步要确定符号; (2)有理数计算常常是符号演算;(3)运算的观念得以改变,如两个有理数相加,其和不一定大于任一加数;两个有理数相减,其差不一定小于被减数.程序框图是一种用规定、指向线及文字说明来准确、直观地表示算法的图形,能清晰地展现算法的逻辑结构,常见的逻辑结构有:顺序结构、条件结构和循环结构.【例2】 如果4个不同的正整数q p n m 、、、满足4)7)(7)(7)(7(=----q p n m ,那么,q p n m +++等于( ).A .10B .2lC .24D .26E .28 (新加坡数学竞赛题) 思路点拨 解题的关键是把4表示成4个不同整数的形式. 【例3】 计算: (1)100321132112111+++++++++++ΛΛ; (“祖冲之杯”邀请赛试题) (2)19492—19502+19512—19522+…+19972—19982+19992(北京市竞赛题) (3)5+52+53+…十52002.思路点拨 对于(1),首先计算每个分母值,则易掩盖问题的实质,不妨先从考察一般情形人手;(2)式使人易联想到平方差公式,对于(3),由于相邻的后一项与前一项的比都是5,可从用字母表示和式着手.链接:裂项常用到以下关系式: (1)ba ab b a 11+=+; (2)111)1(1+-=+a a a a ;(3)ba ab a a b +-=+11)(.运用某些公式,能使计算获得巧解,常用的公式有: (1)))((22b a b a b a -+=-; (2)2)1(321+=++++n n n Λ. 错位相减、倒序相加也是计算中常用的技巧.【例4】(1)若按奇偶分类,则22004+32004+72004+92004是 数;(2)设553=a ,444=b ,335=c ,则c b a 、、的大小关系是 (用“>”号连接); (3)求证:32002+42002是5的倍数.思路点拨 乘方运算是一种特殊的乘法运算,解与乘方运算相关问题常用到以下知识:①乘方意义;②乘方法则;③02≥na;④n a 与a 的奇偶性相同;⑤在r k n +4中(k ,r 为非负整数,0≠n ,0≤r <4),当r =0时,rk n +4的个位数字与n 4的个位数字相同;当0≠r 时,?r k n +4的个位数字与r n 的个位数字相同.【例5】有人编了一个程序:从1开始,交替地做加法或乘法(第一次可以是加法,也可以是乘法),每次加法,将上次运算结果加2或加3;每次乘法,将上次运算结果乘2或乘3,例如,30可以这样得到:(1)证明:可以得到22; (2)证明;可以得到22297100-+.思路点拨 (1)试值可以得到22,从计算中观察得数的规律性,为(2)做准备;(2)连续地运用同一种运算以获得高次,在进行适当的变换可以求解.【例6】(1)已知a 、b 互为倒数,c 、d 互为相反数,0<e 且1=e ,那么200520042003)()(e d c ab -+--的值为__________. (第19届江苏省竞赛题)(2)已知20062005122006220052)1(164834121-++-++-+-=+ΛΛk k k S ,则小于S 的最大整数是______. (第11届“华杯赛“试题)思路点拨 对于(1)从倒数、相反数的概念入手;(2)通过对数式的分组,估算S 的值的范围.【例7】按下面的程序计算,若开始输入的值x为正数,最后输出的结果为656,则满足条件的x的不同值最多有().A.2个 B.3个 C.4个 D.5个(义乌市中考题)思路点拨看懂程序图,循环运算是解本题的关键.【例8】如图所示是一33⨯的幻方,当空格填上适当的数后,每行、每列及对角线上的和都是相等的,求k的值.(两岸四地少年数学邀请赛试题)思路点拨为充分利用条件,需增设字母,运用关系式求出k的值.基础训练一、基础夯实1.(1)计算:211×(-455)+365×455-211×545+545×365=_________;(2)若a= -20042003,b=-20032002,c=-20022001,则a、b、c的大小关系是___________(用“〈”号连接〉.2.计算:(1)0.7×149+234×(-15)+0.7×59+14×(-15)=________;(第15届江苏省竞赛题)(2) 191919767676-76761919=________. (第12届“希望杯”邀请赛试题)(3)135⨯+157⨯+…+119971999⨯=________; (天津市竞赛题)(4)(13.672×125+136.72×12.25-1367.2×1.875)÷17.09=________.(第14届“五羊杯”竞赛题)3.在下式的每个方框内各填入一个四则运算符号(不再添加括号),•使得等式成立:6□3□2□12=24. (第17届江苏省竞赛题)4.1999加上它的12得到一个数,再加上所得的数的13又得到一个数,再加上这次得数的14又得到一个数,……,依此类推,一直加到上一次得数的11999,那么最后得到的数是_________.5.根据图所示的程序计算,若输入的x值为32,则输出的结果为( ).A.72B.94C.12D.92(2002年北京市海淀区中考题)输出结果y=-x+21<x ≤2y=x 2-1<x ≤1y=x+2-2≤x ≤-1输出y 值输入x 值6.已知a=-199919991999199819981998⨯-⨯+,b=-200020002000199919991999⨯-⨯+,c=-200120012001200020002000⨯-⨯+,则abc=( ).A.-1B.3C.-3D.1 (第11届“希望杯”邀请赛试题) 7.如果有理数a 、b 、c 满足关系a<b<0<c,那么代数式23bc acab c -的值( ).A.必为正数B.必为负数C.可正可负D.可能为0 8.将322、414、910、810由大到小的排序是( ).A.322、910、810、414B.322、910、414、810C.910、810、414、322D.322、414、910、810 (美国犹他州竞赛题) 9.阅读下列一段话,并解决后面的问题:观察下面一列数:1,2,4,8,…,我们发现,这一列数从第2项起,•每一项与它前一项的比都等于2.一般地,如果一列数从第二项起,每一项与它前一项的比都等于同一个常数,•这一列数就叫做等比数列,这个常数叫做等比数列的公比. (1)等比数列5,-15,45,…的第4项是________;(2)如果一列数a 1,a 2,a 3,a 4,…是等比数列,且公比为q,那么根据上述的规定,有 •21a a =q, 32a a =q, 43aa =q,…, 所以a 2=a 1q,a 3=a 2q=(a 1q)q=a 1q 2,a 4=a 3q=a 1q 3,…,a n =_______(用a 1与q 的代数式表示). (3)一个等比数列的第2项是10,第3项是20,求它的第1项与第4项. (2003年广西省中考题)10.(1)已知a 、b 、c 都不等于零,且||a a +||b b +||c c +||abc abc 的最大值是m,最小值为n,求mn mn的值.(2)求证:5353-3333是10的倍数.二、能力拓展11.计算:(1) 2200340042003200240082003200422003300520032003200520053005-⨯+⨯-⨯-⨯-⨯+⨯=_________.(第15届“希望杯”邀请赛试题)(2)2-22-23-24-25-26-27-28-29+210=___________;(3) 123369510157142113539155152572135⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯=_______________.(4)98+998+9998+…+5099998⋅⋅⋅14243个=_________.(2003年“信利杯”竞赛题) 12.(1)32001×72002×132003所得积的末位数字是________;(第17届江苏省竞赛题) 13.若a 、b 、c 、d 是互不相等的整数(a<b<c<d),且abcd=121,则a c +b d =________. 14.你能比较20012002与20022001的大小吗?为了解决这个问题,我们先写出它的一般形式,即比较n n+1与(n+1)n 的大小(n 是自然数),然后,我们从分析n=1,n=2,n=3,……中发现规律,经归纳、猜想得出结论. (1)通过计算,比较下列各组中两数的大小(在空格中填写“)”、“=”、•“〈”号〉. ①12_____21; ②23______32; ③34______43; ④45______54; ⑤56_____65;…… (2)从第(1)题的结果经过归纳,可以猜想出n n+1和(n+1)n 的大小关系是_______.(3)根据上面归纳猜想得到的一般结论,试比较下列两个数的大小20012002___20022001. (江苏省常州市中考题) 15.如果11||t t +22||tt +33||t t =1,则123123||t t t t t t 的值为( ).A.-1B.1C.±1D.不确定 (2003河北省竞赛题) 16.如果ac<0,那么下面的不等式ac<0,a c 2<0,a 2c<0,c 3a<0,ca 3<0中必定成立的有( • ). A.1个 B.2个 C.3个 D.4个17.设S=213⨯+2235⨯+3257⨯+…4929799⨯,T=13+25+227+…48299,则S-T=( ).A.49299B.1-49299C.49299-1D.49299+1 (第14届“五羊杯”竞赛题)18.10个互不相等的有理数,每9个的和都是“分母为22的既约真分数(分子与分母无公约数的真分数)”,则这10个有理数的和为( ).A.12 B. 1118 C. 76 D. 59(第11届江苏省竞赛题) 19.图中显示的填数“魔方”只填了一部分,将下列9个数: 14,12,1,2,4,8,•16,•32,64填入方格中,使得所有行、列及对角线上各数相乘的积相等,求x 的值. (上海市竞赛题)64x3220.设三个互不相等的有理数,既可分别表示为1,a+b,a的形式,又可分别表示为0, ab,b的形式,求a2002+b2001的值.三、综合创新21.(1)三个2,不用运算符号,写出尽可能大的数;(2)三个4,不用运算符号,写出尽可能大的数.(3)用相同的3个数字(1~9),不用运算符号,写出最大的数.22.如图,是一个计算装置示意图,J1、J2是数据输入口,C是计算输出口,计算过程是由J1、J2分别输入自然数m和n,经计算后得自然数K由C输出,此种计算装置完成的计算满足以下三个性质:(1)若J1、J=2分别输入1,则输出结果为1;(2)若J=1输入任何固定的自然数不变,J2输入自然数增大1,则输出结果比原来增大2;(3)若J2输入1,J1输入自然数增大1,则输出结果为原来的2倍.试问:(1)若J1输入1,J2输入自然数n,输出结果为多少?(2)若J2输入1,J1输入自然数m,输出结果为多少?(3)若J1输入自然数m,J2输入自然数n,输出的结果为多少?(2002年扬州中学招生试题)C nmj2 j1答案:1.(1)154000,(2)a>b>c.2.(1)-43.6;(2)-334;(3) 9985997; (4)•48,•注意13672=•8•×1709. 3.略 4.1999000 提示:原式=1999×(1+12)(1+13)×…×(1+11999) 5.C 6.A 7.B 8.A 9.(1)-135;(2)a n =a 1q n-1;(3)a 1=5,a 4=40. 10.(1)-16 提示:||xx =±1,m=4,n=-4;(2)5353与3333的个位数字相同. 11.(1)667668;(2)6 提示:2n+1-2n =2n ;(3)25; (4) 111000491⋅⋅⋅14243个 12.(1)9;(2)115200 13.-1214.(1)略;(2)当n<3时,n n+1<(n+1)n ;当n ≥3时,n n+1>(n+1)n ;(3)>. 15.A 16.C 17.B 提示:1111()(2)22n n n n =-++ 18.A 19.这9个数的积为14×12×1×2×4×8×16×32×64=643, 所以,每行、每列、每条对角线上三个数字积为64, 得ac=1,ef=1,ax=2,a,c,e,f 分别为14,12, 2,4中的某个数,推得x=8. fed c b a 64x 3220.2 提示:这两个三数组在适当的顺序下对应相等,于是可以断定,a+b 与a•中有一个为0,ba与b 中有一个为1,再讨论得a=-1,b=1. 21.(1)222;(2)444=4256>444;(3)设所用数字为a,可得下面4种写法:①当a=1时,111最大;②当a=2时,222最大;③当a=3时,333最大;④当a ≥4时,a 最大. 22.由题意设输出数,设C(m,n)为k,则C(1,1)=1,C(m,n)=c(m,n-1)+2,C(m,•1)•=2C(m-1,1).(1)C(1,n)=C(1,n-1)+2=C(1,n-2)+2×2=…= C(1,1)+2(n-1)=1+2(n-1)=2n-1 (2)C(m,1)=2C(m-1,1)=22·C(m-2,1)=…=2m-1C(1,1)=2m-1.(3)C(m,n)=C(m,n-1)+2=C(m,n-2)+2×2=…=C(m-1)+2(n-1)=22C(m-2,1)+2(n-1)=…=2m-1C(1,1)+2n-2=2m-1+2n-2.提高训练1.若1+=m m ,则2004)14(+m =______. (“希望杯”邀请赛试题)2.符号“f ”表示一种运算,他对一些数的运算结果是: (1)0)1(=f ,1)2(=f ,2)3(=f ,3)4(=f ,… (2)2)21(=f ,3)31(=f ,4)41(=f ,5)51(=f ,…利用以上规律计算:=-)2008()20081(f f ______. (贵阳市中考题)3.3028864215144321-+-+-+-+-+-+-ΛΛ等于( ).A .41B .41-C .21D .21- (“希望杯”邀请赛试题)4.20032004)2(3)2(-⨯+- 的值为( ).A .20032-B .20032C .20042-D .20042 (江苏省竞赛题)5.自然数d c b a 、、、满足111112222=+++d c b a ,则65431111dc b a +++等于( ). A .81 B .163 C .327 D .6415 (北京市竞赛题)6.d c b a 、、、是互不相等的正整数,且441=abcd ,那么d c b a +++的值是( ).A .30B .32C .34D .36 (“希望杯”邀请赛试题) 7.已知55)(2+=+++b b b a ,且012=--b a .求ab 的值.(北京市迎春杯竞赛题) 8.已知a 、b 、c 都不等于0,且abcabcc c b b a a +++的最大值为m ,最小值为n ,则=+2005)(n m ______. (重庆市竞赛题)9.从下面每组数中各取一个数,将它们相乘,那么所有这样的乘积的总和是______.第一组:5-,313,4.25,5.75; 第二组:312-,151;第三组:2.25,125,4-. (“华杯赛”试题) 10.计算:20066423100864231006642310046423++++++++++++++++++++ΛΛΛΛΛ的值是( ).A .10033B .10043C .3341D .10001 (第18届五羊杯竞赛题)11.已知有理数x 、y 、z 两两不相等,则z y y x --,x z z y --,yx xz --中负数的个数是( ). A .1个 B .2个 C .3个 D .4个 (重庆市竞赛题) 12.若有理数x 、y 使得y x +、y x -、xy 、yx这四个数中的三个数相等,则x y -的值是( ). A .21- B .0 C .21 D .23 (天津市竞赛题)13.已知05432<e d c ab ,下列判断正确的是( ).A .0<abcdeB .042<e cd ab C .02<cde ab D .04<e abcd (江苏省竞赛题)14.已知m ,n 都是正整数,并且)11)(11()311)(311)(211)(211(mm A +-+-+-=Λ,)11)(11()311)(311)(211)(211(n n B +-+-+-=Λ.证明:(1)m m A 21+=,nn B 21+=;(2)若261=-B A ,求m 和n 的值. (华杯赛试题)。
历届(1-23)希望杯数学竞赛初一七年级真题及答案(最新整理WORD版)

“希望杯”全国数学竞赛(第1-23届)初一年级/七年级第一/二试题第 1 页共277 页目录1.希望杯第一届(1990年)初中一年级第一试试题............................................. 003-0052.希望杯第一届(1990年)初中一年级第二试试题............................................. 010-0123.希望杯第二届(1991年)初中一年级第一试试题............................................. 016-0204.希望杯第二届(1991年)初中一年级第二试试题............................................. 022-0265.希望杯第三届(1992年)初中一年级第一试试题............................................. 029-0326.希望杯第三届(1992年)初中一年级第二试试题............................................. 034-0407.希望杯第四届(1993年)初中一年级第一试试题............................................. 044-0508.希望杯第四届(1993年)初中一年级第二试试题............................................. 051-0589.希望杯第五届(1994年)初中一年级第一试试题............................................. 058-06610.希望杯第五届(1994年)初中一年级第二试试题 .......................................... 065-07311.希望杯第六届(1995年)初中一年级第一试试题 ........................................... 072-080 12希望杯第六届(1995年)初中一年级第二试试题........................................... 079-08713.希望杯第七届(1996年)初中一年级第一试试题........................................... 089-09814.希望杯第七届(1996年)初中一年级第二试试题............................................. 95-10515.希望杯第八届(1997年)初中一年级第一试试题........................................... 103-11316.希望杯第八届(1997年)初中一年级第二试试题........................................... 110-12017.希望杯第九届(1998年)初中一年级第一试试题........................................... 119-12918.希望杯第九届(1998年)初中一年级第二试试题........................................... 128-13819.希望杯第十届(1999年)初中一年级第二试试题........................................... 135-14720.希望杯第十届(1999年)初中一年级第一试试题........................................... 148-15121.希望杯第十一届(2000年)初中一年级第一试试题....................................... 148-16122.希望杯第十一届(2000年)初中一年级第二试试题....................................... 155-16923.希望杯第十二届(2001年)初中一年级第一试试题....................................... 159-17424.希望杯第十二届(2001年)初中一年级第二试试题....................................... 163-17825.希望杯第十三届(2002年)初中一年级第一试试题....................................... 169-18426.希望杯第十三届(2001年)初中一年级第二试试题....................................... 173-18927.希望杯第十四届(2003年)初中一年级第一试试题....................................... 180-19628.希望杯第十四届(2003年)初中一年级第二试试题....................................... 184-200第 2 页共277 页29.希望杯第十五届(2004年)初中一年级第一试试题 (188)30.希望杯第十五届(2004年)初中一年级第二试试题 (189)31.希望杯第十六届(2005年)初中一年级第一试试题....................................... 213-21832.希望杯第十六届(2005年)初中一年级第二试试题 (189)33.希望杯第十七届(2006年)初中一年级第一试试题....................................... 228-23334.希望杯第十七届(2006年)初中一年级第二试试题....................................... 234-23835.希望杯第十八届(2007年)初中一年级第一试试题....................................... 242-246 26.希望杯第十八届(2007年)初中一年级第二试试题....................................... 248-25137.希望杯第十九届(2008年)初中一年级第一试试题....................................... 252-25638.希望杯第十九届(2008年)初中一年级第二试试题....................................... 257-26239.希望杯第二十届(2009年)初中一年级第一试试题....................................... 263-26620.希望杯第二十届(2009年)初中一年级第二试试题....................................... 267-27121.希望杯第二十一届(2010年)初中一年级第一试试题 ................................... 274-27622.希望杯第二十二届(2011年)初中一年级第二试试题 ................................... 285-28823.希望杯第二十三届(2012年)初中一年级第二试试题 ................................... 288-301第 3 页共277 页第 4 页 共 277 页希望杯第一届(1990年)初中一年级第1试试题一、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( )A .a ,b 都是0.B .a ,b 之一是0.C .a ,b 互为相反数.D .a ,b 互为倒数.2.下面的说法中正确的是 ( )A .单项式与单项式的和是单项式.B .单项式与单项式的和是多项式.C .多项式与多项式的和是多项式.D .整式与整式的和是整式.3.下面说法中不正确的是 ( )A. 有最小的自然数. B .没有最小的正有理数.C .没有最大的负整数.D .没有最大的非负数.4.如果a ,b 代表有理数,并且a +b 的值大于a -b 的值,那么( ) A .a ,b 同号. B .a ,b 异号.C .a >0. D .b >0.5.大于-π并且不是自然数的整数有( ) A .2个. B .3个.C .4个. D .无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是 ( )A .0个.B .1个.C .2个.D .3个.7.a 代表有理数,那么,a 和-a 的大小关系是 ( )A .a 大于-a .B .a 小于-a .C .a 大于-a 或a 小于-a .D .a 不一定大于-a .8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A .乘以同一个数.B .乘以同一个整式.C .加上同一个代数式.D .都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A .一样多.B .多了.C .少了.D .多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A .增多.B .减少.C .不变.D .增多、减少都有可能.二、填空题(每题1分,共10分)1. 21115160.01253(87.5)(2)4571615⨯-⨯-÷⨯+--= ______. 2.198919902-198919892=______.第 5 页 共 277 页 3.2481632(21)(21)(21)(21)(21)21+++++-=________. 4. 关于x 的方程12148x x +--=的解是_________. 5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-24125时,代数式(3x 3-5x 2+6x -1)-(x 3-2x 2+x -2)+(-2x 3+3x 2+1)的值是____. 7.当a=-0.2,b=0.04时,代数式272711()(0.16)()73724a b b a a b --++-+的值是______. 8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的13.如果工作4天后,工作效率提高了15,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x -2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第 6 页共277 页第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0<t.因此河水速增大所用时间将增多,选A.二、填空题第7 页共277 页提示:2.198919902-198919892=(19891990+19891989)×(19891990-19891989)=(19891990+19891989)×1=39783979.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-50005000)=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-=-2500.+1)=5x+26.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x27.注意到:当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.第8 页共277 页8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%解得:x=45000(克).10.在4时整,时针与分针针夹角为120°即第9 页共277 页希望杯第一届(1990年)初中一年级第2试试题一、选择题(每题1分,共5分)以下每个题目里给出的A,B,C,D四个结论中有且仅有一个是正确的.请你在括号填上你认为是正确的那个结论的英文字母代号.1.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是( )A.a%.B.(1+a)%. C.1100aa+D.100aa+2.甲杯中盛有2m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯倒出a毫升到乙杯里, 0<a<m,搅匀后,又从乙杯倒出a毫升到甲杯里,则这时( )A.甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B.甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C.甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.3.已知数x=100,则( )A.x是完全平方数.B.(x-50)是完全平方数.C.(x-25)是完全平方数.D.(x+50)是完全平方数.4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111,,ab b a c-的大小关系是( )A.111ab b a c<<-; B.1b a-<1ab<1c; C.1c<1b a-<1ab; D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有( )A.2组.B.6组.C.12组.D.16组.二、填空题(每题1分,共5分)1.方程|1990x-1990|=1990的根是______.2.对于任意有理数x,y,定义一种运算*,规定x*y=ax+by-cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1*2=3,2*3=4,x*m=x(m≠0),则m 的数值是______.3.新上任的宿舍管理员拿到20把钥匙去开20个房间的门,他知道每把钥匙只能开其中第10 页共277 页的一个门,但不知道每把钥匙是开哪一个门的钥匙,现在要打开所有关闭着的20个房间,他最多要试开______次.4.当m=______时,二元二次六项式6x2+mxy-4y2-x+17y-15可以分解为两个关于x,y 的二元一次三项式的乘积.5.三个连续自然数的平方和(填“是”或“不是”或“可能是”)______某个自然数的平方.三、解答题(写出推理、运算的过程及最后结果.每题5分,共15分)1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回?离出发地点最远的那辆车一共行驶了多少公里?2.如图2,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.第11 页共277 页答案与提示一、选择题1.D 2.C 3.C 4.C 5.D提示:1.设前年的生产总值是m ,则去年的生产总值是前年比去年少这个产值差占去年的应选D.2.从甲杯倒出a毫升红墨水到乙杯中以后:再从乙杯倒出a毫升混合墨水到甲杯中以后:乙杯中含有的红墨水的数量是①乙杯中减少的蓝墨水的数量是②∵①=②∴选C.∴x-25=(10n+2+5)2可知应当选C.4.由所给出的数轴表示(如图3):可以看出第12 页共277 页∴①<②<③,∴选C.5.方程2x2+5xy+3y2=30可以变形为(2x+3y)(x+y)=1·2·3·5∵x,y是整数,∴2x+3y,x+y也是整数.由下面的表可以知道共有16个二元一次方程组,每组的解都是整数,所以有16组整数组,应选D.二、填空题提示:1.原方程可以变形为|x-1|=1,即x-1=1或-1,∴x=2或0.2.由题设的等式x*y=ax+by-cxy及x*m=x(m≠0)得a·0+bm-c·0·m=0,∴bm=0.∵m≠0,∴b=0.∴等式改为x*y=ax-cxy.∵1*2=3,2*3=4,解得a=5,c=1.∴题设的等式即x*y=5x-xy.在这个等式中,令x=1,y=m,得5-m=1,∴m=4.第13 页共277 页3.∵打开所有关闭着的20个房间,∴最多要试开4.利用“十字相乘法”分解二次三项式的知识,可以判定给出的二元二次六项式6x2+mxy-4y2-x+17y-15中划波浪线的三项应当这样分解:3x -52x +3现在要考虑y,只须先改写作然后根据-4y2,17y这两项式,即可断定是:由于(3x+4y-5)(2x-y+3)=6x2+5xy-4y2-x+17y-15就是原六项式,所以m=5.5.设三个连续自然数是a-1,a,a+1,则它们的平方和是(a-1)2+a2+(a+1)2=3a2+2,显然,这个和被3除时必得余数2.另一方面,自然数被3除时,余数只能是0或1或2,于是它们可以表示成3b,3b+1,3b+2(b是自然数)中的一个,但是它们的平方(3b)2=9b2(3b+1)2=9b2+6b+1,(3b+2)2=9b2+12b+4=(9b2+12b+3)+1被3除时,余数要么是0,要么是1,不能是2,所以三个连续自然数平方和不是某个自然数的平方.三、解答题1.设两辆汽车一为甲一为乙,并且甲用了x升汽油时即回返,留下返程需的x桶汽油,将多余的(24-2x)桶汽油给乙.让乙继续前行,这时,乙有(24-2x)+(24-x)=48-3x桶汽油,依题意,应当有48-3x≤24,∴x≥8.甲、乙分手后,乙继续前行的路程是这个结果中的代数式30(48-4x)表明,当x的值愈小时,代数式的值愈大,因为x≥8,所以当x=8时,得最大值30(48-4·8)=480(公里),因此,乙车行驶的路程一共是2(60·8+480)=1920(公里).2.由题设可得第14 页共277 页即2S-5S3=8……②∴x,y,z都>1,因此,当1<x≤y≤z时,解(x,y,z)共(2,4,12),(2,6,6),(3,3,6),(3,4,4)四组.由于x,y,z在方程中地位平等.所以可得如下表所列的15组解.第15 页共277 页希望杯第二届(1991年)初中一年级第1试试题一、选择题(每题1分,共15分)以下每个题目的A,B,C,D四个结论中,仅有一个是正确的,请在括号内填上正确的那个结论的英文字母代号.1.数1是( )A.最小整数.B.最小正数.C.最小自然数.D.最小有理数.2.若a>b,则( )A.11a b; B.-a<-b.C.|a|>|b|.D.a2>b2.3.a为有理数,则一定成立的关系式是( )A.7a>a.B.7+a>a.C.7+a>7.D.|a|≥7.4.图中表示阴影部分面积的代数式是( )A.ad+bc.B.c(b-d)+d(a-c).C.ad+c(b-d).D.ab-cd.5.以下的运算的结果中,最大的一个数是( )A.(-13579)+0.2468; B.(-13579)+12468;C.(-13579)×12468; D.(-13579)÷124686.3.1416×7.5944+3.1416×(-5.5944)的值是( ) A.6.1632. B.6.2832.C.6.5132.D.5.3692.7.如果四个数的和的14是8,其中三个数分别是-6,11,12,则笫四个数是( )A.16. B.15. C.14. D.13.8.下列分数中,大于-13且小于-14的是( )A.-1120; B.-413; C.-316; D.-617.9.方程甲:34(x-4)=3x与方程乙:x-4=4x同解,其根据是( )A.甲方程的两边都加上了同一个整式x.B.甲方程的两边都乘以43x;C. 甲方程的两边都乘以43; D. 甲方程的两边都乘以34.第16 页共277 页第 17 页 共 277 页10.如图: ,数轴上标出了有理数a ,b ,c 的位置,其中O是原点,则111,,a b c的大小关系是( ) A.111a b c>>; B.1b >1c >1a ; C. 1b >1a >1c ; D. 1c >1a >1b .11.方程522.2 3.7x =的根是( ) A .27. B .28. C .29. D .30. 12.当x=12,y=-2时,代数式42x y xy -的值是( )A .-6.B .-2.C .2.D .6.13.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( )A .225.B .0.15.C .0.0001.D .1.14.不等式124816x x x xx ++++>的解集是( ) A .x <16. B .x >16.C .x <1. D.x>-116. 15.浓度为p%的盐水m 公斤与浓度为q%的盐水n 公斤混合后的溶液浓度是 ( )A.%2p q +;B.()%mp nq +;C.()%mp nq p q ++;D.()%mp nq m n++. 二、填空题(每题1分,共15分)1. 计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______. 2. 计算:-32÷6×16=_______. 3. 计算:(63)36162-⨯=__________.4. 求值:(-1991)-|3-|-31||=______. 5. 计算:1111112612203042-----=_________. 6.n 为正整数,1990n-1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009.则n 的最小值等于______.7. 计算:19191919199191919191⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=_______.8. 计算:15[(-1989)+(-1990)+(-1991)+(-1992)+(-1993)]=________.9.在(-2)5,(-3)5,512⎛⎫-⎪⎝⎭,513⎛⎫-⎪⎝⎭中,最大的那个数是________.10.不超过(-1.7)2的最大整数是______.11.解方程21101211,_____. 3124x x xx-++-=-=12.求值:355355113113355113⎛⎫---⎪⎝⎭⎛⎫- ⎪⎝⎭=_________.13.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______.14.一个数的相反数的负倒数是119,则这个数是_______.15.如图11,a,b,c,d,e,f均为有理数.图中各行,各列、两条对角线上三个数之和都相等,则ab cd efa b c d e f+++++++=____.第18 页共277 页答案与提示一、选择题1.C 2.B 3.B 4.C 5.C 6.B 7.B 8.B 9.C 10.B 11.D 12.A 13.B 1 4.A 15.D提示:1.整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D.1是最小自然数.选C.有|2|<|-3|,排除C;若2>-3有22<(-3)2,排除D;事实上,a>b必有-a<-b.选B.3.若a=0,7×0=0排除A;7+0=7排除C|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B.4.把图形补成一个大矩形,则阴影部分面积等于ab-(a-c)(b-d)=ab-[ab-ad-c(b-d)]=ab-ab+ad+c(b-d)=ad+c(b-d).选C.5.运算结果对负数来说绝对值越小其值越大。
(名师整理)数学七年级竞赛试题及答案解析

七年级上数学竞赛试题(考试时间:90分钟满分:100分)学校班级姓名一、选择题(每小题3分,共30分)1.已知,且a>b,那么a+b的值等于()A. 或B. 或C. 或D. 或2.如图,数轴上每个刻度为1个单位长,则A,B分别对应数a,b,且b-2a=7,那么数轴上原点的位置在()A. A 点B. B 点C. C 点D. D 点3.下列语句中:(1)线段AB就是A,B两点间的距离;(2)画射线AB=10cm;(3)A,B两点之间的所有连线中,最短的是A,B两点间的距离;(4)在直线上取A,B,C三点,使得AB=5cm,BC=2cm,则AC=7cm。
其中正确的有()A.1 个B.2 个C.3 个D.4 个4.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂重物的质量x(kg)有下面的关系,( )A.y=x +12B.y=0.5x+12C.y=0.5x+10D.y=x+10.55.港珠澳大桥于2018年10月24日正式通车,该工程总投资额为1269亿元,将1269亿用科学记数法表示为().A.12.69×1010B.1.269×1011C.1.269×1012D.0.1269×10136.若(m-2)x|2m-3|=6是关于x的一元一次方程,则m的值是()A. 1B. 任何数 C. 2 D. 1或27.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是()A. B. C.D.8.如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从A出发爬到B,则( )122503.002.003.05.09.0x 4.0-=+-+x xA.乙比甲先到B.甲和乙同时到C.甲比乙先到D.无法确定9.如图,线段AB 和线段CD 的重合部分CB 的长度是线段AB 长的,M 、N 分别是线段AB 和线段CD 的中点,AB=18,MN=13,则线段AD 的长为( ) A. 31 B. 33 C. 32 D. 34 10.如图所示的立方体,如果把它展开,可以是下列图形中的( )A. B. C. D.二、填空题(每小题3分,共24分)11.数轴上表示-2的点距离3个长度单位的点所表示的数是________. 12.钟表上的时间是2时30分,此时时针与分针所成的夹角是________ 度. 13.现在网购越来越多地成为人们的一种消费方式,刚刚过去的2015年的“双11”网上促销活动中,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为____ ____.14.观察下列算式:21=2、22=4、23=8、24=16、25=32、26=64、27=128、28=256….观察后,用你所发现的规律写出223的末位数字是________. 15.已知m=,n=, 则代数式(m+2n )﹣(m ﹣2n )的值为________16.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是________.18.你会玩“二十四点”游戏吗?现有“2,-3,-4, 5,”四个数,每个数用且只用一次进行加、减、乘、除,使其结果为24,写出你的算式(只写一个即可):________=24. 17.如图,OA ⊥OC ,OB ⊥OD ,下面结论:①∠AOB=∠COD ;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC-∠COD=∠BOC 中,正确的有________ (填序号).三、计算题(共3题;共15分)19.解方程:20.计算:(1)×24-×(-2.5)×(-8).(2).四、解答题(共5题;共31分)21.设B为线段AC上的一点,AB=8cm,BC=2cm,M、N分别为AB、AC的中点.求MN的长.22.已知a,b互为相反数,c,d互为倒数,m的倒数等于本身,求代数式的值.23.小李到某城市行政中心大楼办事,假定乘电梯向上一楼记为+1,向下一楼记为–1.小李从1楼出发,电梯上下楼层依次记录如下(单位:层):+5,–3,+10,–8,+12,–6,–10.(1)请你通过计算说明小李最后是否回到出发点1楼;3(2)该中心大楼每层高2.8m,电梯每上或下1m需要耗电0.1度.根据小李现在所处的位置,请你算一算,当他办事时电梯需要耗电多少度?24.如图,直线AB、CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.25.坟中安葬着丢番图,多么令人惊讶,他忠实地记录了所经历的道路.上帝给予的童年占六分之一,又过了十二分之一,两颊长胡,再过七分之一,点燃结婚的蜡烛,五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入坟墓,悲伤只有用数论研究去弥补,又过四年,他也走完了人生的旅途。
初中七年级数学竞赛培优讲义全套专题01 质数那些事_答案

专题01 质数那些事例1 34例2 C例3 3符合要求 提示:当p =3k +1时,p +10=3k +11,p +14=3(k +5),显然p +14是合数,当p =3k +2时,p +10=3(k +4)是合数,当p =3k 时,只有k =1才符合题意.例4 (1)因1+2+…+2004=21×2004×(1+2004)=1002×2005为3的倍数,故无论怎样交换这2004个数的顺序,所得数都有3这个约数.(2)因n 是大于2的正整数,则n 2-1≥7,n 2-1、n 2、n 2+1是不小于7的三个连续的正整数,其中必有一个被3整除,但3不整除n 2,故n 2-1与n 2+1中至多有一个数是质数.(3)设正整数a 的所有正约数之和为b ,1d ,2d ,3d ,…,n d 为a 的正约数从小到大的排列,于是1d =1,n d =a .由于nd d d d S 1111321+⋅⋅⋅+++=中各分数分母的最小公倍数n d =a ,故S =n n n n n d d d d d d 11⋅⋅⋅++-=n n d d d d ⋅⋅⋅++21=ab ,而a =360=53223⨯⨯,故b =(1+2+22+32)×(1+3+23)×(1+5)=1170.a b =3601170=413. 例5 由xy y x +=p 2,得x +y =pxy 2=k .(k 为正整数),可得2xy =kp ,所以p 整除2xy 且p 为奇质数,故p 整除x 或y ,不放设x =tp ,则tp +y =2ty ,得y =12-t tp 为整数.又t 与2t -1互质,故2t -1整除p ,p 为质数,所以2t -1=1或2t -1=p .若2t -1=,得t =1,x =y =p ,与x ≠y 矛盾;若2t -1=p ,则xy y x +=p2,2xy =p (x +y ).∵p 是奇质数,则x +y 为偶数,x 、y 同奇偶性,只能同为xy =()2y x p +必有某数含因数p .令x =ap ,ay =2y ap +,2ay =ap +y .∴y =12-a ap ,故a ,2a -1互质,2a -1整除p ,又p 是质数,则2a -1=p ,a =21+p ,故x =p p ⋅+21=()21+p p ,∴x +y =()21+p p +21+p =()212+p 。
数学竞赛专题讲座七年级第2讲 创造的基石—观察、归纳与猜想(含答案)

第二讲 创造的基石——观察、归纳与猜想当代著名科学家波普尔说过:我们的科学知识,是通过未经证明的和不可证明的预言,通过猜测,通过对问题的尝试性解决,通过猜想而进步的.从某种意义上说,一部数学史就是猜想与验证猜想的历史.20世纪数学发展中巨大成果是,1995年英国数学家维尔斯证明了困扰数学界长达350多年的“费尔马大猜想”,而著名的哥德巴赫猜想,已经历经了两个半世纪的探索,尚未被人证实猜想的正确性.当一个问题涉及相当多的乃至无穷多的情形时,我们可以从问题的简单情形或特殊情况人手,通过对简单情形或特殊情况的试验,从中发现一般规律或作出某种猜想,从而找到解决问题的途径或方法,这种研究问题的方法叫归纳猜想法,是创造发明的基石.“要想成为一个好的数学家,你必须是一个好的猜想家,数学家的创造性工作的结果是论证推理,是一个证明,但证明是由合情推理、由猜想来发现的.”______G .波利亚链接:G .波利亚,美籍匈牙利人,现代著名数学家,他的《怎样解题》等著作,被誉为第二次世界大战后的数学经典著作之一.观察、实验、猜想是科学技术创造过程中一个重要方法,通过观察和实验提出问题,再提出猜想和假设,最后通过推理去证明假设和猜想.举世瞩目的“数学皇冠上的明珠”——哥德巴赫(德国数学家)猜想,就是从下面这些等式:6=3+3,8=3+5,10=3+7,12=5+7,14=3+11.归纳得出:“任何不小于6的偶数均可以表示成两个奇质数的和.”我国数学家陈景润于1973年证明了“1+2”,离解决哥德巴赫问题,即“1+1”仅一步之遥.例题讲解 【例1】 (1)用●表示实圆,用○表示空心圆,现有若干实圆与空心圆按一定规律排列如下: ●○●●○●●●○●○●●○●●●○●○●●○●●●○…… 问:前2001个圆中,有 个空心圆. (江苏省泰州市中考题) (2)古希腊数学家把数1,3,6,10,15,2l ,…叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为 . (舟山市中考题) 思路点拨 (1)仔细观察,从第一个圆开始,若干个圆中的实圆数循环出现,而空心圆的个数不变;(2)每个三角形数可用若干个数表示.【例2】观察下列图形,并阅读图形下面的相关文字:像这样,10条直线相交,最多交点的个数是( ).A .40个B .45个C .50个D .55个 (湖北省荆门市中考题) 思路点拨 随着直线数的增加,最多交点也随着增加,从给定的图形中,探讨每增加一条直线,最多交点的增加数与原有直线数的关系.是解本例的关键.......四条直线相交,最多有六个交点三条直线相交,最多有三个交点两条直线相交,最多只有一个交点【例3】化简个个个n n n 9991999999+⨯ (第18届江苏省竞赛题) 思路点拨 先考察=n 1,2,3时的简单情形,然后作出猜想,这样,化简的目标更加明确. 【例4】古人用天干和地支记次序,其中天干有10个:甲乙丙丁戊己庚辛壬癸;地支有12个:子丑寅卯辰巳午未申酉戌亥,将天干的10个汉字和地支的12个汉字分别循环排列成如下两行; .甲乙丙丁戊己庚辛壬癸甲乙丙丁戊己庚辛壬癸……子丑寅卯辰巳午未申酉戌亥子丑寅卯辰巳午未申酉戌亥……从左向右数,第l 列是甲子,第3列是丙寅…,问当第二次甲和子在同一列时,该列的序号是多少? ( “希望杯”邀请赛试题) 思路点拨 把“甲”、“子”在第一行、第二行出现的位置分别用相应的代数式表示,将实际问题转化为数学问题求解.链接:观察是解决问题的先导,发现往往是从观察开始的,归纳与猜想是建立在细致而深刻的观察基础上的,解题中的观察活动主要有三条途径:(1)数与式的特征观察;(2)图形的结构观察;(3)通过对简单、特殊情况的观察,再推广到一般情况.归纳总是与递推联系在一起的,所谓递推,就是在归纳的基础上,发现每一步与前一步或前几步之间的联系,更容易发现规律.然后证明通过归纳所猜测的规律的正确性.【例5】图)(a 、)(b 、)(c 、)(d 都称作平面图.(1)数一数每个图各有多少个顶点,多少条边,这些边围出了多少区域,将结果填人表中(其中(a)已填好).(2)观察表,推断一个平面图的顶点数、边数、区域数之间有什么关系?(3)现已知某一平面图有999个顶点和999个区域,试根据(2)中推断出的关系,确定这个图有多少条边? ( “华杯赛”决赛试题) 思路点拨 从特殊情况人手,仔细观察、分析、试验和归纳,从而发现其中的共同规律,这是解本例的关键.链接:历史上著名的数学家欧拉曾经研究过正多面体,惊奇地发现了正多面体的顶点数)(V 、面数)(F 、棱数)(E 存在一个奇妙的相等关系:2=-+E F V .史称“欧拉公式”,它不仅在数学方法上有所创新,而且推动了现代数学的重要分支——拓扑学的发展.【例6】已知2≥m ,2≥n ,且m ,n 均为正整数,如果将nm 进行如下方式的“分解”,那么下列三个叙述:①在52的“分解”中最大的数是11;②在34的“分解”中最小的数是13;③若3m 的“分解”中最小的数是23,则m 等于5.其中正确的是____________. (太原市中考题)思路点拨 明确对n m 进行“分解”的意义,是解本例的关键.【例7】观察图形寻找规律,在“?”处填上的数字是( ).A .128B .136C .162D .188 (南宁市中考题) 思路点拨 从探讨数字键的关系入手.【例8】一楼梯共有n 级台阶,规定每一步可以迈1级或2级或3级,设从地面到台阶的第n 级,不同的迈法为n a 种,当n =8时,求8a . (河南省竞赛题)思路点拨 先求出当n =1,2,3,4时,1a ,2a ,3a ,4a 的值,解题的关键是,从某级开始,寻找n a 与1-n a 、2-n a 、3-n a 的联系.9753343343332242322?884826148422基础训练一、基础夯实1.(1)如图的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,•根据图中的数构成的规律,a 所表示的数是________.(2001年浙江省绍兴市中考题)(1) (2)(2)观察一列数:3,8,13,18,23,28,…依此规律,在此数列中比2000•大的最小整数是_________. (2003年金华市中考题) 2.如图2是2002年6月份的日历.现用一矩形在日历中任意..框出4个数a b c d,•请用一个等式表示a 、b 、c 、d 之间的关系:__________.3.下面由火柴棒拼出的一列图形中,第n 个图形由n 个正方形组成. 通过观察可以发现:(1)第4个图形中火柴棒的根数是________.(2)第n 个图形中火柴棒的根数是________. (2001年江西省中考题)n=1n=2n=34.小王利用计算机设计了一个计算程序,输入和输出的数据如下表,那么当输入数据是8时,输出的数据是( )A. 861B.863C.865D. 867(2003年重庆市中考题)5.在以下两个数串中:1,3,5,7,…,1991,1993,1995,1997,1999和1,4,7,10,…,1990,1993,1996,•1999同时出现在这两个数串中的数的个数共有( )个A.333B.334C.335D.336 (“希望杯”邀请赛试题)6.图①是一个水平摆动的小正方体木块,图②、•③是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,•小正方体木块总数应是( ). A.25 B.66 C.91 D.120 (2003年宁波市中考题)7.一串数排成一行,它们的规律是这样的:头两个数都是1,从第三个数开始,•每一个数都是前两个数的和,也就是1,1,2,3,5,8,13,21,34,55,…问:•这串数的前100个数中(包括第100个数),有多少个偶数? (“华杯”赛试题) 8.自然数按下列的规律排列:(1)求上起第10行,左起第13行的数;(2)数127应在上起第几行、左起第几列? (北京市“迎春杯”竞赛题)二、能力拓展9.(1)观察下列各式,你会发现什么规律? 3×5=15, 而15=42-1, 5×7=35, 而35=62-1, … …11×13=143, 而143=122-1, … …将你猜想到的规律用只含一个字母的式子表示出来_______.(2000年济南市中考题)(2)将1,-1,1,-1,1,-1…按一定规律排成下表:从表中可以看到第4行中,自左向右第3个数是9,第5行中从左向右第2个数是-112,•那么第199行中自左向右第8个数是________,第1998行中自左向右第11•个数是________. (“希望杯”邀请赛试题) 10.有一列数a 1,a 2,a 3,a 4,…,a n ,其中 a 1=6×2+1 a 2=6×3+2; a 3=6×4+3; a 4=6×5+4; ……则第n 个数a n =_______;当a n =2001时,n=________. (第15届江苏省竞赛题) 11.一个正方体,它的每一面上写有一个字,组成“数学奥林匹克”.有三个同学从不同的角度看到的结果依次如图所示,那么,“学”字对面的字为______.(重庆市竞赛题)(第11题) (第12题)12.用盆栽菊花摆在如图所示的大小相同的7个正方形花坛的边缘,•正方形每边都等距离地摆n(•n•≥3)••盆花,••那么所需菊花的总盆数s•与n•的关系可以表示为________. (第14届“希望杯”邀请赛试题)13. (新加坡数学竞赛题)如果一个序列{}i a 满足a 1=2,a n+1=a n +2n(n 为自然数),那么a 100是( )A.9900B.9902C.9904D.10100E.10102 14. (2001年湖北省荆州市中考题)将正偶数按下表排成5列: 第1列 第2列 第3列 第4列 第5列 第1行 2 4 6 8 第2行 16 14 12 10第3行 18 20 22 24 …… …… 28 26 根据上面排列规律,则2000应在( ).A.第125行,第1列B.第125行,第2列C.第250行,第1列D.第250行,第2列15.(1)设n 为自然数,具有下列形式11111n ⋅⋅⋅ 个5555n ⋅⋅⋅个5的数是不是两个连续奇数的积,说明理由.(2)化简333n ⋅⋅⋅ 个3×333n ⋅⋅⋅ 个3+1999n ⋅⋅⋅个9,并说明在结果中共有多少个奇数数字?16.(1)图①是正方体木块,把它切去一块,可能得到形如图②、③、④、•⑤的木块.我们知道,图①的正方体木块有8个顶点,12条棱,6个面,请你将图②、③、④、•⑤中木块的顶点数、(2)观察此表,数之间的数量关系是:____________________.(3)图⑥是用虚线画出的正方体木块,请你想象一种与图②~⑤不同的切法,•把切去一块后得到的那一块的每条棱都改画成实线,则该木块的顶点数为________,棱数为 _________,面数为________. (第16届江苏省竞赛题)三、综合创新:17.怎样的两个数,它们的和等于它们的积?你大概马上就会想到2+2=2×2,其实这样的两个数还有很多,例如:3+32=3×32。
初中数学竞赛辅导资料20

初中数学竞赛辅导资料20----7a3b8f0a-6ea0-11ec-8183-7cb59b590d7d-初中数学竞赛辅导资料20初中数学竞赛辅导材料20份第二十课乘法公式的应用例1计算:(1)(1+2)(1+22)(1+24)。
(1 + 232) + 1; (2)(19924+19923+19922+1993)×1991+1解:(1)原公式=(1+2)(1+22)(1+24)。
(1 + 232) × (1-2)÷(1-2)+1=-(1+22)(1+23)(1+24)…(1+232)+1……=1-+264+1=264四万三千二百五十五(2)设x=1992,原式=(x+x+x+x+1)(x-1)+1=x=1992。
例2(1988年上海市初中数学竞赛试题)已知x+y=10,X3+Y3=100,求x2+Y2。
解决方案1:从X3+Y3=(x+y)3-3xy×10?xy=30.x2+y2=(x+y)2-2xy=102-2×30=40溶液2:从x+y=10,x2+2xy+y2=100,。
① 从X3+Y3=100,X2+Y2 xy=10。
②①-②,得3xy=90,?xy=30,∴x2+y2=10+xy=40想一想例子2中的两种分析,它使用分析法和综合法。
例3设a、b、c、d都是整数,且m=a2+b2,n=c2+d2。
试将mn表示成两个整数的平方和的形式。
解决方案:Mn=(A2+B2)(C2+D2)=a2c2+a2d2+b2c2+b2d2=(a2c2+2abcd+b2d2)+(b2c2-2abcd+a2d2)=(ac+bd)2+(ac-ad)2。
例4计算:(b+c-2a)3+(c+a-2b)3+(a+b-2c)3-3(b+c-2a)(c+a-2b)(a+b-2c)解:设x=b+c-2a,y=c+a-2b,z=a+b-2c,∴原式=x3+y3+z3-3xyz=(x+y+z)(x2+y2+z2-xy-yz-zx)=0例5设(2x-1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0。
七年级(初一)数学竞赛试题及答案

1.若四边形ABCD中,∠A:∠B:∠C:∠D=1:3:5:6,则∠A,∠D的度数分别为()24°,144°2.已知a=255,b=344,c=533,d=622,那么a、b、c、d从小到大的顺序是解:∵a=255=(25)11,b=344=(34)11,c=533=(53)11,53>34>62>25,∴(53)11>(34)11>(62)11>(25)11,即a<d<b<c,3.7..对于有理数x,y,定义一种新的运算“*”:x*y=ax+by+c,其中a,b,c为常数,等式右边是通常的加法与乘法运算,已知3*5=15,4*7=28,求1*1的值.9.已知|a|=3,|b|=2,且|a-b|=b-a,则a+b= -1或-5解:∵|a-b|=b-a,∴知b>a,∵|a|=3,|b|=2,∴a=-3,b=2或-2,当a=-3,b=2时,a+b=-1,当a=-3,b=-2时,a+b=-5,∴a+b=-1或-5,故答案为-1或-5.10.设m2+m-1=0,则m3+2m2+2010=2011∵m2+m-1=0,①∴①×m得,m3+m2-m=0,②∴①+②得,m3+2m2-1=0,即m3+2m2=1,则m3+2m2+2010=1+2010=2011.15.把边长为40厘米的正方形ABCD沿对角线AC截成两个三角形,在两个三角形内如图,一个啤酒瓶的高度为30cm,瓶中装有高度12cm的水,将瓶盖盖好后倒置,解:设瓶的底面积为Scm,则左图V水=12Scm3,右图V空=10Scm3,∵V瓶=V水+V空=22Scm3,∴V水:V瓶=6:11.如图,长方形ABCD 被分成8块,图中的数字是其中5块的面积数,则图中阴影部分的面积为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前言你喜欢数学吗?你渴望考试取得高分吗?你渴望你的数学成绩得到父母的肯定、同学的赞赏、老师的表扬吗?相信你知道学习数学最好的方法就是勤奋练习、熟能生巧。
相信本书能给你带来帮助。
本资料的编写以《新课程标准》为指南,以知识与技能、过程与方法为指导思想,通过基础、提高、综合的三级训练,每一套资料都是从近几年来新课程教学中和各地区重点中学的试题中提炼出来,既有基础题,也有能力题、综合题、发散题、探究题和开放题,及具代表性,形成有特色的培训资料。
所有资料对疑难问题点拨到位,是学生正确掌握解题方法、避开思维误区,切实能够提高学生的成绩。
学生在老师的辅导下,复习旧知识、巩固新知识,学生对知识的掌握和灵活运用能力、综合运用能力有很大的提高。
教学进度安排如下:七年级上册共有四章,分13次上完,第12次综合复习,第13次考试,第14次试卷简评和50分钟新课。
(每次内容都有120分钟的题量)第一次正数和负数、有理数、数轴、相反数、绝对值第二次有理数的加减法、有理数的乘法、除法及乘方运算第三次科学记数法、近似数、有效数字及有理数的章节复习第四次整式第五次整式的加减第六次一元一次方程和等式的性质第七次一元一次方程解法第八次希望杯全国联赛试题选讲第九次列方程解应用题第十次一元一次方程的章节复习第十一次图形的认识初步,角的度量与比较第十二次余角和补角第十三次复习四章知识(40分钟),期末考试(40分钟)第十四次列方程解应用题(40分钟新课)试卷讲评(35分钟)附录:2011年第二十二届希望杯数学竞赛第一试试题说明:1. 老师在教学的过程中,根据学生的具体情况和教学进度灵活的处理资料,要求讲清讲透,不能盲目的赶资料的进度。
2. 为了丰富内容,绝大部分资料按120分钟/次编排,老师可以根据学生实际从中选取80分钟内容讲授,余下的部分作为同学们自由练习用。
第一讲 正数和负数、有理数、数轴、相反数、绝对值一、课标要求 通过本节课的学习,你将对有理数有进一步的认识,更好地理解正数、负数、有理数的分类、数轴、相反数、倒数、绝对值的概念,并能运用相关的知识解决一些实际问题二、知识疏理 1、温故知新(1) 有理数的分类:⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零自然数负整数有理数正分数分数负分数 ⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数零负整数负有理数负分数 (2) 什么叫做数轴?数轴的三要素是 、 、(3) 什么叫做相反数?相反数具有什么性质?相反数等于它本身的数是: .(4) 什么叫做倒数?倒数具有什么性质?零 (添有或没有)倒数,倒数等于它本身的数是 .(5) 什么叫做绝对值?绝对值具有什么性质?如何去绝对值的符号?绝对值等于它本身的数是: . 几何意义表述:一个数的绝对值就是表示这个数的对应点离开原点的距离.(6) 有理数大小的比较 ①、所有的有理数都可以用数轴上的点表示,在数轴上表示的两个数,右边的点所表示的 数总是比左边的点所表示的数大. ②、正数大于0,负数小于0,正数大于一切负数,两个负数绝对值大的反而小2、教材解读 1、 521,76,106,14.3,732.1,34,5.2,0,1----+-中,正数有 ,负数有 。
2、 如果水位升高5m 时水位变化记作+5m ,那么水位下降3m 时水位变化记作 m ,水位不升不降时水位变化记作 m 。
3、 在同一个问题中,分别用正数与负数表示的量具有 的意义。
4、下列不是有理数的是( )A 、-3.14B 、0C 、37 D 、π5、既是分数又是正数的是( )A 、+2B 、-314C 、0D 、2.36.画出数轴并表示出下列有理数:.0,32,29,5.2,2,2,5.1---7、-(+5)表示 的相反数,即-(+5)= ;8、-2的相反数是 ;75的相反数是 ;0的相反数是 。
9、化简下列各数: -(-68)= -(+0.75)= -(-53)= -(+3.8)=+(-3)=+(+6)=10.写出下列各数的绝对值:0,100,112,25,9.3,8,6---11.在数轴上表示-5的点到原点的距离是 ,-5的绝对值是 。
12.若3=x ,则x= 。
三、典型例题解析1.2009年我国全年平均降水量比上年减少24㎜,2008年比上年增长8㎜,2007年比上年减少20㎜。
用正数和负数表示这三年我国全年平均降水量比上年的增长量。
2、某老师把某一小组五名同学的成绩简记为:+10,-5,0,+8,-3,又知道记为0的成绩表示90分,正数表示超过90分,则五名同学的平均成绩为多少分?3.把下列各数填入相应的大括号里:K 010010001.0,76,2009,260,14.3,618.0,31----,3.0,0,&π 正分数集合{ …}; 整数集合{ …}; 非正数集合{ …}; 有理数集合{ …} 无理数集合{ …}(1) 与原点距离等于4的点有几个?其表示的数是什么?(2) 在数轴上点A 表示的数是-3,与点A 相距两个单位的点表示的数是什么?阅读下面的文字,并回答问题1的相反数是-1,则1+(-1)=0;0的相反数是0,则0+0=0;2的相反数是-2,则2+(-2)=0,故a,b 互为相反数,则a+b=0;若a+b=0,则a,b 互为相反数。
说明了 ;相反 ,(用文字叙述)4.已知022=++-y x ,求x,y 的值。
5. 比较大小: (1)(2)(3) (4)。
四、实战演练1、甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为 这时甲乙两人相距 m.2、简答题:(1)-1和0之间还有负数吗?如有,请列举。
(2)-3和-1之间有负整数吗?-2和2之间有哪些整数?(3)有比-1大的负整数吗?有比1小的正整数吗?(4)写出三个大于-105小于-100的有理数。
3.数轴上与原点距离是5的点有 个,表示的数是 。
4.已知x 是整数,并且-3<x <4,那么在数轴上表示x 的所有可能的数值有 。
5.在数轴上,点A 、B 分别表示-5和2,则线段AB 的长度是 。
6.从数轴上表示-1的点出发,向左移动两个单位长度到点B ,则点B 表示的数是 ,再向右移动两个单位长度到达点C,则点C 表示的数是 。
7.数轴上的点A 表示-3,将点A 先向右移动7个单位长度,再向左移动5个单位长度,那么终点到原点的距离是 个单位长度。
8.在数轴上P 点表示2,现在将P 点向右移动两个单位长度后再向左移动5个单位长度,这时P 点必须向 移动 个单位到达表示-3的点。
9、-(-3)的相反数是 。
10、已知数轴上A 、B 表示的数互为相反数,并且两点间的距离是6,点A 在点B 的左边,则点A 、B 表示的数分别是 。
11、已知a 与b 互为相反数,b 与c 互为相反数,且c=--6,则a= 。
12、一个数a 的相反数是非负数,那么这个数a 与0的大小关系是a 0.13、数轴上A 点表示-3,B 、C 两点表示的数互为相反数,且点B 到点A 的距离是2,则点C 表示的数应该是 。
14.化简:=--5 ;=--)5( ;=+-)21( 。
-(-1) -(+2);218-73-; )3.0(-- 31-; 2-- -(-2)。
16.①若a a =,则a 与0的大小关系是a 0; ②若a a -=,则a 与0的大小关系是a 0。
17.已知a=-2,b=1,则b a -+得值为 。
四、竞赛之窗 逻辑推理1小张、小李、小王出生在北京、上海、武汉,但他们是歌唱演员、相声演员、舞蹈演员。
已知:(1)小王不是歌唱演员,小李不是相声演员。
(2)歌唱演员不是出生在上海。
(3)相声演员出生在北京。
(4)小李不是出生在武汉。
试分别确定他们的出生地和职业。
2布明汉镇有一家超市,一家百货商店和一家银行。
在我到达布明汉镇的那一天,那家银行正开着门营业。
①但一星期中没有一天超市、百货商店和银行全都开门营业。
②百货商店每星期开门营业四天。
③超市每星期开门营业五天。
④星期日和星期三三家单位都关门休息。
⑤在连续的三天当中:第一天百货商店休息;第二天银行休息;第三天超市休息。
⑥在又一连续的三天中:第一天银行休息;第二天超市休息;第三天百货商店休息。
那么我到达布明汉镇是一星期中的哪一天3 已知有两个族的人,其中宝宝族的永远说真话,而毛毛族的永远说假话,今遇见三人,问第一人是哪个族的,回答是“xyz ”,又问其余两人第一人说的是什么,第二人回答“他说他是宝宝族的”,第三人回答“他说他是毛毛族的”,请问第一个人回答的是什么,第二个人及第三人各属于什么族的。
&化成分数4.(1)将0.708&&&化成分数(2)将5.3155:甲、乙、丙、丁、戊5人各从图书馆借来一本小说,他们约定读完后互相交换,这5本书的厚度以及他们5人的阅读速度都差不多,因此5人总是同时交换书,经数次交换后,他们5人每人都读完了这5本书,现已知:(1)甲最后读的书是乙读的第二本书;(2)丙最后读的书是乙读的第四本书;(3)丙读的第二本书甲在一开始就读了;(4)丁最后读的书是丙读的第三本书;(5)乙读的第四本书是戊读的第三本书;(6)丁第三次读的是丙一开始读的那本书。
根据上述情况,你能说出丁第二次读的书是谁最先读的吗?分析:此类问题涉及人和事的多种情况,为了条理化处理信息,可用列表法解:设甲、乙、丙、丁、戊最后读的书的书名依次为A、B、C、D、E,根据题设条件可列出表1表1 表2第二讲有理数的加减法、有理数的乘法、除法及乘方运算一、课标要求通过本节课的学习,进一步巩固有理数的加减乘除和乘方的运算法则,熟练的进行五则混合运算。
二、知识疏理1、温故知新(1)有理数的加法法则:(2)有理数的减法法则:(4) 有理数的除法法则:(5) 有理数的乘方定义和法则:(6) 五则混合运算的运算顺序:2、教材解读 1、 计算: (1)15+(-22)(2)(-13)+(-8)(3)(-0.9)+1.51(4))32(21-+2、计算: 23+(-17)+6+(-22)3、计算: )1713(134)174()134(-++-+-4、(1)(-3)- =1 (2) -7=-2 (3) -5- =05、计算:(1))9()2(---(2)110-(3))8.4(6.5-- (4)435)214(--6.填空: (1)5×(-4)= ; (2)(-6)×4= ; (3)(-7)×(-1)= ;(4)(-5)×0 = ; (5)=-⨯)23(94 ; (6)=-⨯-)32()61( ; (7)(-3)×=-)31(7.填空:(1)=÷-9)27( ; (2))103()259(-÷-= ; (3))=-÷)7(0 ; (4)=÷-4325.0 .(1)2)3(-的底数是 ,指数是 ,结果是 ; (2)2)3(--的底数是 ,指数是 ,结果是 ; (3)33-的底数是 ,指数是 ,结果是 。