微电子封装材料-钨铜热沉封装微电子材料的特点及用途

微电子封装材料-钨铜热沉封装微电子材料的特点及用途
微电子封装材料-钨铜热沉封装微电子材料的特点及用途

微电子封装材料作为电子元器件的一个重要组成部分,为电子元器件性能的提高和正常工作提供扎实的基础。而电子元器件是信息产业的重要基础,尤以微电子为核心技术,其中封装、设计及圆片制造已成为微电子技术的三个有机组成部分。在半导体微波功率器件的封装中,W/Cu、Al/SiC等电子封装材料具有优良的热导率和可调节的热膨胀系数(CTE),目前是国内外大功率电子元器件首选的封装材料,并能与Beo、Al203陶瓷相匹配,广泛用于微波、通信、射频、航空航天、电力电子、大功率半导体激光器、医疗等行业。高密度封装已成为电子技术的发展方向,随着硅芯片等元件集成度的提高,单位面积上的功率负荷越来越大,热导率和热膨胀系数(CTE)匹配等方面的考虑也就越来越重要。W/Cu、Al/SiC材料不仅热导率高,而且热膨胀系数与硅等半导体材料匹配的很好,加上优异的耐高温性能、良好的可加工性能、适中的密度和绝佳的气密性,应用范围十分的广泛。

江苏鼎启科技有限公司生产的钨铜热沉封装微电子材料是一种钨和铜的复合材料,它既具有钨的低膨胀特性,又具有铜的高导热特性,尤其可贵的是,其热膨胀系数和导热导电性能可以通过调整材料的成分而加以设计(用专业术语说,其性能是可剪裁的),因而给该材料的应用带来了极大的方便。我公司生产的钨铜热沉封装微电子材料可以与如下材料形成良好的热膨胀匹配:

(1) 陶瓷材料:Al2O3(A-90、A-95、A-99) 、BeO(B-95、B-99) 、AlN等;

(2) 半导体材料: Si、GaAs、SiGe、SiC、InGaP、InGaAs、InAlGaAs、AlGaInP、和AlGaAs等;

(3) 金属材料:可伐合金(4J29) 、42合金等。

以下简单介绍我公司钨铜(WuCu)热沉封装微电子材料的特点及其性能:

通过调整钨成分的比例,其热膨胀系数可以与其他材料形成良好的热膨胀比例,如各类陶瓷(氧化铝Al2O3,氧化铍(BeO)、金属材料(可伐合金Kovar)和半导体材料(碳化硅Sic)等等。

1、钨铜(WuCu)热沉封装微电子材料产品特色:

◇未加Fe、Co等烧结活化元素,得以保持高的导热性能

◇可提供半成品或表面镀Ni/Au的成品

◇优异的气密性

◇良好的尺寸控制、表面光洁度和平整度

◇售前\售中\售后全过程技术服务

2、钨铜(WuCu)热沉封装微电子材料技术参数:

W85钨铜

W85钨铜 钨是理论上最好的金属电极材料。它的强度、密度、硬度都很高,熔点接近3400℃,因此在电火花和焊接加工过程中,钨电极实际损耗很小,但是纯钨作电极有两个困难:1.极难加工2.价格昂贵,所以利用纯铜的可塑性、高导电等优点,制成复合材料,就成了电极中的珍品--钨铜电极。 我司钨铜选用精细高纯钨粉、高纯铜粉,经静压成型、高温烧结、溶渗铜的一流工艺精制而成。针对硬质合金钨钢,高碳钢,淬火模具钢采用普通铜公电极损工大,精度低,加工慢的缺点,利用钨铜高导电,熔点高、热膨胀小的优点进行电火花放电加工,极大的改善了加工速度和精度。钨铜不仅导电性能好,软化温度高,而且耐电弧腐蚀,高耐磨性,使用寿命长,修正电极的频率低,在提高生产力效率的基础上还节省了加工工具的成本及维修费用,所以是理想的高级焊接材料。 W85钨铜的用途: ★高级电火花电极材料:针对钨钢(硬质合金)、高速钢、耐高温超硬合金制作的模具需电蚀加工时,普通电极损耗大,速度慢,而钨铜高的电腐蚀速度,低的损耗率,精确的电极形状,优良的加工性能,能保证被加工件的精确度大大提高。 ★高级焊接电极材料:综合了钨和铜的优点,耐高温、耐电弧烧蚀、抗熔焊和低截流、强度高、比重大、导电导热性好,易于切削加工,并具有发汗冷却和抗粘附等特性,经常用来做有一定耐磨性,抗高温的点焊、碰焊、对焊、凸焊电极。 ★电子领域的应用材料:钨铜具有强度高、导电导热性能好及热膨胀系数小等优点,所以作为一种新型的电子封装材料受到了电子工程师的青睐,被广泛的应用于功率电子器件,如整流管、晶闸管、功率模块、激光二极管、微波管等。在微电子器件中,如计算机CPU、DSP芯片等。钨铜在微波通讯、自动控制、电源转换、航空航天等领域发挥着重要的作用。目前,钨铜主要用在大功率微波管、大功率激光二极管以及某些大功率集成电路模块的热沉。★电触头材料:钨铜电触头在高压开关上已经使用多年,尤其以高压大电流断路器上使用量较大。如高压、无油、少油断路器、SF6断路器、隔离开关、重任务接触器等。 ★医疗设备和高比重材料:根据钨铜的特点,在医疗行业中用作防X射线和G射线的屏蔽材料。在民用工业中用作高比重合金配重,如手机振子、自动机械手表的重垂体、高尔夫球杆的杆体、飞镖等。 W85钨铜合金用途: 1.电阻焊电极: 综合了钨和铜的优点,耐高温、耐电弧烧蚀、强度高、比重大、导电、导热性好,易于切削加工,并具有发汗泠却等特性,由于具有钨的高硬度、高熔点、抗粘附的特点,经常用来做有一定耐磨性、抗高温的凸焊、对焊电极。 2.高压放电管电极: 高压真空放电管在工作时,触头材料会在零点几秒的时间内温度升高几千摄氏度,而钨铜的抗烧蚀性能、高韧性,良好的导电、导热性能给放电管稳定的工作提供必要的条件。 3、航天用高性能材料: 钨铜材料具有高密度、发汗冷却性能、高温强度高及耐冲刷烧蚀等性能,在航天工业中用作导弹、火箭弹的喷管喉衬,燃气舵的组件、空气舵、头罩及配重等。 4、真空触头材料: 触头材料必须有非常好的机械加工性能和抗热震性,由于接触和开断时打弧,触头材料会在零点几秒的时间内温度升高几千摄氏度。我公司生产的W-Cu触头材料由于其优异的物

微电子封装

晶圆:由普通硅砂熔炼提纯拉制成硅柱后切成的单晶硅薄片 微电子封装技术特点: 1:向高密度及高I/O引脚数发展,引脚由四边引出趋向面阵引出发展 2:向表面组装示封装(SMP)发展,以适应表面贴装(SMT)技术及生产要求 3:向高频率及大功率封装发展 4:从陶瓷封装向塑料封装发展 5:从单芯片封装(SCP)向多芯片封装(MCP)发展 6:从只注重发展IC芯片到先发展封装技术再发展IC芯片技术技术 微电子封装的定义:是指用某种材料座位外壳安防、固定和密封半导体继承电路芯片,并用导体做引脚将芯片上的接点引出外壳 狭义的电子封装技术定义:是指利用膜技术及微细连接技术,将半导体元器件及其他构成要素在框架或基板上布置、固定及连接,引出接线端子,并通过可塑性绝缘介质灌封固定,构成整体立体结构的工艺技术。(最基本的) 广义的电子封装技术定义:是指将半导体和电子元器件所具有的电子的、物理的功能,转变为能适用于设备或系统的形式,并使之为人类社会服务的科学与技术。(功能性的) 微电子封装的功能: 1:提供机械支撑及环境保护; 2:提供电流通路; 3:提供信号的输入和输出通路; 4:提供热通路。 微电子封装的要点: 1:电源分配; 2:信号分配; 3:机械支撑; 4:散热通道; 5:环境保护。 零级封装:是指半导体基片上的集成电路元件、器件、线路;更确切地应该叫未加封装的裸芯片。 一级封装:是指采用合适的材料(金属、陶瓷或塑料)将一个或多个集成电路芯片及它们的组合进行封装,同时在芯片的焊区与封装的外引脚间用引线键合(wire bonding,WB)、载带自动焊(tape automated bonding,TAB)、倒装片键合(flip chip bonding,FCB)三种互联技术连接,使其成为具有实际功能的电子元器件或组件。 二级封装技术:实际上是一种多芯片和多元件的组装,即各种以及封装后的集成电路芯片、微电子产品、以及何种类型元器件一同安装在印刷电路板或其他基板上。

钨铜

钨铜-钨铜合金-钨铜板-钨铜棒-铜钨合金上海铭缘实业有限公司唐生138******** 钨、铜元素为主组成的一种两相结构假合金,是金属基复合材料。由于金属铜和钨物性差异较大,因此不能采用熔铸法进行生产,现在一般采用粉末合金技术进行获得。采用粉末冶金方法制取钨铜合金的工艺流程为配料混合--压制成型--烧结溶渗--冷加工。 产品形状上的注意事项】 钨铜产品铣床整形加工、车床整形加工、磨床加工后的产品外观不相同,属正常想象。 标准尺寸库存: 钨铜棒:(单位:毫米) D2x200 D3x200 D4x200 D5x200 D6x200 D7x200 D8x200 D9x200 D10x200 D12x200 D14x200 D15x200 D16x200 D18x200 D20x200 D21x200 D22x200 D25x200 D30x200 D35x200 D40x200 D45x200 D50x200 D60x200 * 钨铜棒最大长度为300毫米。 钨铜板:(单位:毫米) 厚度宽度长度 2-50 100 100 100 200 200 300 300 400 【钨铜加工注意事项】 1.切削加工 钨铜合金在制作尖角薄壁时可能会由于撞击或过大的加工负荷力而发生欠缺。钨铜银钨合金 产品在进行通孔钻削时 请注意在即将通孔时进给负荷力,避免发生加工欠缺。 钨铜合金无磁性,请在作业之前确认产品已固定牢固。 2.放电加工、线切割加工 钨铜产品放电以及线切割速度相对缓慢,属正常现象。 钨和铜组成的合金。常用合金的含铜量为10%~50%。合金用粉末冶金方法制取,具有很好的导电导热性,较好的高温强度和一定的塑性。在很高的温度下,如3000℃以上,合金中的铜被液化蒸发,大量吸收热量,降低材料表面温度。所以这类材料也称为金属发汗材料。钨铜合金有较广泛的用途,主要是用来制造抗电弧烧蚀的高压电器开关的触头和火箭喷管喉衬、尾舵等高温构件,也用作电加工的电极、高温模具以及其他要求导电导热性能和高温使

微电子封装必备答案

微电子封装答案 微电子封装 第一章绪论 1、微电子封装技术的发展特点是什么?发展趋势怎样?(P8、9页) 答:特点: (1)微电子封装向高密度和高I/O引脚数发展,引脚由四边引出向面阵排列发展。 (2)微电子封装向表面安装式封装发展,以适合表面安装技术。 (3)从陶瓷封装向塑料封装发展。 (4)从注重发展IC芯片向先发展后道封装再发展芯片转移。 发展趋势: (1)微电子封装具有的I/O引脚数将更多。 (2)微电子封装应具有更高的电性能和热性能。 (3)微电子封装将更轻、更薄、更小。 (4)微电子封装将更便于安装、使用和返修。 (5)微电子封装的可靠性会更高。 (6)微电子封装的性能价格比会更高,而成本却更低,达到物美价廉。 2、微电子封装可以分为哪三个层次(级别)?并简单说明其内容。(P15~18页)答:(1)一级微电子封装技术 把IC芯片封装起来,同时用芯片互连技术连接起来,成为电子元器件或组件。 (2)二级微电子封装技术 这一级封装技术实际上是组装。将上一级各种类型的电子元器件安装到基板上。 (3)三级微电子封装技术 由二级组装的各个插板安装在一个更大的母板上构成,是一种立体组装技术。 3、微电子封装有哪些功能?(P19页) 答:1、电源分配2、信号分配3、散热通道4、机械支撑5、环境保护 4、芯片粘接方法分为哪几类?粘接的介质有何不同(成分)?。(P12页) 答:(1)Au-Si合金共熔法(共晶型) 成分:芯片背面淀积Au层,基板上也要有金属化层(一般为Au或Pd-Ag)。 (2)Pb-Sn合金片焊接法(点锡型) 成分:芯片背面用Au层或Ni层均可,基板导体除Au、Pd-Ag外,也可用Cu (3)导电胶粘接法(点浆型) 成分:导电胶(含银而具有良好导热、导电性能的环氧树脂。) (4)有机树脂基粘接法(点胶型) 成分:有机树脂基(低应力且要必须去除α粒子) 5、简述共晶型芯片固晶机(粘片机)主要组成部分及其功能。 答:系统组成部分: 1 机械传动系统 2 运动控制系统 3 图像识别(PR)系统 4 气动/真空系统 5 温控系统 6、和共晶型相比,点浆型芯片固晶机(粘片机)在各组成部分及其功能的主要不同在哪里?答: 名词解释:取晶、固晶、焊线、塑封、冲筋、点胶

玻璃包装材料讲课教案

玻璃包装材料

玻璃包装材料 (4) 玻璃的原料 (4) 玻璃的结构 (7) 玻璃的主要性能 (8) 玻璃的热性能 (8) ⑴热膨胀性 (8) ⑵影响玻璃导热性的因素 (9) 热冲击强度 (10) ⑴热冲击强度定义 (10) ⑵壁厚对热冲击强度的影响 (10) 力学性能 (11) ⑴玻璃的强度 (11) ⑵玻璃容器的包装强度 (13) ⑶影响玻璃瓶强度的主要因素 (15) 玻璃包装容器的制造 (18) ⑴吹制法 (18) ⑵拉制法 (18)

玻璃包装材料 玻璃由无机材料熔融冷却而成。我国关于玻璃的定义为:玻璃是介于晶态和液态之间的一种特殊状态,由熔融体过冷而得,其内能和构形熵高于相应的晶态,其结构为短程有序和长程无序,型脆透明。 作为包装材料,玻璃具有一系列非常可贵的特性: ⑴透明; ⑵坚硬耐压; ⑶优良的阻隔、耐蚀、耐热和光学性能; ⑷成型方法多,成型包装容器形状、大小各异; ⑸原料来源丰富,价格相对较低。 ⑹可回收利用。 玻璃材料的不足主要 ⑴耐冲击性能低,易碎; ⑵比重高,2.2~2.5; ⑶熔制玻璃时能耗较高。 玻璃一直是食品工业、化工工业、文教用品、医药卫生等行业的常用包装材料。 玻璃的原料 主要原料 各种氧化物原料,对玻璃的结构、物理和化学性质起主要作用。

辅助原料: 改善玻璃性能的添加料。 按氧化物的性质分: ⑴酸性氧化物原料 ⑵碱金属氧化物原料 ⑶碱土金属氧化物原料 ⑷二价、多价金属氧化物原料 按氧化物在玻璃结构中的作用分: ⑴玻璃形成体(网络形成体)氧化物原料:单独形成玻璃。 ⑵玻璃中间体氧化物原料:在一定条件下形成玻璃。 ⑶玻璃改变体(网络体外)氧化物原料:改变玻璃性质。 玻璃形成体氧化物原料 ⑴玻璃形成氧化物原料 二氧化硅(2SiO )和氧化硼(32O B ) 硅砂(石英砂) 组成:由石英岩、长石和其他岩石分解而成,主要成分为二氧化硅(2SiO )。此外,还含有32O Al 、CaO 、MgO 、O Na 2、O K 2、32O Fe 等 少量杂质。 32O Fe 有害,使玻璃着色,降低玻璃的透明度。

钨铜的特点及用途

本文摘自再生资源回收-变宝网(https://www.360docs.net/doc/9a12846209.html,) 钨铜的特点及用途 钨铜就是钨和铜组成的合金,常用合金的含铜量为10%~50%。合金用粉末冶金方法制取,具有很好的导电导热性,较好的高温强度和一定的塑性。在很高的温度下,如3000℃以上,合金中的铜被液化蒸发,大量吸收热量,降低材料表面温度。所以这类材料也称为金属发汗材料。 钨铜合金有较广泛的用途,主要是用来制造抗电弧烧蚀的高压电器开关的触头和火箭喷管喉衬、尾舵等高温构件,也用作电加工的电极、高温模具以及其他要求导电导热性能和高温使用的场合。 钨铜选用精细钨、铜粉末,经一流浸透烧结工艺精制而成,可承受近2000度高温和高应力,具有高熔点、高硬度、抗烧损和良好抗粘附性,电蚀产品表面光洁度高,精度极高,损耗低。 钨铜广泛用作高压,超液压开关和断路器的触头,保护环,用于电热墩粗砧块材料,自动埋弧焊导电咀,等离子切割机喷嘴,电焊机,对焊机的焊头,滚焊轮,封气卯电极和点火花电极,点焊,碰焊材料等。

钨铜物理性能 钨铜合金综合了金属钨和铜的优点,其中钨熔点高(钨熔点为3410℃,铜的熔点1080℃),密度大(钨密度为19.34g/cm,铜的密度为8.89/cm3);铜导电导热性能优越,钨铜合金(成分一般范围为WCu7~WCu50)微观组织均匀、耐高温、强度高、耐电弧烧蚀、密度大;导电、导热性能适中,广泛应用于军用耐高温材料、高压开关用电工合金、电加工电极、微电子材料,做为零部件和元器件广泛应用于航天、航空、电子、电力、冶金、机械、体育器材等行业。 钨铜特点 1、电子封装材料:既有钨的低膨胀特性,又具有铜的高导热特性,其热膨胀系数和导电导热性可以通过调整材料的成分而加以改变。 2、高压放电管电极:高压真空放电管在工作时,触头材料会在零点几秒的的时间内温度升高几千摄氏度。而钨铜高的抗烧蚀性能、高韧性,良好的导电、导热性能给放电管稳定的工作提供必要的条件。 3、电火花电极:针对钨钢、耐高温超硬合金制作的模具需电蚀时,普通电极损耗大,速度慢。而钨铜高的电腐蚀速度,低的损耗率, 精确的电极形状,优良的加工性能,能保证被加工件的精确度大大提高。 4、电阻焊电极:综合了钨和铜的优点,耐高温、耐电弧烧蚀、强度高、比重大、导电、导热性好,易于切削加工,并具有发汗冷却等特性,由于具有钨的高硬度、高熔点、抗粘附的特点,经常用来做有一定耐磨性、抗高温的凸焊、对焊电极。 钨铜用途

钨铜主要用处有哪些

钨铜主要用处有哪些? 相关性能和了解更多加工性能可以百度绿兴金属找到我们。 钨铜合金是钨和铜组成的合金。常用合金的含铜量为10%~50%。合金用粉末冶金方法制取,具有很好的导电导热性,较好的高温强度和一定的塑性。在很高的温度下,如3000℃以上,合金中的铜被液化蒸发,大量吸收热量,降低材料表面温度。所以这类材料也称为金属发汗材料。 英文名称:tungsten-copper alloy 钨铜复合材料是以钨、铜元素为主组成的一种两相结构假合金,是金属基复合材料.由于金属铜和钨物性差异较大,因此不能采用熔铸法进行生产,一般采用粉末合金技术进行生产。 钨铜合金有较广泛的用途,其中一大部分应用于航天、航空、电子、电力、冶金、机械、体育器材等行业。其次也要用来制造抗电弧烧蚀的高压电器开关的触头和火箭喷管喉衬、尾舵等高温构件,也用作电加工的电极、高温模具以及其他要求导电导热性能和高温使用的场合。 采用粉末冶金方法制取钨铜合金的工艺流程为制粉--配料混合--压制成型--烧结溶渗--冷加工。 钨铜或钼铜混合粉末经过压制成型后,在1300-1500°液相烧结。此法制备的材料均匀性不好、存在较多闭空隙,致密度通常低于98%,但通过添加少量镍的活化烧结法、机械合金化法或者氧化物供还原法制备超细、纳米粉末能提高烧结活性,从而提高钨铜、钼铜合金的致密度。但镍活化烧结会使材料的导电、导热性能显著降低,机械合金化引入杂质也会降低材料传导性能;氧化物共还原法制备粉末,工艺过程繁琐,生产效率低下,难以批量生产。

WCu10钨铜合金 钨铜合金棒表面经过车削加工,不得有孔洞、裂纹、分层或夹杂等缺陷,钨铜合金棒的缺陷及允许偏差符合下表 主要应用 钨铜合金综合了金属钨和铜的优点,其中钨熔点高(钨熔点为3410℃,铜的熔点1080℃),密度大(钨密度为19.34g/cm3,铜的密度为8.89 g/cm3) ;铜导电导热性能优越,钨铜合金(成分一般范围为WCu7~WCu50)微观组织均匀、耐高温、强度高、耐电弧烧蚀、密度大;导电、导热性能适中,广泛应用于军用耐高温材料、高压开关用电工合金、电加工电极、微电子材料,做为零部件和元器件广泛应用于航天、航空、电子、电力、冶金、机械、体育器材等行业。 钨铜主要用处有哪些?文稿提供者:绿兴金属有限公司

钨铜都有哪些分类用途

钨铜都有哪些分类用途? 相关性能和了解更多加工性能可以百度绿兴金属找到我们。 钨铜分类: 1、电工材料 钨铜合金电工材料:主要分为电接触材料和电加工材料。 (1)电接触材料。这是最重要的一类电工材料,它们具有高的抗电弧烧蚀性能和抗熔焊性能,用于各种高、低压开关电器和某些仪表中作为电触头、电触点和电极。电触头是钨铜材料应用量最大的一类,特别是含铜量在20%~40%的钨铜材料应用量最大,主要用作中、高电压和中、大电流的开关电器中,如输电网的保护断路器触头和其他触头、触点。含15%~20%Cu的钨铜触头可用在电压高达50万V或更高的断路器上。 (2)电加工材料。指用在电阻焊、电铆接、电镦锻、电火花加工技术中的电极和模具材料。电火花加工要求电极或模具材料具有较好的导电性和抗电弧烧蚀性,以保证加工精度,所以多采用钨铜材料。电阻焊也多采用钨铜材料。电铆接和电镦锻在某些场合下也采用钨铜材料。 2、瞬时高温材料 瞬时高温材料是一种既重要又特殊的钨铜材料,可在接近钨熔点和稍超过钨熔点的温度下使用,工作时间很短,几秒至200秒便完成使命,所以叫瞬时高温材料。这类材料主要用来制造航天器的高温部件,如火箭喷管、制导导弹飞行方向的燃气舵、导弹端头(头锥、鼻锥)和其他构件。抗烧蚀性和抗热震性是瞬时高温材料的最主要使用性能,因为固体燃料的燃气温度一般高达2700~3300℃,燃气流中含有大量的固体粒子,对喷管、燃气舵等部件有严重的冲刷和烧蚀作用;

而且这些部件是在急剧温升的条件下(几秒钟升至工作温度)工作的,因此对部件产生激烈的热震破坏作用。对端头而言,当飞行器飞入太空再进入大气层时,由于速度快而受到粒子云的激烈摩擦产生高温和侵蚀。钨铜材料是能够满足上述要求的较好材料。 随着碳一碳(C—C)纤维复合材料的研制成功和发展,因它具有质轻和抗热震性好的优点,火箭喷管喉衬越来越多地用它来制造。但其抗烧蚀性远不如钨铜材料,对那些要求抗烧蚀性高的喷管喉衬、燃气舵和其他部件仍需用钨基材料制造。 3、破甲材料 钨铜材料可用作破甲材料,即一种所谓“药型罩”材料。用钨铜材料(常用W-30Cu 材料)制成杯形或漏斗形的罩,倒装于弹药简的前端,靠火药的温度和压力使罩变形成射流而穿甲。这种药型罩最早用紫铜制造,并大量应用。为了增大罩的单位质量从而提高破甲能力,后来研制单位质量比紫铜大的钨铡材料药型罩,在理想的情况下,它比紫铜罩的破甲能力提高30%左右。 钨铜用途: 钨铜合金综合铜和钨的优点,高强度/高比重/耐高温/耐电弧烧蚀/导电导热性能好/加工性能好,ANK钨铜合金采用高品质钨粉及无氧铜粉,应用等静压成型-(高温烧结)-渗铜,保证产品纯度及准确配比,组织细密,性能优异。本司铜钨系国内优质钨铜合金材料,极适合应用于高硬度材料及薄片电极放电加工,电加工产品表面光洁度高,精度高,损耗低,有效节约电极材料提高放电加工速度并改善模具精度。另可用作点焊/碰焊电极。钨铜与模具钢焊接成一体,在电极的使用上非常方便。 铜钨合金主要应用于:

先进微电子封装工艺技术

先进微电子封装工艺技术培训 培训目的: 1、详细分析集成电路封装产业发展趋势; 2、整合工程师把握最先进的IC封装工艺技术; 3、详细讲述微电子封装工艺流程及先进封装形式; 4、讲述微电子封装可靠性测试技术; 5、微电子封装与制造企业以及设计公司的关系; 6、实际案例分析。 参加对象: 1、大中专院校微电子专业教师、研究生;; 2、集成电路制造企业工程师,整机制造企业工程师; 3、微电子封装测试、失效分析、质量控制、相关软件研发、市场销售人员; 4、微电子封装工艺设计、制程和研发人员; 5、微电子封装材料和设备销售工程师及其应用的所有人员; 6、微电子封装科研机构和电子信息园区等从业人员 【主办单位】中国电子标准协会培训中心 【协办单位】深圳市威硕企业管理咨询有限公司 课程提纲(内容): Flip Chip Technology and Low Cost Bumping Method l What is Flip Chip l Why Use Flip Chip

l Flip Chip Trend l Flip Chip Boding Technology l Why Underfill l No Flow Underfill l Other Key Issues Wafer Level Packaging l What is IC packaging? l Trend of IC packaging l Definition and Classification of CSP l What is wafer level packaging? l Overview Technology Options —Wafer level High Density Interconnections —Wafer level Integration —Wafer Level towards 3D l WLP toward 3D l Wafer level Challenges l Conclusion 讲师简介: 罗乐(Le Luo)教授 罗教授1982年于南京大学获物理学学士学位,1988年于中科院上海微系统与信息技术研究所获工学博士学位。1990年在超导研究中取得重大突破被破格晋升为副研究员,1991—199

钨铜合金-文献综述

目录 引言 (1) 一. 钨铜合金概况 (2) 1.1钨铜合金的性能及应用 (2) 1.2 钨铜合金的制备 (3) 1.2.1 熔渗法 (3) 1.2.2 活化液相烧结法 (5) 1.2.3金属注射成型(MIM) (7) 1.2.4 热压烧结法 (7) 1.2.5 超细混合粉末的直接烧结 (8) 二. 包覆粉及研究进展 (9) 2.1包覆粉的制备方法 (10) 2.1.1机械化学改性法 (10) 2.1.2溶胶-凝胶法 (11) 2.1.3 均相沉淀法 (11) 2. 1.4物理气相沉积法 (12) 2. 1.5化学镀法 (13) 三.钨铜板材的研究进展 (14) 3.1普通轧制 (14) 3.2金属粉末轧制 (14) 3.3其他制板技术 (15) 四.流延技术及应用 (16) 4.1.流延法 (16)

4.2.溶液流延法 (17) 参考文献 (19)

引言 钨铜合金由于自身的诸多优良特性,目前己广泛应用于大容量真空断路器和微电子领域。上世纪30年代中期,伦敦镭协会的Melennan和Smithells 最早进行了钨铜合金的研制。这类合金在国防、航空航天、电子信息和机械加工等领域中具有十分广泛的用途,在国民经济中占有重要的地位。钨基合金受到了世界各国的高度重视,已成为材料科学界较为活跃的研究领域之一。 钨具有高的熔点、高的密度、低的热膨胀系数和高的强度,铜具有很好的导热、导电性。由W和Cu组成的W-Cu合金兼具W和Cu的优点,即具有高的密度、良好的导热性和导电性、低的热膨胀系数。随着微电子信息技术的发展,电子器件的小型化和高功率化,器件的发热和散热是其必须面对的一个重要问题。W-Cu合金的高导热性可以满足大功率器件散热需要,尤为重要的是,其热膨胀系数(CTE)和导热导电性能可以通过调整材料的成分而加以设计,可以与微电子器件中不同半导体材料进行很好匹配连接,从而避免热应力所引起的热疲劳破坏。因此在大规模集成电路和大功率微波器件中,钨铜合金薄板作为电子封装基板、连接件、散热片和微电子壳体用材可以有效减少因散热不足和热膨胀系数差异导致的应力问题,延长电子元件的使用寿命,具有广阔的应用前景。 1

钨铜合金主要应用

钨铜合金(Tungsten copper alloy)主要应用 钨铜合金综合了金属钨和铜的优点,其中钨熔点高(钨熔点为3410℃,铁的熔点1534℃),密度大(钨密度为19.34g/cm3,铁的密度为7.8g/cm3);铜导电导热性能优越,钨铜合金(成分一般范围为WCu7~WCu50)微观组织均匀、耐高温、强度高、耐电弧烧蚀、密度大;导电、导热性能适中,广泛应用于军用耐高温材料、高压开关用电工合金、电加工电极、微电子材料,做为零部件和元器件广泛应用于航天、航空、电子、电力、冶金、机械、体育器材等行业。 明二等奖,陕西中天火箭技术有限责任公司(隶属于航天四院)利用其特有的熔渗技术开发的高压开关电工合金钨铜、钼铜、铜钨碳化钨,国内市场占有率第一,其中钨铜约占70%。 1军用耐高温材料 钨铜合金在航天航空中用作导弹、火箭发动机的喷管、燃气舵、空气舵、鼻锥,主要要求是要求耐高温(3000K~5000K)、耐高温气流冲刷能力,主要利用铜在高温下挥发形成的发汗制冷作用(铜熔点1083℃),降低钨铜表面温度,保证在高温极端条件下使用。 2 钨铜合金在高压开关128kV SF6断路器WCu/CuCr中,以及高压真空负荷开关(12kV 40.5KV 1000A),避雷器中得到广泛应用,高压真空开关体积小,易于维护,使用范围广,能在潮湿、易燃易爆以及腐蚀的环境中使用。主要性能要求是耐电弧烧蚀、抗熔焊、截止电流小、含气量少、热电子发射能力低等。除常规宏观性能要求外,还要求气孔率,微观组织性能,故要采取特殊工艺,需真空脱气、真空熔渗等复杂工艺。

电火花加工电极早期采用铜或石墨电极,便宜但不耐烧蚀,现在基本上已被钨铜电极顶替。钨铜电极的优点是耐高温、高温强度高、耐电弧烧蚀,并且导电导热性能好,散热快。应用集中在电火花电极、电阻焊电极和高压放电管电极。电加工电极特点是品种规格繁多,批量小而总量多。作为电加工电极的钨铜材料应具有尽可能高的致密度和组织的均匀性,特别是细长的棒状、管状以及异型电极。 4微电子材料 钨铜电子封装和热沉材料,既具有钨的低膨胀特性,又具有铜的高导热特性,其热膨胀系数和导热导电性能可以通过调整钨铜的成分而加以改变,因而给钨铜提供了更广的应用范围。由于钨铜材料具有很高的耐热性和良好的导热导电性,同时又与硅片、砷化镓及陶瓷材料相匹配的热膨胀系数,故在半导体材料中得到广泛的应用。适用于与大功率器件封装材料、热沉材料、散热元件、陶瓷以及砷化镓基座等。

玻璃包装材料问题及答案

第三篇玻璃包装材料与制品 第一章概论 1.优点:透明,坚硬耐压,良好的阻隔、耐蚀、耐热和光学性质; 能够用多种成形和加工方法制成各种形状和大小的包装容器; 玻璃的原料丰富,价格低廉,并且具有回收再利用性能。 缺点:较低的耐冲击性和较高的比重,以及熔制玻璃时较高的能耗。 2. 玻璃的主要原料种类较多,按其向玻璃中引入的氧化物的性质,可分为酸性氧化物原料、碱金属氧化物原料、碱土金属和二价氧化物原料及多价氧化物原料;按这些氧化物在玻璃结构中的作用,又将其分为玻璃形成体氧化物原料、玻璃中间体氧化物原料和玻璃改变体氧化物原料。 3. 本身可以单独形成玻璃的氧化物,称为玻璃形成体(网络形成体)氧化物,有SiO2、B2O3、P2O5等。本身不能单独形成玻璃但能改变玻璃性质(或结构)的氧化物,称为改变体(网络外体)氧化物,如:Li2O 、Na2O、K2O、CaO、MgO、BaO等。介于这二者之间的,即在一定条件下可以成为玻璃形成体(进入结构网络)的氧化物,称为中间体氧化物,如Ai2O3、ZnO、PbO等。 SiO2是用量最大的玻璃形成体氧化物,在玻璃结构中,SiO2以硅氧四面体[SiO4]为结构单元形成不规则的连续网络,成为玻璃的主体骨架。 玻璃中间体氧化物向玻璃中引入的是Al2O3,Al2O3能降低玻璃的结晶能力,提高玻璃的化学稳定性、热稳定性、强度、硬度和光泽性,并有利于玻璃的乳浊,是制造乳浊玻璃不可缺少的原料。Al2O3也能提高玻璃的粘度。 Na2O是网络外体氧化物,它可以降低玻璃熔体的粘度,使玻璃易于熔融,有降低熔制温度、节约能源的作用,是玻璃熔制中最好的助溶剂。含Na2O 的玻璃易于加工成形。 4. 熔制玻璃的主要辅助原料有:澄清剂、着色剂、脱色剂、助熔剂、乳浊剂等。 5. 石英玻璃在组成上与石英晶体一样,都是由单一的二氧化硅组成的,但二者却以不同的结构状态存在――玻璃与晶体。二氧化硅在石英晶体与石英玻璃中都是以硅氧四面体[SiO4]为结构单元存在的,即每个硅原子被4个氧原子包围组成四面体。各结构单元之间通过四面体的顶角相连接,连续发展形成立体网络结构。在网络中,每个四面体顶角氧原子为相邻结构单元所共用,通过化学健与2个硅原子相连,形成(≡Si-O-Si≡)结构。这些氧原子将相邻的硅原子连接

微电子封装技术

第一章绪论 1、封装技术发展特点、趋势。(P8) 发展特点:①、微电子封装向高密度和高I/O引脚数发展,引脚由四边引出向引出向面阵列排列发展;②、微电子封装向表面安装式封装(SMP)发展,以适合表面安装技术(SMT);③、从陶瓷封装向塑料封装发展;④、从注重发展IC芯片向先发展后道封装再发展芯片转移。 发展趋势:①、微电子封装具有的I/O引脚数将更多;②、应具有更高的电性能和热性能;③、将更轻、更薄、更小;④、将更便于安装、使用和返修;⑤、可靠性会更高;⑥、性价比会更高,而成本却更低,达到物美价廉。 2、封装的功能(P19) 电源分配、信号分配、散热通道、机械支撑和环境保护。 3、封装技术的分级(P12) 零级封装:芯片互连级。 一级封装:将一个或多个IC芯片用适宜的材料(金属、陶瓷、塑料或它们的组合)封装起来,同时在芯片的焊区与封装的外引脚间用如上三种芯片互连方法(WB、TAB、FCB)连接起来使之成为有实用功能的电子元器件或组件。 二级封转:组装。将上一级各种微电子封装产品、各种类型的元器件及板上芯片(COB)一同安装到PWB或其它基板上。 三级封装:由二级组装的各个插板或插卡再共同插装在一个更大的母板上构成的,立体组装。4、芯片粘接的方法(P12) 只将IC芯片固定安装在基板上:Au-Si合金共熔法、Pb-Sn合金片焊接法、导电胶粘接法、有机树脂基粘接法。 芯片互连技术:主要三种是引线键合(WB)、载带自动焊(TAB)和倒装焊(FCB)。早期有梁式引线结构焊接,另外还有埋置芯片互连技术。 第二章芯片互连技术(超级重点章节) 1、芯片互连技术各自特点及应用 引线键合:①、热压焊:通过加热加压力是焊区金属发生塑性形变,同时破坏压焊界面上的氧化层使压焊的金属丝和焊区金属接触面的原子间达到原子引力范围,从而使原子间产生引力达到键合。两金属界面不平整,加热加压可使上下金属相互镶嵌;加热温度高,容易使焊丝和焊区形成氧化层,容易损坏芯片并形成异质金属间化合物影响期间可靠性和寿命;由于这种焊头焊接时金属丝因变形过大而受损,焊点键合拉力小(<0.05N/点),使用越来越少。②、超声焊:利用超声波发生器产生的能量和施加在劈刀上的压力两者结合使劈刀带动Al丝在被焊区的金属化层表明迅速摩擦,使Al丝和Al膜表面产生塑性形变来实现原子间键合。与热压焊相比能充分去除焊接界面的金属氧化层,可提高焊接质量,焊接强度高于热压焊;不需要加热,在常温下进行,因此对芯片性能无损害;可根据不同需要随时调节 键合能量,改变键合条件来焊接粗细不等的Al 丝或宽的Al带;AL-AL超声键合不产生任何化合 物,有利于器件的可靠性和长期使用寿命。③、 金丝球焊:球焊时,衬底加热,压焊时加超声。 操作方便、灵活、焊点牢固,压点面积大,又无 方向性,故可实现微机控制下的高速自动化焊接; 现代的金丝球焊机还带有超声功能,从而具有超 声焊的优点;由于是Au-Al接触超声焊,尽管加 热温度低,仍有Au-Al中间化合物生成。球焊用 于各类温度较低、功率较小的IC和中、小功率晶 体管的焊接。 载带自动焊:TAB结构轻、薄、短、小,封装高 度不足1mm;TAB的电极尺寸、电极与焊区节距均 比WB大为减小;相应可容纳更高的I/O引脚数, 提高了TAB的安装密度;TAB的引线电阻、电容 和电感均比WB小得多,这使TAB互连的LSI、VLSI 具有更优良的高速高频电性能;采用TAB互连可 对各类IC芯片进行筛选和测试,确保器件是优质 芯片,大大提高电子组装的成品率,降低电子产 品成本;TAB采用Cu箔引线,导热导电性能好, 机械强度高;TAB的键合拉力比WB高3~10倍, 可提高芯片互连的可靠性;TAB使用标准化的卷 轴长度,对芯片实行自动化多点一次焊接,同时 安装及外引线焊接可实现自动化,可进行工业化 规模生产,提高电子产品的生产效率,降低产品 成本。TAB广泛应用于电子领域,主要应用与低 成本、大规模生产的电子产品,在先进封装BGA、 CSP和3D封装中,TAB也广泛应用。 倒装焊:FCB芯片面朝下,芯片上的焊区直接与 基板上的焊区互连,因此FCB的互连线非常短, 互连产生的杂散电容、互连电阻和电感均比WB 和TAB小的多,适于高频高速的电子产品应用; FCB的芯片焊区可面阵布局,更适于搞I/O数的 LSI、VLSI芯片使用;芯片的安装互连同时进行, 大大简化了安装互连工艺,快速省时,适于使用 先进的SMT进行工业化大批量生产;不足之处如 芯片面朝下安装互连给工艺操作带来一定难度, 焊点检查困难;在芯片焊区一般要制作凸点增加 了芯片的制作工艺流程和成本;此外FCB同各材 料间的匹配产生的应力问题也需要很好地解决 等。 2、WB特点、类型、工作原理(略)、金丝球焊主 要工艺、材料(P24) 金丝球焊主要工艺数据:直径25μm的金丝焊接 强度一般为0.07~0.09N/点,压点面积为金丝直 径的2.5~3倍,焊接速度可达14点/秒以上,加 热温度一般为100℃,压焊压力一般为0.5N/点。 材料:热压焊、金丝球焊主要选用金丝,超声焊 主要用铝丝和Si-Al丝,还有少量Cu-Al丝和 Cu-Si-Al丝等。 3、TAB关键材料与技术(P29) 关键材料:基带材料、Cu箔引线材料和芯片凸点 金属材料。 关键技术:①芯片凸点制作技术②TAB载带制作 技术③载带引线与芯片凸点的内引线焊接技术和 载带外引线的焊接技术。 4、TAB内外引线焊接技术(P37) ①内引线焊接(与芯片焊区的金属互连):芯片凸 点为Au或Ni-Au、Cu-Au等金属,载带Cu箔引线 也镀这类金属时用热压焊(焊接温度高压力大); 载带Cu箔引线镀0.5μm厚的Pb-Sn或者芯片凸 点具有Pb-Sn时用热压再流焊(温度较低压力较 小)。 焊接过程:对位→焊接→抬起→芯片传送 焊接条件:主要由焊接温度(T)、压力(P)、时 间(t)确定,其它包括焊头平整度、平行度、焊 接时的倾斜度及界面的侵润性,凸点高度的一致 性和载带内引线厚度的一致性也影响。 T=450~500℃,P≈0.5N/点,t=0.5~1s 焊接后焊点和芯片的保护:涂覆薄薄的一层环氧 树脂。环氧树脂要求粘度低、流动性好、应力小 切Cl离子和α粒子含量小,涂覆后需经固化。 筛选测试:加热筛选在设定温度的烘箱或在具有 N2保护的设备中进行;电老化测试。 ②外引线焊接(与封装外壳引线及各类基板的金 属化层互连):供片→冲压和焊接→回位。 5、FCB特点、优缺点(略,同1) 6、UBM含义概念、结构、相关材料(P46) UBM(凸点下金属化):粘附层-阻挡层-导电层。 粘附层一般为数十纳米厚度的Cr、Ti、Ni等;阻 挡层为数十至数百纳米厚度的Pt、W、Pd、Mo、 Cu、Ni等;导电层金属Au、Cu、Ni、In、Pb-Sn 等。 7、凸点主要制作方法(P47—P58) 蒸发/溅射凸点制作法、电镀凸点制作法、化学镀 凸点制作法、打球(钉头)凸点制作法、置球及 模板印刷制作焊料凸点、激光凸点制作法、移置 凸点制作法、柔性凸点制作法、叠层凸点制作法、 喷射Pb-Sn焊料凸点制作法。 8、FCB技术及可靠性(P70—P75) 热压FCB可靠性、C4技术可靠性、环氧树脂光固 化FCB可靠性、各向异性导电胶FCB可靠性、柔 性凸点FCB可靠性 9、C4焊接技术特点(P61) C4技术,再流FCB法即可控塌陷芯片连接特点: ①、C4除具有一般凸点芯片FCB优点外还可整个 芯片面阵分布,再流时能弥补基板的凹凸不平或 扭曲等;②、C4芯片凸点采用高熔点焊料,倒装 再流焊时C4凸点不变形,只有低熔点的焊料熔 化,这就可以弥补PWB基板的缺陷产生的焊接不 均匀问题;③、倒装焊时Pb-Sn焊料熔化再流时 较高的表面张力会产生“自对准”效果,这使对 C4芯片倒装焊时的对准精度要求大为宽松。 10、底封胶作用(P67) 保护芯片免受环境如湿气、离子等污染,利于芯

钨铜合金

钨铜合金 英文名称tungsten-copper alloy 性能 钨和铜组成的合金。常用合金的含铜量为10%~50%。合金用粉末冶金方法制取,具有很好的导电导热性,较好的高温强度和一定的塑性。在很高的温度下,如3000℃以上,合金中的铜被液化蒸发,大量吸收热量,降低材料表面温度。所以这类材料也称为金属发汗材料。 用途 钨铜合金有较广泛的用途,主要是用来制造抗电弧烧蚀的高压电器开关的触头和火箭喷管喉衬、尾舵等高温构件,也用作电加工的电极、高温模具以及其他要求导电导热性能和高温使用的场合。 产品牌号 CuW,RWMA Class 10,RWMA Class 11,RWMA Class 12 钨铜合金工艺介绍 钨铜采用等静压成型—高温烧结钨骨架—溶渗铜的工艺,是钨和铜的一种合金。 电阻焊电极 综合了钨和铜的优点,耐高温、耐电弧烧蚀、强度高、比重大、导电、导热性好,易于切削加工,并具有发汗冷却等特性,由于具有钨的高硬度、高熔点、抗粘附的特点,经常用来做有一定耐磨性、抗高温的凸焊、对焊电极。

电火花电极 针对钨钢、耐高温超硬合金制作的模具需电蚀时,普通电极损耗大,速度慢。而钨铜高的电腐蚀速度,低的损耗率,精确的电极形状,优良的加工性能,能保证被加工件的精确度大大提高。 高压放电管电极 高压真空放电管在工作时,触头材料会在零点几秒的的时间内温度升高几千摄氏度。而钨铜高的抗烧蚀性能、高韧性,良好的导电、导热性能给放电管稳定的工作提供必要的条件。 电子封装材料 既有钨的低膨胀特性,又具有铜的高导热特性,其热膨胀系数和导电导热性可以通过调整材料的成分而加以改变,从而给材料的使用提供了便利。 定做各种异型规格。定做不同钨比例钨铜合金。 物理指标 钨铜CuW55% (RWMA Class 10)硬度:72HRB,导电率:45%IACS,软化温度:900℃ 钨铜CuW75% (RWMA Class 11)硬度:94RHRB,导电率:40%IACS,软化温度:900℃ 钨铜CuW80% (RWMA Class 12)硬度:98RHRB,导电率:35%IACS,软化温度:900℃ 编辑本段钨铜合金的主要应用 钨铜合金综合了金属钨和铜的优点,其中钨熔点高(钨熔点为3410℃,铁的熔点1534℃),密度大(钨密度为19.34g/cm3,铁的密度为7.8

微电子封装技术综述论文资料

微电子封装技术综述论文 摘要:我国正处在微电子工业蓬勃发展的时代,对微电子系统封装材料及封装技术的研究也方兴未艾。本文主要介绍了微电子封装技术的发展过程和趋势,同时介绍了不同种类的封装技术,也做了对微电子封装技术发展前景的展望和构想。 关键字:微电子封装封装技术发展趋势展望 一封装技术的发展过程 近四十年中,封装技术日新月异,先后经历了3次重大技术发展。 IC封装的引线和安装类型有很多种,按封装安装到电路板上的方式可分为通孔插入式TH 和表面安装式SM,或按引线在封装上的具体排列分为成列四边引出或面阵排列。微电子封装的发展历程可分为3个阶段: 第1阶段,上世纪70年代以插装型封装为主。70年代末期发展起来的双列直插封装技术DIP,可应用于模塑料,模压陶瓷和层压陶瓷封装技术中,可以用于IO数从8~64的器件。这类封装所使用的印刷线路板PWB成本很高,与DIP相比,面阵列封装,如针栅阵列PGA,可以增加TH类封装的引线数,同时显著减小PWB的面积。PGA系列可以应用于层压的塑料和陶瓷两类技术,其引线可超过1000。值得注意的是DIP和PGA等TH封装由于引线节距的限制无法实现高密度封装。 第2阶段,上世纪80年代早期引入了表面安装焊接技术,SM封装,比较成熟的类型有模塑封装的小外形,SO和PLCC型封装,模压陶瓷中的CERQUAD层压陶瓷中的无引线式载体LLCC和有引线片式载体LDCC,PLCC,CERQUAD,LLCC和LDCC都是四周排列类封装。其引线排列在封装的所有四边,由于保持所有引线共面性难度的限制PLCC的最大等效引脚数为124。为满足更多引出端数和更高密度的需求,出现了一种新的封装系列,即封装四边都带翼型引线的四边引线扁平封装QFP 与DIP,相比QFP的封装尺寸大大减小且QFP具有操作方便,可靠性高,适合用SMT表面安装技术在PCB上安装布线,封装外形尺寸小,寄生参数减小适合高频应用。Intel公司的CPU,如Intel80386就采用的PQFP。 第3阶段,上世纪90年代,随着集成技术的进步,设备的改进和深亚微米技术的使用,LSI,VLSI,ULSI相继出现,对集成电路封装要求更加严格,IO引脚数急剧增加,功耗也随之增大。因此,集成电路封装从四边引线型向平面阵列型发展,出现了球栅阵列封装BGA,并很快成为主流产品。90年代后期,新的封装形式不断涌现并获得应用,相继又开发出了各种封装体积更小的芯片尺寸封装CSP。与时,多芯片组件MCM发展迅速,MCM是将多个半导体集成电路元件以裸芯片的状态搭载在不同类型的布线基板上,经过整体封装而构成的具有多芯片的电子组件。封装技术的发展越来越趋向于小型化,低功耗,高密度,典型的主流技术就是BGA技术和CSP技术。BGA技术有很多种形式如陶瓷封装BGA,CBGA塑料封装,BGA PBGA以及Micro BGA。BGA与PQFP相比,BGA引线短,因此热噪声和热阻抗很小,散热好。耦合的电噪声小,同时BGA封装面积更小,引脚数量更多,且BGA封装更适于大规模组装生产,组装生产合格率大大提高。随着对高IO引出端数和高性能封装需求的增长,工业上已经转向用BGA球栅阵列封装代替QFP。 随着封装技术的发展及进步,我国科研院所从事电子封装技术研究是与电子元器件的研制同时起步的,随着电子元器件技术的发展,电子封装技术同步发展。特别是集成电路技术的发展,促进了电子封装技术日新月异的变化。目前,全国从事封装技术研究的科研院所有33家,其中信息产业部系统16家,其他系统17家。从事封装研究的从业人员1890余人,其中技术人员900余人,主要从事:陶瓷外壳封装、塑料外壳封装、金属外壳封装、金属-

微电子封装的概述和技术要求

微电子封装的概述和技术要求 近年来,各种各样的电子产品已经在工业、农业、国防和日常生活中得到了广泛的应用。伴随着电子科学技术的蓬勃发展,使得微电子工业发展迅猛,这很大程度上是得益于微电子封装技术的高速发展。当今全球正迎来以电子计算机为核心的电子信息技术时代,随着它的发展,越来越要求电子产品要具有高性能、多功能、高可靠、小型化、薄型化、便捷化以及将大众化普及所要求的低成等特点。这样必然要求微电子封装要更好、更轻、更薄、封装密度更高,更好的电性能和热性能,更高的可靠性,更高的性能价格比。 一、微电子封装的概述 1、微电子封装的概念 微电子封装是指利用膜技术及微细加工技术,将芯片及其他要素在框架或基板上布置、粘贴固定及连接,引出连线端子并通过可塑性绝缘介质灌封固定,构成整体立体结构的工艺。在更广的意义上讲,是指将封装体与基板连接固定,装配成完整的系统或电子设备,并确定整个系统综合性能的工程。 2、微电子封装的目的 微电子封装的目的在于保护芯片不受或少受外界环境的影响,并为之提供一个良好的工作条件,以使电路具有稳定、正常的功能。 3、微电子封装的技术领域 微电子封装技术涵盖的技术面积广,属于复杂的系统工程。它涉及物理、化学、化工、材料、机械、电气与自动化等各门学科,也使用金属、陶瓷、玻璃、高分子等各种各样的材料,因此微电子封装是一门跨学科知识整合的科学,整合了产品的电气特性、热传导特性、可靠性、材料与工艺技术的应用以及成本价格等因素,以达到最佳化目的的工程技术。 在微电子产品功能与层次提升的追求中,开发新型封装技术的重要性不亚于电路的设计与工艺技术,世界各国的电子工业都在全力研究开发,以期得到在该领域的技术领先地位。

相关文档
最新文档