用反比例解决问题练习

合集下载

用正反比例解决团队合作问题的对比练习

用正反比例解决团队合作问题的对比练习

用正反比例解决团队合作问题的对比练习介绍团队合作是成功实现共同目标的关键因素之一。

然而,在团队合作中经常会遇到各种问题,例如沟通不畅、角色冲突和决策分歧等。

为了解决这些问题,一种可行的方法是使用正反比例。

本文将讨论如何利用正反比例方法来解决团队合作问题。

正比例策略正比例策略是指在团队合作中注重增加积极因素的比例,以促进团队关系的和谐与发展。

以下是一些可以采取的正比例策略:1. 建立积极的团队文化:鼓励成员之间相互尊重和支持,设立奖励和认可机制,以激励团队成员做出优异表现。

2. 提供明确的目标和角色:确保每个团队成员清楚了解其在团队中的职责和目标,以便更好地协同合作。

3. 加强沟通与协作:通过定期组织团队会议、使用协作工具和建立有效的沟通渠道,促进成员之间的信息共享和协作工作。

4. 建立透明的决策流程:确保团队成员都能参与决策过程,并了解决策的依据和结果,以减少决策分歧和不满情绪的产生。

反比例策略反比例策略是指在团队合作中减少负面因素的比例,以缓解团队合作中的问题和冲突。

以下是一些建议的反比例策略:1. 促进有效的冲突管理:鼓励团队成员积极表达意见和观点,但同时确保冲突能够以建设性的方式得到解决,避免冲突升级影响团队关系。

2. 提供必要的培训和支持:为团队成员提供相关技能培训和支持资源,以提升他们的能力和自信心,从而减少潜在的问题和障碍。

3. 高效的时间管理:确保团队成员有足够的时间来完成任务,并合理安排工作优先级,避免因时间紧迫导致的压力和冲突。

4. 建立有效的反馈机制:定期进行绩效评估和反馈,以帮助团队成员识别自己的问题并提供改进的机会,促进个人和团队的成长。

正反比例的综合运用通过正反比例的综合运用,团队合作问题得以更全面地解决和管理。

正比例策略可以增强团队合作的积极动力和合作意愿,而反比例策略可以帮助缓解潜在的问题和冲突。

在实际运用时,团队领导者应根据具体情况和团队特点合理运用正反比例策略。

专题11-3 反比例函数的实际应用(专项训练)-2023-2024学年八年级数(0002)

专题11-3 反比例函数的实际应用(专项训练)-2023-2024学年八年级数(0002)

专题11.3 反比例函数的实际应用(专项训练)1.(2022秋•荔湾区校级期末)一辆汽车准备从甲地开往乙地.若平均速度为80km/h,则需要5h到达.(1)写出汽车从甲地到乙地所用时间t与平均速度v之间的关系式;(2)如果需要8h到达,那么平均速度是多少?2.(2021秋•华州区期末)一艘轮船从相距200km的甲地驶往乙地,设轮船的航行时间为t(h),航行的平均速度为v(km/h).(1)求出v关于t的函数表达式;(2)若航行的平均速度为40km/h,则该轮船从甲地匀速行驶到乙地要多长时间?3.(2022秋•固安县期末)汽车从甲地开往乙地,记汽车行驶时间为t小时,平均速度为v千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v,t的一组对应值如表:v(千米/小时)7580859095 t(小时) 4.00 3.75 3.53 3.33 3.16(1)根据表中的数据,分析说明平均速度v(千米/小时)关于行驶时间t(小时)的函数关系,并求出其表达式:(2)汽车上午8:00从甲地出发,能否在上午10:30之前到达乙地?请说明理由.4.(2021秋•丰南区期末)在工程实施过程中,某工程队接受一项开挖水渠的工程,所需天数y(天)与每天完成工程量x米的函数关系图象如图所示,是双曲线的一部分.(1)请根据题意,求y与x之间的函数表达式;(2)若该工程队有2台挖掘机,每台挖掘机每天能够开挖水渠30米,问该工程队需要用多少天才能完成此项任务?(3)工程队在(2)的条件下工作5天后接到防汛紧急通知,最多再给5天时间完成全部任务,则最少还需调配几台挖掘机?5.(2022秋•河北期末)某标准游泳池的尺寸为长50米,宽25米,深3米,游泳池蓄水能游泳时,水深不低于1.8米.(1)该游泳池能游泳时,最低蓄水量是多少立方米?(2)游泳池的排水管每小时排水x立方米,那么将游泳池最低蓄水量排完用了y小时.①写出y与x的函数关系式;②当x=225时,求y的值;③如果增加排水管,使每小时排水量达到s立方米,则时间y会减小(选填“增大”或“减小”).④在②的情况下,如果最低蓄水量排完不超过5小时,每小时排水量最少增加多少立方米?6.(2022秋•岳阳县期末)公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即:阻力×阻力臂=动力×动力臂.小伟欲用撬根撬动一块石头,已知阻力和阻力臂分别是1200N和0.5m,则动力F(单位:N)关于动力臂l(单位:m)的函数解析式正确的是()A.F=B.F=C.F=D.F=7.(2022秋•和平区校级期末)在一个可以改变体积的密闭容器内装有一定质量的气体,当改变容器的体积时,气体的密度也会随之改变,密度ρ(kg/m3)是体积V(m3)的反比例函数,它的图象如图所示,当V=8m2时,气体的密度是()kg/m3.A.1B.2C.4D.88.(2022秋•丛台区校级期末)验光师测的一组关于近视眼镜的度数y与镜片的焦距x的数据,如表:y(单位:度)100200400500…x(单位:米) 1.000.500.250.20…则y关于x的函数关系式是.9.(2022秋•禅城区期末)某校科技小组在一次野外考察中遇到一片烂泥湿地.为了安全、迅速通过这片湿地,他们沿着前进路线铺了若干块木板,构筑成一条临时近道.每块木板对地面的压强p(Pa)是木板面积S(m2)的反比例函数,其图象如图所示.(1)请根据图象直接写出这反比例函数表达式和自变量取值范围;(2)如果要求压强不超过8000Pa,选用的木板的面积至少要多大?10.(2022秋•武功县期末)经研究发现,近视眼镜的度数y(度)与镜片焦距x(m)之间的关系满足反比例函数,已知小明的近视眼镜度数为200度,他的镜片焦距为0.5m.(1)求y与x之间的函数关系式;(2)已知王力的近视眼镜度数为400度,请你求出王力近视眼镜的镜片焦距.11.(2022秋•滁州期中)某电子产品的售价为8000元,购买该产品时可分期付款:前期付款3000元,后期每个月分别付相同的数额,则每个月付款额y (元)与付款月数x(x为正整数)之间的函数关系式是()A.B.C.D.12.(2023•未央区校级三模)某种商品上市之初采用了大量的广告宣传,其日销售量y与上市的天数x之间成正比例函数关系,当广告停止后,日销售量y 与上市的天数x之间成反比例函数关系(如图所示),现已知上市20天时,当日销售量为200件.(1)写出该商品上市以后日销售量y(件)与上市的天数x(天)之间的表达式.(2)当上市的天数为多少时,日销售量为100件?13.(2022秋•新化县校级期末)某长方体的体积为100cm3,长方体的高h(单位:cm)与底面积S的函数关系式为()A.h=B.h=C.h=100S D.h=100 14.(2022春•西陵区期中)一个皮球从高处落下后,会从地面弹起.下表记录了小球从不同高度落下时的弹跳高度,其中x表示落下高度,y表示弹跳高度.则符合表中数据的函数解析式是()落下高度x(cm)80100160200弹跳高度y(cm)405080100 A.y=x2B.y=2x C.D.y=x+25 15.(2021•饶平县校级模拟)如果等腰三角形的面积为10,底边长为x,底边上的高为y,则y与x的函数关系式为()A.y=B.y=C.y=D.y=16.(2022秋•桥西区校级期末)三角形的面积为5,底边长为x,底边上的高为y,则y与x的函数表达式为()A.B.C.D.17.(2023•武安市一模)初三年级甲、乙、丙、丁四个级部举行了知识竞赛,如图,平面直角坐标系中,x轴表示级部参赛人数,y轴表示竞赛成绩的优秀率(该级部优秀人数与该级部参加竞赛人数的比值),其中描述甲、丁两个级部情况的点恰好在同一个反比例函数的图象上,则这四个级部在这次知识竞赛中成绩优秀人数的多少正确的是()A.甲>乙>丙>丁B.丙>甲=丁>乙C.甲=丁>乙>丙D.乙>甲=丁>丙18.(2022春•秦淮区期末)小明要把一篇27000字的调查报告录入电脑,则其录入的时间t(分)与录入文字的平均速度v(字/分)之间的函数表达式应为t=(v>0).【答案】19.(2022秋•津南区期末)码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好8天时间.轮船到达目的地后开始卸货,平均卸货速度v(单位:吨/天)与卸货天数t之间的函数关系式为.20.(2022秋•岑溪市期中)一艘载满货物的轮船到达目的地后开始卸货,平均卸货速度y(吨/天)随卸货天数t(天)的变化而变化.已知y与t是反比例函数关系,图象如图所示:(1)求y与t之间的函数表达式;(2)由于遇到紧急情况,要求船上的货物不超过6天卸载完毕,那么平均每天至少要卸货多少吨?21.(2022秋•梅里斯区期末)某水果生产基地在气温较低时,用装有恒温系统的大棚栽培一种新品种水果,如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y(℃)与时间x(h)之间的函数关系,其中线段,表示恒温系统开启后阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)这个恒温系统设定的恒定温度为多少℃;(2)求全天的温度y与时间x之间的函数关系式;(3)若大棚内的温度低于10(℃)不利于新品种水果的生长,问这天内,相对有利于水果生长的时间共多少小时?22.(2022秋•西丰县期末)为了做好校园疫情防控工作,学校每周要对办公室和教室进行药物喷洒消毒,消毒药物在每间教室内空气中的浓度y(单位:mg/m3)与时间x(单位:min)的函数关系如图所示,在进行药物喷洒时y与x的函数关系式为y=2x,药物喷洒完成后y与x成反比例函数关系,两个函数图象的交点为A(5,n).(1)n的值为;(2)当x≥5时,y与x的反比例函数关系式为;(3)当教室空气中的药物浓度不高于1mg/m3时,对人体健康无危害,当教室药物喷洒完成45min后,学生能否进入教室?请通过计算说明.23.(2023•湘潭开学)近期,流感进入发病高峰期,某校为预防流感,对教室进行熏药消毒,测得药物燃烧后室内每立方米空气中的含药量y(mg)与时间x(min)之间的函数关系如图所示,已知药物燃烧时,满足y=2x;药物燃烧后,y与x成反比例,现测得药物m分钟燃毕,此时室内每立方米空气中的含药量为10mg.请根据图中所提供的信息,解决下列问题:(1)求m的值,并求当x>m时,y与x的函数表达式;(2)研究表明,当空气中每立方米的含药量不低于4毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,则此次消毒是否有效?请计算说明.24.(2022秋•桃城区校级期末)《城镇污水处理厂污染物排放标准》中硫化物的排放标准为 1.0mg/L.某污水处理厂在自查中发现,所排污水中硫化物浓度超标,因此立即整改,并开始实时监测.据监测,整改开始第60小时时,所排污水中硫化物的浓度为5mg/L;从第60小时开始,所排污水中硫化物的浓度y(mg/L)是监测时间x(小时)的反比例函数,其图象如图所示.(1)求y与x之间的函数关系式;(2)按规定所排污水中硫化物的浓度不超过0.8mg/L时,才能解除实时监测,此次整改实时监测的时间至少要多少小时?。

反比例解决问题

反比例解决问题
判断 1、如果积不变,一个因数和另一个因数成 反比例。
2、圆锥的体积一定,底面积和高成反比例。
3、菜籽千克数一定,出油率与菜油的千克 数成反比例。 4、一根电线长度一定,用去的长度和剩下 的长度成反比例。
这批书如果每包20 本,要捆18包.
如果每包30本, 要捆多少包?
这批书如果每包20 本,要捆18包.
这本书,每天读10页,30天可以读完。 如果每天多读5页,多少天可以读完?
每天看的页数×天数=总页数(一定) 成反比例
解:设χ天可以读完。
这本书,每天读10页,30天可以读完。 如果每天读15页,可以提前多少天读完?
每天看的页数×天数=总页数(一定) 成反比例
解:设χ天可以读完。
15χ = 10×30 χ =300÷15
如果要捆天烧3吨,可以 烧96天,由于改进炉灶,每天烧2.4 吨,这堆煤实际可以烧多少天? 解:设这堆煤实际可以烧x天。
3×96=2.4×x 得:x=120
-艘货轮每小时航行20千米,6小时可 以到达目的地。 如果要 5小时到达,每小时应航行多少千 每小时航行 15千米,几小时可以到达? 米?
χ = 20
提前: 30 -20=10(天) 答:可以提前10天读完。
1.给这个房间铺地板,用每块面积为36平方分 米的地板来铺就要40块。如果改用每块面积 16平方分米的地板来铺,至少需要多少块呢?
2.给这个房间铺地板,用每块边长为4分米 的地板来铺就要90块。如果改用每块边长 为6分米的地板来铺,至少需要多少块呢?
一辆汽车从甲地开往乙地,每小时行70 千米,5小时到达.如果每小时行87.5千米 . 可以提前几小时到达?
作业
原计划每天看50页,6天可以看完。实际每

部编新人教版小学六年级数学下册《用反比例解决问题》学霸作业及答案

部编新人教版小学六年级数学下册《用反比例解决问题》学霸作业及答案

用反比例解决问题第1关练速度1.下面每题中的两种量是否成比例?如果成比例,成什么比例?(1)装配一批电池,每天的装配数量与所需天数。

()(2)正方形的面积与边长。

()(3)水池的容积一定,水管每小时的注水量与所用的时间。

()(4)在一定的时间内,加工每个零件所用的时间与加工的零件数。

()(5)体积一定,圆柱的底面积和高。

()(6)书的总页数一定,看过的页数与未看过的页数。

()(7)每天修路200m,修路的天数与修完路的长度。

()2.填表。

一种圆锥,它的体积(V)一定。

(1)根据表中数据判断,平行四边形的底和高成什么比例?为什么?(2)如果小红画的平行四边形的底是7.2cm,那么高是多少厘米?4.同学们排队做广播操,如果每行站24人,正好站15行;如果每行站20人,可以站几行?(1)我会分析:本题中,每行人数和行数是两种相关联的量。

()是一定的。

每行人数和行数成()比例。

(2)我会解答:第2关练准确率5.下面是铺一间房屋的地面所用地砖的规格和块数的关系示意图。

(1)从图中可以看出,所需地砖的块数是随着()的变化而变化的,这两种量成()比例。

(2)当用每块面积为0.6m²的地砖铺地时,需要这种地砖()块。

(3)当用每块面积为()m²的地砖铺地时,需要这种地砖120块。

6.某工厂生产一种零件,现在生产每个零件所用的时间由技术革新前的8分钟减少到了5分钟,原来生产60个零件的时间现在能生产多少个?7.有一个班的同学到公园去划船,他们已提前租好了若干条船,现在如果增加一条船,正好每条船坐6人;如果减少一条船,正好每条船坐9人。

这个班共有多少人?8.甲、乙两人骑自行车从A、B两地同时相向而行,甲行完全程要6小时,甲、乙相遇时所行的路程比是3∶2,乙行完全程要多少时间?9.如图,平行四边形ABCD的周长为75cm,以BC为底时,高是14cm;以CD为底时,高是16cm。

那么平行四边形ABCD的面积是多少?10.制作一批零件,甲单独完成要8小时,已知甲、乙的工作效率比是4∶3,那么乙单独完成要多长时间?第3关练思维11.一架飞机所带的燃料最多可以用6小时,飞机去时顺风每小时可以飞行1500km,返回时逆风每小时可以飞行1200km。

2023年中考数学高频考点训练——反比例函数的实际运用

2023年中考数学高频考点训练——反比例函数的实际运用

2023年中考数学高频考点训练——反比例函数的实际运用一、综合题1.如图,在物理知识中,压强p 与受力面积S 成反比例,点()27.5,在该函数图象上.(1)试确定P 与S 之间的函数解析式;(2)求当4P Pa =时,S 是多少2m 2.教师办公室有一种可以自动加热的饮水机,该饮水机的工作程序是:放满水后接通电源,则自动开始加热,每分钟水温上升10C ︒,待加热到100C ︒,饮水机自动停止加热,水温开始下降.水温()C y ︒和通电时间()min x 成反比例函数关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温均为20C ︒,接通电源后,水温()C y ︒和通电时间()min x 之间的关系如图所示,回答下列问题:(1)分别求出当08x ≤≤和8x a <≤时,y 和x 之间的函数关系式;(2)求出图中a 的值;(3)李老师这天早上730:将饮水机电源打开,若他想在810:上课前喝到不低于40C ︒的开水,则他需要在什么时间段内接水?3.一辆客车从甲地出发前往乙地,平均速度v (千米/小时)与所用时间t (小时)的函数关系如图所示,其中60≤v≤120.(1)求出v与t的函数关系式;(2)若一辆货车同时从乙地出发前往甲地,客车比货车平均每小时多行驶20千米,3小时后两车相遇.①求两车的平均速度;②甲、乙两地间有两个加油站A、B,它们相距200千米,当客车进入B加油站时,货车恰好进入A加油站(两车加油的时间忽略不计),求甲地与B加油站的距离. 4.如图,帆船A和帆船B在太湖湖面上训练,O为湖面上的一个定点,教练船静候于O点,训练时要求A、B两船始终关于O点对称.以O为原点,建立如图所示的坐标系,x轴、y轴的正方向分别表示正东、正北方向.设A、B两船可近似看成在双曲线y=4x上运动,湖面风平浪静,双帆远影优美,训练中当教练船与A、B两船恰好在直线y=x上时,三船同时发现湖面上有一遇险的C船,此时教练船测得C船在东南45°方向上,A船测得AC与AB的夹角为60°,B船也同时测得C船的位置(假设C船位置不再改变,A、B、C三船可分别用A、B、C三点表示).(1)发现C船时,A、B、C三船所在位置的坐标分别为A(,)、B(,)和C(,);(2)发现C船,三船立即停止训练,并分别从A、O、B三点出发沿最短路线同时前往救援,设A、B两船的速度相等,教练船与A船的速度之比为3:4,问教练船是否最先赶到?请说明理由.5.某学校要修建一个占地面积为64平方米的矩形体育活动场地,四周要建上高为1米的围挡.学校准备了可以修建45米长的围挡材料(可以不用完).设矩形地面的边长AB x=米,BC y=米.(1)求y关于x的函数关系式(不写自变量的取值范围);(2)能否建造20AB=米的活动场地?请说明理由;(3)若矩形地面的造价为1千元/平方米,侧面围挡的造价为0.5千元/平方米,建好矩形场地的总费用为80.4千元,求出x 的值.(总费用=地面费用+围挡费用)6.通过实验研究发现:初中生在数学课上听课注意力指标随上课时间的变化而变化,上课开始时,学生兴趣激增,中间一段时间,学生的兴趣保持平稳状态,随后开始分散.学生注意力指标y 随时间x (分钟)变化的函数图象如图所示,当010x ≤<和1020x ≤<时,图象是线段:当2045x ≤≤时,图象是反比例函数的一部分.(1)求出点A 对应的指标值及AB 段所对应的函数解析式.(2)张老师在一节课上讲解一道数学综合题需要17分钟,他能否经过适当的安排,使学生在听这道综合题的讲解时,注意力指标都不低于36?请说明理由.7.某燃气公司计划在地下修建一个容积为V (V 为定值,单位:m 3)的圆柱形天然气储存室,储存室的底面积S (单位:m 2)与其深度d (单位:m )是反比例函数关系,它的图象如图所示.(1)求储存室的容积V 的值;(2)受地形条件限制,储存室的深度d 需要满足16≤d≤25,求储存室的底面积S 的取值范围.8.某种消毒药喷洒释放完毕开始计时,药物浓度()3mg/m y 与时间()x min 之间的关系如下:时间()x min 2412药物浓度()3mg/m y 1893(1)求y 关于x 的关系式;(2)当药物浓度不低于36mg/m 并且持续时间不少于5min 时消毒算有效,问这次消毒是否有效?.9.五一黄金周,小张一家自驾去某景点旅行.已知汽车油箱的容积为50L ,小张爸爸把油箱加满油后到了离加油站200km 的某景点,第二天沿原路返回.(1)油箱加满油后,求汽车行驶的总路程s (单位:km )与平均耗油量b(单位L/km)的函数关系式;(2)小张爸爸以平均每千米耗油0.1L 的速度驾驶到达目的地,返程时由于下雨,降低了车速,此时平均每千米的耗油量增加了一倍.如果小张爸爸始终以此速度行驶,不需要加油能否返回原加油站?如果不能,至少还需加多少油?10.码头工人每天往一艘轮船上装载货物,装载速度y (吨/天)与装完货物所需时间x (天)之间的函数关系如图.(1)求y 与x 之间的函数表达式,并写出自变量x 的取值范围;(2)由于遇到紧急情况,要求船上的货物不超过5天卸货完毕,那么平均每天至少要卸多少吨货物?11.工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料煅烧到800℃,然后停止煅烧进行锻造操作.经过8min 时,材料温度降为600℃.煅烧时,温度y(℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x(min)成反比例函数关系(如图,已知该材料初始温度是32℃.(1)分别求出材料煅烧和锻造时y 与x 的函数关系式,并写出自变量工的取值范围;(2)根据工艺要求,当材料温度低于480℃时,须停止操作,那么锻造的操作时间有多长?12.近年来随着科技的发展,药物制剂正朝着三效,即高效、速效、长效;以及三小,即毒性小、副作用小、剂量小的方向发展.缓释片是通过一些特殊的技术和手段,使药物在体内持续释放,从而使药物在体内能长时间的维持有效血药浓度,药物作用更稳定持久.某医药研究所研制了一种具有缓释功能的新药,在试验药效时发现:成人按规定剂量服用后,检测到从第0.5小时起开始起效,第2小时达到最高12微克/毫升,并维持这一最高值直至第4小时结束,接着开始衰退,血液中含药量y (微克)与时间x (小时)的函数关系如图,并发现衰退时y 与x 成反比例函数关系.(1)分别求①当0.5≤x≤2时,y 与x 之间的函数表达式为;②当x >4时,y 与x 之间的函数表达式为.(2)如果每毫升血液中含药量不低于4微克时有效,求一次服药后的有效时间是多少小时.13.通过实验研究发现:初中生在体育课上运动能力指标(后简称指标)随上课时间的变化而变化.上课开始时,学生随着运动,指标开始增加,中间一段时间,指标保持平稳状态,随后随着体力的消耗,指标开始下降.指标y 随时间x (分钟)变化的函数图象如图所示,当010x ≤<和1020x ≤<时,图象是线段;当2040x ≤≤时,图象是反比例函数的一部分.(1)求这个分段函数的表达式;(2)杨老师想在一节课上进行某项运动的教学需要18分钟,这项运动需要学生的运动能力指标不低于48才能达到较好的效果,他的教学设计能实现吗?请说明理由.14.市政府计划建设一项惠民工程,工程需要运送的土石方总量为105m 3,经招投标后,先锋运输公司承担了运送土石方的任务.(1)直接写出运输公司平均每天运送速度v (单位:m 3/天)与完成任务所需时间t (单位:天)之间的函数关系式;(2)如果每辆车每天平均运送102m 3的土石方,要求不超过50天完成任务,求运输公司平均每天至少安排多少辆车.15.某疫苗生产企业于2021年1月份开始技术改造,其月生产数量y (万支)与月份x 之间的变化如图所示,技术改造完成前是反比例函数图象的一部分,技术改造完成后是一次函数图象的一部分,请根据图中数据解答下列问题:(1)该企业4月份的生产数量为多少万支?(2)该企业有几个月的月生产数量不超过90万支?16.如图,在平面直角坐标系中,O 为坐标原点,点A 坐标为(3,0),四边形OABC为平行四边形,反比例函数y=kx (x >0)的图象经过点C ,与边AB 交于点D ,若,tan ∠AOC=1.(1)求反比例函数解析式;(2)点P(a,0)是x轴上一动点,求|PC-PD|最大时a的值;(3)连接CA,在反比例函数图象上是否存在点M,平面内是否存在点N,使得四边形CAMN为矩形,若存在,请直接写出点M的坐标;若不存在,请说明理由.17.某小组进行漂洗实验,每次漂洗的衣服量和添加洗衣粉量固定不变实验发现,当每次漂洗用水量v(升)一定时,衣服中残留的洗衣粉量y(克)与漂洗次数x(次)满足y=2.5kvx(k为常数),已知当使用5升水,漂洗1次后,衣服中残留洗衣粉2克.(1)求k的值.(2)如果每次用水5升,要求漂洗后残留的洗衣粉量小于0.8克,求至少漂洗多少次?(3)现将20升水等分成x次(x>1)漂洗,要使残留的洗衣粉量降到0.5克,求每次漂洗用水多少升?18.解题方法回顾:在求某边上的高之类问题时,常常利用同一个图形面积不变或等底等高面积不变或多个图形面积之和不变的原理来解决,称为“等积法”.解题方法应用:(1)已知:如图1,矩形ABCD中,AB=5,BC=12,对角线AC、BD相交于点O,点P是线段AD上任意一点,且PE⊥AC于点E,PF⊥BD于点F,求PE+PF的值.小陈同学想到了利用“等积法”解决本题,过程如下:(如图2)解:连接PO,∵矩形ABCD的两边AB=5,BC=12,∴60ABCD S AB BC =⋅=矩形,OA =OC ,OB =OD ,AC =BD ,∴13AC ==,∴1154AOD ABCD S S == 矩形,11322OA OD AC ===,∴()111222AOD AOP DOP S S S OA PE OD PF OA PE PF =+=⋅+⋅=+ ()1131522PE PF =⨯⨯+=,∴PE +PF =.(请你填上小陈计算的正确答案)(2)如图,正方形ABCD 的边长为2,点P 为边BC 上任意一点(可与B 点或C 点重合),分别过B 、C 、D 作射线AP 的垂线,垂足分别是B ',C ',D '.①设AP =x ,BB CC DD y ''++'=,求y 与x 的函数关系式,并求出x 取值范围;②直接写出y 的最大值为▲,最小值为▲.19.王老师驾驶小汽车从A 地行驶到B 地,行驶里程为480千米,设小汽车的行驶时间为t (单位:小时),行驶的平均速度为v (单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v 关于t 的函数表达式;(2)王老师上午8点驾驶小汽车从A 地出发.①王老师需要在当天13点至14点(含13点和14点)间到达B 地,求小汽车行驶的平均速度v 需达到的范围;②王老师能否在当天11点30分前到达B 地?说明理由.20.某一农家计划利用已有的一堵长为8m 的墙,用篱笆圈成一个面积为12m 2的矩形ABCD 花园,现在可用的篱笆总长为11m.(1)若设AB x =,BC y =.请写出y 关于x 的函数表达式;(2)若要使11m 的篱笆全部用完,能否围成面积为15m 2的花园?若能,请求出长和宽;若不能,请说明理由;(3)若要使11m 的篱笆全部用完,请写出y 关于x 的第二种函数解析式.请在坐标系中画出两个函数的图象,观察图象,满足条件的围法有几种?请说明理由.答案解析部分1.【答案】解:设kP S =,把()27.5,代入得27.515k =⨯=,∴15P S =,()2求当4P Pa =时,S 是多少2m 解:当4P =Pa 时,有154S =,∴2154S m =.(1)解:设kP S =,把()27.5,代入得27.515k =⨯=,∴15P S =,(2)解:当4P =Pa 时,有154S =,∴2154S m =.【解析】【分析】(1)设P=kS ,将(2,7.5)代入求解可得k ,进而可得P 与S 之间的函数解析式;(2)将P=4代入(1)中的关系式中求解就可得到S.2.【答案】(1)解:当08x ≤≤1y k x b =+,将(020),,(8100),的坐标分别代入1y k x b =+得1208100b k b =⎧⎨+=⎩,解得110k =,20b =.∴当08x ≤≤时,1020y x =+.当8x a <≤时,设2k y x =,将(8100),的坐标代入2k y x =,得2800k =.∴当8x a <≤时,800y x =.综上,当08x ≤≤时,1020y x =+;当8x a <≤时,800y x =;(2)解:将20y =代入800y x=,解得40x =,即40a =;(3)解:当40y =时,8002040x ==.∴要想喝到不低于40C ︒的开水,x 需满足820x ≤≤,即李老师要在7:38到7:50之间接水.【解析】【分析】(1)直接利用反比例函数解析式和一次函数解析式求法得出答案;(2)利用(1)中所求解析式,当y=20时,得出答案;(3)当y=40时,代入反比例函数解析式,结合水温的变化得出答案.3.【答案】(1)解:设函数关系式为v=kt,∵t=5,v=120,∴k=120×5=600,∴v 与t 的函数关系式为v=600t(5≤t≤10);(2)解:①依题意,得3(v+v-20)=600,解得v=110,经检验,v=110符合题意.当v=110时,v-20=90.答:客车和货车的平均速度分别为110千米/小时和90千米/小时;②当A 加油站在甲地和B 加油站之间时,110t-(600-90t )=200,解得t=4,此时110t=110×4=440;当B 加油站在甲地和A 加油站之间时,110t+200+90t=600,解得t=2,此时110t=110×2=220.答:甲地与B 加油站的距离为220或440千米.【解析】【分析】(1)利用时间t 与速度v 成反比例可以得到反比例函数的解析式;(2)①由客车的平均速度为每小时v 千米,得到货车的平均速度为每小时(v-20)千米,根据一辆客车从甲地出发前往乙地,一辆货车同时从乙地出发前往甲地,3小时后两车相遇列出方程,解方程即可;②分两种情况进行讨论:当A 加油站在甲地和B 加油站之间时;当B加油站在甲地和A加油站之间时;都可以根据甲、乙两地间有两个加油站A、B,它们相距200千米列出方程,解方程即可.4.【答案】(1)2;2;-2;-2;2;-2;(2)解:作AD⊥x轴于D,连AC、BC和OC,∵A(2,2),∴∠AOD=45°,AO=2,∵C在O的东南45°方向上,∴∠AOC=45°+45°=90°,∵AO=BO,∴AC=BC,又∵∠BAC=60°,∴△ABC为正三角形,∴AC=BC=AB=2AO=4,∴2OC=⋅=,由条件设教练船的速度为3m,A、B两船的速度都为4m,则教练船所用时间为263m,A、B两船所用时间均为424m=2m,∵263m=243m,2m=183m,∴3m>m;∴教练船没有最先赶到.【解析】【解答】解:(1)CE ⊥x 轴于E ,解方程组4y x y x =⎧⎪⎨=⎪⎩得1122x y =⎧⎨=⎩,2222x y =-⎧⎨=-⎩∴A (2,2),B (-2,-2),在等边△ABC 中可求OA=2,则OC=OA=2,在Rt △OCE中,sin 45OE CE OC ==⋅︒=,∴C (2,-2);【分析】(1)A 、B 两点直线y=x 上和双曲线y=4x,列方程组可求A 、B 两点坐标,在依题意判断△ABC 为等边三角形,OA=2,则OC=OA=2,过C 点作x 轴的垂线CE ,垂足为E ,利用OC 在第四象限的角平分线上求OE ,CE ,确定C 点坐标;(2)分别求出AC 、OC 的长,分别表示教练船与A 、B 两船的速度与时间,比较时间的大小即可.5.【答案】(1)解:∵矩形体育场占地面积为64平方米,∴64y x=.(2)解:不能.理由:把20x =代入64y x=,得3.2y =.周长为2(20 3.2)46.445+=>.∴不能建造20AB =米的活动场地.(3)解:活动场地造价为646410.5280.4x x ⎛⎫⨯+⨯+= ⎪⎝⎭.整理得216.4640x x -+=,解得110x =,2 6.4x =.经检验,110x =,2 6.4x =均为原分式方程的解,且符合题意.当110x =时,总周长为64232.845x x ⎛⎫+=≤ ⎪⎝⎭;当2 6.4x =时,总周长为64232.845x x ⎛⎫+=≤ ⎪⎝⎭.综上可得,x 的值为10或6.4.【解析】【分析】(1)根据矩形的面积是64平方米,即可得到xy=64,即64y x=;(2)把x=12代入干壁立函数解析式求出y ,然后计算周长是否超过45即可得到答案;(3)根据题意列出总费用关于x 的方程求解,然后检验周长是否超过45即可得到答案。

人教版生活中的反比例关系

人教版生活中的反比例关系

归纳:用函数观点解实际问题: ①搞清题目中的基本数量关系,将实际问题抽象成数学问 题,看看各变量间应满足什么样的关系式(包括已学过的基本公 式),这一步很重要; ②分清自变量和函数,并注意自变量的取值范围.
2.常见的反比例函数关系 (1)已知压力 F 一定,则压强 p 与受力面积 S 之间的函数关 系式为_____p_=__FS____,p 是 S 的__反__比__例__函数.
解:(1)由已知得 vt=300, ∴t 与 v 的函数关系式为 t=30v0. (2)依题意,得30v0≤2,解得 v≥150 吨/时,∴物资要在 2 小时之内运到江边,则运输速度至少为 150 吨/时.
大家有疑问的,可以询问和交流可互相讨论下,但要小声点【跟踪训练】
1.某闭合电路中,电源的电压为定值,电流 I(单位:A) 与电阻 R(单位:Ω)成反比例.如图 1 表示的是该电路中电
流 I 与电阻 R 之间函数关系的图象,则用电阻 R 表示电流 I 的
函数解析式为( C )
A.I=R2
B.I=R3
C.I=R6
图1
D.I=-R6
2.矩形面积为 4,它的长 y 与宽 x 之间的函数关系用图象 大致可表示为( B )
3.人的视觉机能受运动速度的影响很大,行驶中司机在驾 驶室内观察前方物体时是动态的,车速增加,视野变窄,当车 速为 50 km/h 时,视野为 80 度.如果视野 f(单位:度)是车速 v(单位:km/h)的反比例函数.求 f,v 之间的关系式,并计算当 车速为 100 km/h 时视野的度数.
=_____P_____.
知识点 反比例函数的实际应用(重难点) 【例题】 某运输队要运 300 吨物资到江边防洪. (1)运输时间 t(单位:小时)与运输速度 v(单位:吨/时)有怎 样的函数关系? (2)由于情况紧急,防洪指挥部命令物资要在 2 小时之内运 到江边,则运输速度至少为多少?

用反比例解决问题(共9篇)

用反比例解决问题(共9篇)

用反比例解决问题(共9篇)以下是网友分享的关于用反比例解决问题的资料9篇,希望对您有所帮助,就爱阅读感谢您的支持。

《用反比例解决问题》练习篇1新课标人教版六年级下《用反比例解决问题》练习1.先判断x和y成什么比例,再填一填。

(1)x和y成()比例x 3 6 12 24 48y 8 16(2)x和y成()比例x 3 6 12 24 48y 16 82.判断。

(1)如果积不变,一个因数和另一个因数成反比例。

()(2)路程一定,速度和时间成反比例。

()(3)菜籽千克数一定,出油率与菜油的千克数成反比例。

( )(4)公顷数一定,总产量与每公顷产量成反比例。

()3.用比例的方法解答下面各题。

(1)有一堆煤,每天烧5吨,可以烧180天。

如果每天烧4.5吨,可以烧多少天?(2)街东村修一条水渠,原计划每天修32米,65天能完成;但是实际50天就完成了任务,实际平均每天修多少米?(3)同学们做操,每行站20人,正好站18行,如果每行多站4人,要站多少行?(4)一捆铁丝重68千克,剪下其中的2.5米,刚好重10千克,这捆铁丝全长多少米?(5)有一间大客厅,用面积9平方分米的方砖铺地,需要1200块,如果改用边长40厘米的方砖铺地,需要多少块?用反比例函数解决问题篇211.3用反比例函数解决问题(1)例1.小明将一篇24000字的社会调查报告录入电脑.打印成文.(1)如果小明以每分种120字的速度录入.他需要(2) 完成录入的时间t(分) 与录入文字的速度v(字/分)有怎样的函数关系?(3)小明希望能在3h内完成录入任务.那么他每分钟至少应录入多少个字?例2某厂计划建造一个容积为4 10m的长方形蓄水池.(1)蓄水池的底面积S与其深度h(m)有怎样的函数关系?(2)如果蓄水池的深度设计为5m.那么蓄水池的底面积应为多少平方米?(3)由于绿化以及辅助用地的需要.经过实地测量.蓄水池的长与宽最多只能设计为100m和60m.那么蓄水池的深度至少应为多少米(精确到0.01)?43例3. 某报报道:一村民在清理鱼塘时被困淤泥中,消防队员以门板作船,泥沼中救人.(1)写出压强和受力面积及压力的函数关系。

用正反比例解决问题

用正反比例解决问题

用比例解决问题1、小兰的身高1.5m,她的影子长是2 .4m。

如果同一时间,同一地点测得一棵树的影子长4 m,这棵树有多高?2、一间教室,用面积是0.16平方米的方砖铺地,需要275块,如果用面积是0.25平方米的方砖铺地,需要方砖多少块?3、某工程队修一条水渠,每天工作6小时12天可以完成。

如果工作效率不变,每天工作8小时,多少天可以完成任务?4、一种农药水是用药和水按1:100配成的,要配制这种农药水8080千克,需要药粉多少千克?5、盖一幢职工宿舍。

计划使用6米长的水管240根。

后来改用8米长的水管,共需要多少根?6、做一批零件,如果每天做200个,15天可以做完,现在要在12天完成,平均每天做多少个?7、甲地到乙地的公路长392千米。

一辆汽车3小时行了168千米。

照这样计算,行完全程还需要几小时?8、一台碾米机5小时碾米2000千克,照这样计算,6.5小时可以碾米多少千克?要碾米3.6吨需要几小时?9、金光电子厂要生产一批零件,原计划每天生产180个,12天完成。

实际的生产效率是原计划的120%,实际多少天可以完成?10、一辆汽车4小时行140千米,照这样计算,7小时行多少千米?行驶315千米需要几小时?11、铁路工人修铁路,用每根长9米的新铁轨替换原来每根6米的旧铁轨,共换下旧铁轨240根,换上的新铁轨有多少根?12、水泥厂5天生产水泥320吨。

照这样计算,要生产6600吨水泥,需要多少天完成?13、某工程队修一条路,12天共修780米,还剩下325米没有修。

照这样速度,修完这条公路,共需要多少天?14、50千克花生仁可以榨油19千克。

要榨200千克花生油需多少千克花生仁?1的平面图上,量得一块长方形操场的长是24厘米,宽是18厘米,这块长15、在1000方形操场的实际面积是多少?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、修一条公路,每天70m,18天可挖完;如果要15 天完成,每天要修多少米?
3、加工一批零件,如果每天做1200个,8天可以完成; 如果每天加工1500个,几天可以完成?
反思:用反比例解这类问题的过 程可以归纳为以下几个步骤:
(1)找出一个定量,建立相关联的两 个量与这个定量的关系,判断题中的两种 量是否成反比例关系; (2)设要求的问题为x; (3)列出相对应的两个数的乘积用来 表示这个定量,组成反比例式; (4)解比例,验算,作答。
3、施工队安装下水道,每天安装48m,15天完成; 如果要提前3天天完成,每天要安装多少米? 4、一堆煤,原计划每天烧12吨,可以烧45天;实 际每天比计划节约25%,实际烧了多少天?
13、一个圆柱形玻璃杯,底面半径4cm,高12cm, 把它装满水,再倒入一个底面半径为10cm的容器中, 这时水的高度是多少cm?
作业
1、装订一批书,计划每天装订1800本,完成, 实际每天装订2000本,实际可以提前几天可以完成?
2、一间房子要用方砖铺地。用面积是9平方分米的 方砖,需要96块。如果改用面积是4平方分米的方 砖,要用多少块?
10、一种盐水有600克,测得含盐率是8%,蒸发掉 100克水后,这时的含盐率是多少?
11、一辆汽车从甲地开往乙地,每小时行60千米,3 小时可到达。返回时速度提高20%,多少小时可以 返回甲地?
12、筑路队铺一段高速公路,原计划每天铺0.32千米。 实际开工后每天比原计划多铺25%,结果120天铺完。 原计划多少天铺完?
某农具厂要生产一批农具,原计划每天生产80件,25 天完成,由于改进技术,实际每天生产100件,实际 多少天完成任务? 题中 是定量, 和 相关联的两个量,它们的关系是: , 所以, 和 成 比例。 自己解答。 是
1、一列客车从甲到乙,每小时行驶70km,6小时到 达;如果每小时行75千米,几小时到达?
4、小华读一本故事书,如果每天读30页,20天能读 完;如果每天多读10页,几天可以读完?
5、服装厂加工一批服装,计划每天做200件,45天完 成;如果每天做300件,这样可以提前几天完成?
6、王师傅加工一批零件,如果每天工作8小时,18 天可以完成。实际每天加班1小时,这样可以提前几 天完成任务?
7、机器上有两个互相咬合的齿轮,主动轮有50个 齿,每分钟转90转;从动轮有30个齿,每分钟转 多少转?
8、一间空房间的地面,如果用边长4dm的方砖铺,需 要400块;如果用边长5dm的方砖铺,最少要多少块?
9、一辆汽车从甲地往乙地送货,去时每小时行驶 44km,用6小时到达;返回时缩短了半小时,这 辆汽车返回时每小时行多少千米?
相关文档
最新文档