nas1638标准

合集下载

nas 1683and iso4406[1]清洁度标准

nas 1683and iso4406[1]清洁度标准

Particle contamination in oil is specified from particle count. Two basic standards the ISO and NAS systems are com-monly used as contamination reference. The two cleanliness standards can not be directly compared or converted, as the basic principles within the two systems differ to much. This is explained in the next pages.However, the following tables gives some rough guidelines of common practice for setting targets of cleanliness levels in different systems. As seen both ISO 4406 and NAS 1638 are represented. These guidelines are minimum fluid cleanliness levels required for an acceptable lifetime of equipment andcomponents.Many factors influence lifetime and demands to fluid quality. High reliability systems enhance demands to quality, and high pressure systems and heavy bearing load increase de-mands.The last three columns of the tables indicate the range of the GreenOil filter system. Although the filters may be put intoservice in many application, parameters as fluid volume and viscosity should be taken into consideration before expecta-tions to contamination limits are set. Working with ISO4406 and NAS 1638GreenOil StandardDate: 15-12-2005T echnical Paper 004Particle Contamination ISO4406 and NAS1638Page 1 af 3Saved as: Technical Paper 004Hydraulic Equipment and Components Pressure Range GreenOilFilter InsertsISO 4406 NAS 1638 HTMSilt sensitive, aerospace, robots, High pressure 250-400 bar14/12/9 4 ISO 10/6 NAS 3Servo systems, injection moulding, High pressure 250-400 bar 16/14/11 5Proportional and flow valves, High pressure 250-400 bar 17/15/12 6 Piston pumps and motors, Normal pressure 150-250 bar 18/16/13 7 Typical new hydraulic oil18/16/13 7 Gear pump and motors,Medium pressure 50-150 bar 19/17/14 8 Cylinders and Flow Control Low pressure 0-50 bar20/18/159Lubrication OilEquipment and ComponentsBall bearings, turbine oils, Small and medium gearboxes 14/12/9 4Roller bearingsTransmission gearboxes 16/14/11 5 ISO 14/11NAS 5Journal bearingsIndustrial gearboxes17/15/12 6Mobile equipment and gearboxes Paper mill18/16/13 7 ISO 16/12NAS 7Diesel engine lubrication19/17/14 8 Heavy duty gearboxes20/18/15 9 Typical new lubrication oil20/18/15 9 Typical in-line filtration21/19/1510MinimumClass RequirementPage 2 T echnical Paper 004 IntroductionContamination in oil is specified from particle count. Two basic methods are used:Laser based particle count analysis equipment gives directly information on particle sizes (micron= u) and figures within specified size ranges.The other method utilize filtering an oil sample through an very fine mesh filter paper. The particles on the surface of the filter paper is then monitored in a microscope and com-pared to standard contamination pictures to indicate the de-gree of contamination.Contamination classesInstead of specifying particle counts contamination is sepa-rated into classes defined in two major systems ISO (International Standard Organisation) and NAS (National Air-space Standard). Each class defines a range of counts within an exponential scale.Unfortunately, the two systems are not identical and can not be converted in simple mathematics. However, some simple guidelines can be given. First of all let’s look at the two sys-tems.NAS1638The NAS system divides particles in 5 ranges. Furthermore, the NAS system specify different counts within each particle range to score a specific class.In practice oil samples will show up to gain almost same NAS class rating within the different particle ranges. The system is designed to match the most common found con-tamination which has really many small particles and fever big particles. The sidebar example shows a typical oil analy-sis with counts divided in the 5 classes. As seen the classes ranges from 3 to 6, however, the resulting NAS class is de-fined as the particle count with the highest (worse) score, and only this class is specified.The sidebar example will be classified as “NAS1638 class 6”. Classes5 to 15 15 to 2525 to5050 to100 > 10000 125 22 4 1 00 250 44 8 2 01 500 89 16 3 12 1,000 178 32 6 13 2,000 356 63 11 24 4,000 712 126 22 45 8,000 1,425 253 45 86 16,000 2,850 506 90 167 32,000 5,700 1,012 180 328 64,000 11,400 2,025 360 649 128,000 22,800 4,050 720 12810 256,000 45,600 8,100 1,440 25611 512,000 91,200 16,200 2,880 51212 1,024,000 182,400 32,400 5,760 1024Particle Classes Size Range per 100 ml NAS 1638Particle range Counts Class 5-15 u 8450 615-25 u 11982 525-50 u 312 650-100 u 46 6>100 u 2 3 Resulting class 6NAS analysis exampleISO 4406The ISO system is not as practical orientated as the NAS sys-tem. First of all it consists of 2 or 3 figures. Each figure de-fine a class within a size range. A typical ISO 4406 oil test will be indicated as:17/15/12 Particles > 2 u Particles > 5 u Particles >15 uAs seen particles less than 2 u are omitted. The originalISO4406 operated with only two digits omitting counts below 5 u. This standard is still widely accepted, though it does not relieve the same information as the newer 3 digit ISO version. 15/12 Particles > 5 u Particles > 15 uThe cleanliness levels represent the particle counts as shown in the table.(Not to get stuck in mathematics: the class represents powers of the numeral 2. A cleanliness level 15 indicates counts be-tween 214 (16,383) and 215 (32,768) for a sample of 100 ml fluid).The sidebar example will be classified “ISO4406 17/15/12”NAS and ISOTo conclude: NAS and ISO can not be compared directly. As seen both NAS and ISO operates exponentially. In both systems, the particle counts must be halved to reduce the class or cleanliness level one digit.In practice the great advantage of the NAS system is that con-tamination is identified by only one class number. For identi-fying contamination sources this could be a limitation which does not apply as much for the ISO system which is more open yet complicated.The NAS and ISO 2-digit systems does not take particles less than 5 u into consideration. The ISO 3-digit system monitors down to 2 u particles.The ISO system has the same class definition throughout the particle ranges. The NAS system has different definition of class within each particle range.Page 3T echnical Paper 004Class NumberMore Than Up to and Including24 8,000,000 1,600,000 23 4,000,000 8,000,000 22 2,000,000 4,000,000 21 1,000,000 2,000,000 20 500,000 1,000,000 19 250,000 500,000 18 130,000 250,000 17 64,000 130,000 16 32,000 64,000 15 16,000 32,000 14 8,000 16,000 13 4,000 8,000 12 2,000 4,000 11 1,000 2,000 10 500 1,000 9 250 500 8 130 250 7 64 130 6 32 64 5 16 32 4 8 16 3 4 8 2 2 4 1 1 2 0 0.51000.250.5Number of particles per 100 ml ISO 4406ISO analysis example: 17/15/12 Particle rangeCounts Class <2 u 96,050 17 5-15 u 23,263 1515-25 u 3,150 25-50 u 256 50-100 u 16 >100 u312。

抗燃油标准.docx

抗燃油标准.docx

表 1新磷酸酯抗燃油质量标准序号项目指标1外观无色或淡黄 , 透明2密度( 20 ℃) g/cm 2 1.13 ~1.17运动粘度( 40℃)a3241.4 ~50.6mm/s4倾点℃≤-185闪点℃≥2406自燃点℃≥530颗粒污染度 (NAS 1638)b7≤6级8水份 mg/L≤6009酸值 mgKOH/g≤0.0510氯含量 mg/kg≤50泡沫特性24℃≤50/0 1193.5 ℃≤10/0 mL/mL24℃≤50/0电阻率(20℃)12≥1×1010Ω · cm13空气释放值( 50 ℃) min≤3油层酸值增加≤ 0.02mgKOH/g≤ 0.05水解安水层酸值14定性铜试片失重≤.8试验方法DL/T 429.1GB/T 1884 GB/T 265GB/T 3535GB/T 3536DL/T 706DL/T 432GB/T 7600GB/T 264DL/T 433GB/T 12579DL/T 421 SH/T 0308SH/T 0301a 按 ISO 3448-1992规定,磷酸酯抗燃油属于VG46 级。

b NAS 1638 颗粒污染度分析标准见本标准附录D。

表 2 运行中磷酸酯抗燃油质量标准序号项目指标试验方法1外观透明DL/T 429.12密度( 20℃) g/cm 2 1.13 ~1.17GB/T 1884运动粘度( 40℃,ISOVG46)3239.1 ~52.9GB/T 265mm/s4倾点℃≤ -18GB/T 3535 5闪点℃≥235GB/T 3536 6自燃点℃≥530DL/T 706b颗粒污染度(NAS 1638)7≤6DL/T 432级8水份 mg/L≤1000GB/T 7600 9酸值 mgKOH/g≤0.15GB/T 264 10氯含量 mg/kg≤100DL/T 433泡沫特性24℃≤200/01193.5 ℃≤40/0GB/T 12579mL/mL24℃≤200/0电阻率(20 ℃)12Ω · cm≥6×109DL/T 421 13矿物油含量%≤4本标准附录 C 14空气释放值( 50℃) min≤10SH/T 0308EH 油油质主要是指酸值及水和氯的含量,EH 抗燃EH 油新油酸度指标为0.03 ( mgKOH/g 油中的颗粒度等。

污染度等级标准简介

污染度等级标准简介

NAS 1638标准NAS是National Aerospace Standard (美国航空标准)的缩写,现行的版本为1992年修订版,用一个二位数以内的数字描述流体中颗粒物的含量。

一个等级代码值下有不同尺寸范围相应的颗粒物数量(每100毫升流体中颗粒物的个数)。

等级代码值越小表明流体越洁净,或者说流体污染程度越轻。

参见下表:NAS等级代码数例如NAS 8(差不多是很多常规全新油品的颗粒物含量等级)中有5-15微米的颗粒物64000个,15-25微米的颗粒物11400个,依此类推。

这些数为某一等级代码数的上限。

反之如果在实验室做颗粒物含量检测时,判读标准原则上以超过上限就需要升级。

该标准中将颗粒物尺寸范围分得太细而起点又太粗,给实际工作中的判读带来很大的麻烦,因为实际检测结果往往与标准中的上限发生交叉。

实际中判读的准确程度依赖专业人员的经验和其他辅助信息的综合判断。

同时不难看出NAS标准描述颗粒物的下限是5-15微米,对5-15微米以下颗粒物不做描述,有其相当的局限性,因为流体中5微米以下(含5微米)的颗粒物数量庞大,往往是5-15微米颗粒物的数倍。

所以忽略5微米以下颗粒物是不够准确的。

同时为便于提高判读效率和准确性于是有很多公司使用ISO标准。

很多颗粒物自动检测读数仪器一般可同时输出NAS1638和ISO 4406( MTD)代码值。

目前中国企业多数参照NAS标准,但新国标的实施会逐步改变这一现状。

ISO 4406标准现行的ISO标准为ISO4406( 1999年修订版)。

该标准也称为ISO 4406 1999 或ISO 4406 (MTD)。

MTD是Medium Test Dust的缩写,用三组数据描述流体中颗粒物的含量。

之前也有ISO4406 - ACFTD( Air Cleaner Fine Test Dus) 标准,但由于其描述起点为2微米,在实际应用中很难正确判读,所以现在已经被ISO4406 1999版所正式取代。

滤油器滤芯基本资料

滤油器滤芯基本资料

油滤器的特点跟定义:滤宝牌滤油器,采用独特的旁路配管方式装置,直接安装在油压设备上,能随着机械之运转连续稳定地来滤除油中之污染物、水份、酸化物等有害物质,其在工作时更不须消耗额外的电力,配合各种油压机械使用持续稳定地保持油的清洁状态,装备简单,保养维护容易,除了定期替换滤芯外,平常完全不需要维护,从而更好地达到合理化之管理要求。

滤油机的具体参数:MF-100-1H流量:3L/Min最大压力:5.5kg/cm<平方厘M)马达:90W电源:110V/220V,1phase管径:1/4PT滤油机的使用注意事项:滤宝精密滤油器的最关键部件就是能除去油中污染物及水份的滤芯滤芯的性能要包括以下6点:1.过滤精度高2.过滤效率高3.对污染的捕集量多4.对水份有除去能力5.使用的周期长6.更换作业方便为达上述性能要求我们长期研究开发完成了高性能的LUPAO滤芯,我们采用了高吸附性和吸水性强的纤维为原料,以卷筒方式制成一定密度的基材,再把它下部压入口径较小的外纸管内,使滤芯本身产生不同密度的梯层,如此,可使过滤的精度用污染物捕捉能力大为提高.b5E2RGbCAP滤油车使用说明:LUPAO滤宝精密滤芯滤油车以精密的滤油器数个并联配管,再配备泵浦马达,真空表,压力表,及吸入过滤网,电磁开关,铁架等组成,自成一个过滤系统,且具备轮子方便移动使用。

适合作集中过滤或同一油类的各式机械轮流过滤,过滤过程简单,效果好<一次可达NAS6级)经济实惠,范围广。

p1EanqFDPw为什么使用滤宝牌滤油车可以节省油液?首先被使用过后的油液并不是坏了,而是脏了,用合适的机器处理后油液仍然可以继续使用。

DXDiTa9E3d油液在使用过程中被污染的因素有许多:1、油箱并不是密封的,油液的流动和温度的改变会增加油液中的水份,水份在油液中害处很大,液压机把中水份被吸进后,高压下它会气化,产生高温,酸化油液,使油精度很快降低,且水份易使液压中的泵、阀等重要配件内心生锈腐烂,导致机械总体能耗增加,速度下降,效能降低,分贝增高等问题。

主要液压元件选型

主要液压元件选型

16/13 7 9/6 0
15/12 6 8/5 00
液压辅件
ISO 4406-1987 油液清洁度等级标准
颗粒数/毫升 大于 80000 40000 20000 10000 5000 2500 1300 上限值 160000 80000 40000 20000 10000 5000 2500 清洁度等级 24 23 22 21 20 19 18 颗粒数/毫升 大于 160 80 40 20 10 5 2.5 上限值 320 160 80 40 20 10 5 清洁度等级 15 14 13 12 11 10 9
的杂质进入液压泵,但要求滤油器有很大的通油能力和较
小的压力损失。一般采用过滤精度较低的网式滤油器。
2、滤油器安装于液压泵压油口,此位置可用以保护除液
压泵以外的其它液压元件。要求滤油器能耐高压。
3、滤油器安装于回油管路,此位置使油液在流回油箱之
前先经过过滤 ,使油箱中的油液得到净化。此种滤油器
壳体的耐压性能可较低。
特 点
(1)测量范围可达到-50…200℃ (2)精确度可达到±0.5℃ (3)同时输出两个开关量和一个模 拟量 (4)显示头可旋转 (5)4位数字显示,精确度更高
液压辅件
液压辅件
液压辅件
液压系统的油液中的各种污染物: 外部污染物:切屑、锈垢、橡胶颗粒、 漆片、棉丝
内部污染物:零件磨损的脱落物、 油液因理化作用的生成物
液压常用元件及选型
液压辅件
液压辅件
传感器类别
流量 压力
温度
液位
液压辅件
流量产品
流量开关
流量计
热 式
活 塞 式
挡 板 式
电 磁
涡 街

nas1638

nas1638

NAS16381. IntroductionNAS1638 is a document specification that defines the requirements for particle contamination analysis in hydraulic fluid systems. It provides guidelines for determining the cleanliness level of hydraulic fluids used in various applications. This document is essential for maintaining the performance and reliability of hydraulic systems, as the presence of contaminants can lead to system failure and reduced operational efficiency.2. ScopeThe scope of NAS1638 covers the procedures and requirements for particle counting and analysis in hydraulic fluid systems. It applies to both new and in-service hydraulic fluids and is relevant for various industries, including aviation, automotive, and industrial machinery.3. Importance of Particle Contamination AnalysisParticle contamination in hydraulic fluid systems can have detrimental effects on system performance and efficiency. It can lead to increased wear of system components, decreased fluid flow rates, and increased fluid degradation. Therefore, regular particle contamination analysis is crucial to identify and mitigate any potential issues early on.4. Particle Counting MethodsNAS1638 specifies two primary methods for particle counting in hydraulic fluids:4.1. Gravimetric MethodThe gravimetric method involves collecting a representative sample of hydraulic fluid and filtering it through a membrane filter. The filter is then dried and weighed to determine the mass of particulate contaminants present. This method provides a quantitative measurement of the contamination level but does not provide information on the size or distribution of particles.4.2. Light Extinction Particle Counting MethodThe light extinction particle counting method is a widely used technique for particle contamination analysis. It involves passing a sample of hydraulic fluid through a flow cell, wherein a laser beam illuminates the fluid. The light scattered by particles in the fluid is measured to determine the number and size of particles present. This method provides both qualitative and quantitative measurements of particle contamination.5. Cleanliness CodesNAS1638 defines cleanliness codes that categorize the cleanliness level of hydraulic fluids based on the number and size of particles present. The cleanliness code is represented in three numbers, such as 16/14/11, where each number represents the range of particle sizes in the fluid. The lower the number, the cleaner the hydraulic fluid.6. Sample Preparation and Analysis ProcedureThe document provides detailed guidelines for sample preparation and analysis procedures, including sampling techniques, filtration methods, and particle counting equipment requirements. It outlines the steps to follow to ensure accurate and repeatable results.7. Reporting and DocumentationNAS1638 specifies the information that should be included in the final report documenting the particle contamination analysis results. This includes the cleanliness code, particle count data, sample identification, and any relevant observations or comments. Proper documentation is essential for traceability and comparison of cleanliness levels over time.8. ConclusionNAS1638 is a critical document for maintaining the cleanliness and performance of hydraulic fluid systems. It provides standardized procedures and requirements for particle contamination analysis, ensuring the reliability and longevity of hydraulic systems. By following the guidelines outlined in this document, industries can effectively monitor and manage the cleanliness levels of their hydraulic fluids.。

液压油清洁度等级修订稿

液压油清洁度等级修订稿

液压油清洁度等级公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]液压油清洁度等级划分液压油中混入过多的颗粒物会堵塞油滤、擦伤密封件、堵塞或磨损元件。

但液压油在生产及使用过程中不可能做到完全没有颗粒物。

目前我国润滑油生产厂家对液压油的颗粒物还是以“机械杂质”<%来控制的。

液压油中混入过多的颗粒物会堵塞油滤、擦伤密封件、堵塞或磨损元件。

但液压油在生产及使用过程中不可能做到完全没有颗粒物。

目前我国润滑油生产厂家对液压油的颗粒物还是以“机械杂质”<%来控制的,而国外多用美国宇航局(NAS)的NAS 1638和国际标准化组织(ISO)的ISO 4406-1987油液清洁度级别来恒量。

例如液压系统对油品清洁度的要求如下:大间隙、低压液压系统:NAS 10~12(大约相当于ISO 19/16~21/18,允许≥5μ颗粒数/毫升:大约5,000~20,000;≥15μ:大约640~2,500)中、高压液压系统:NAS 7~9(大约相当于ISO 16/13~18/15,允许≥5μ颗粒数/毫升:大约640~2,500;≥15μ:大约80~320)敏感及伺服高压液压系统:NAS 4~6(大约相当于ISO 13/10~15/12,允许≥5μ颗粒数/毫升:大约80~320;≥15μ:大约10~40)。

目前我国普通工艺生产的液压油一般只能达到NAS 8~10。

1、ISO 4406油液清洁度ISO 4406油液清洁度等级标准采用3段数码代表油液的清洁度,3段数码分别代表1mL油液中尺寸大于4μm,6μm,14μm的颗粒数,数码之间用斜线分隔。

根据颗粒个数的多少共分为30个等级,颗粒数越多,代表等级的数码越大。

例如,测得lmL油液中有大于4μm的颗粒数为60000个,大于6μm的颗粒数为8000个,大于14μm的颗粒数为l000个,则根据标准中的数据表可查得油液的清洁度等级为ISO 4406 23/20/17。

ME ENGINE FLUSHING 主机串油

ME ENGINE FLUSHING 主机串油
黄海船厂,最初的几个项目,试航的时候 总有LUBRICATOR 或ELFI 故障更换,拆 检发现里面活塞有划痕。最初ME滤器为10 微米,设计变更为6微米后,以后的项目试 航没再更换过LUBRICATOR和ELFI
Copyright © by STX Marine Service Co.,Ltd. All rights reserved.
Lubricating oil flushing
用这种滤纸,检查有点困难,细小的颗粒嵌在里面不容易被发现,用吸 铁石吸也不能百分之百吸到吸铁石上,个人建议用上面检查滤袋的方式
Use fine filter paper
Copyright © by STX Marine Service Co.,Ltd. All rights reserved.
ME-C(B) Engine
L.O FLUSHING
STX Marine Service Co.,Ltd
Copyright © by STX Marine Service Co.,Ltd. All rights reserved.
Lubricating oil flushing
对电喷主机来说,应该分三步:

Copyright © by STX Marine Service Co.,Ltd. All rights reserved.
Lubricating oil flushing
准备干净柴油,拿出滤器里的滤袋,一手封口,一手将滤袋放在柴油 里由上往下揉搓,将颗粒往滤袋一个角里洗
Copyright © by STX Marine Service Co.,Ltd. All rights reserved.
lubricatingoilflushingiso44061915是国际标准19为大于6微米的允许颗粒数15为大于14微米的允许颗粒数nas1638是美国标准计算大于5152550100微米的颗粒数比较两个标准iso44061915对应nas1638class同样iso44061613对应nas1638classstxmarineserviceco
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

nas1638标准
NAS1638标准。

NAS1638标准是指美国国防部发布的一项关于润滑油清洁度等级的标准,该标准旨在规定润滑油中固体颗粒的数量和大小,以评估润滑油的清洁度和过滤效果。

这一标准的制定对于保障润滑油系统的正常运行和延长设备的使用寿命具有重要意义。

根据NAS1638标准,润滑油的清洁度等级分为12个等级,从0至12,数字越小表示清洁度越高。

在实际应用中,通常将NAS1638标准分为四个等级,A等级(0-3)、B等级(4-6)、C等级(7-9)和D等级(10-12)。

这些等级的划分便于用户对润滑油的清洁度进行评估和选择,以满足不同设备的要求。

在实际工程中,通过对润滑油样本进行颗粒计数和粒径分布测试,可以得到润滑油的NAS1638等级。

通过比较实际测试结果和标准规定的等级范围,可以判断润滑油的清洁度是否符合要求,从而进行必要的维护和更换。

NAS1638标准的制定和执行,对于提高设备的可靠性和稳定性具有重要意义。

通过控制润滑油的清洁度,可以减少设备的磨损和故障,延长设备的使用寿命,降低维护成本,提高设备的运行效率。

因此,在工程实践中,严格执行NAS1638标准,对于设备的正常运行和维护具有重要的指导意义。

总之,NAS1638标准是润滑油清洁度等级的重要标准,对于设备的可靠性和稳定性具有重要意义。

通过严格控制润滑油的清洁度,可以降低设备的故障率,延长设备的使用寿命,提高设备的运行效率,从而为工程实践带来显著的经济效益和社会效益。

因此,我们应该充分认识到NAS1638标准的重要性,严格执行该标准,以保障设备的正常运行和延长设备的使用寿命。

相关文档
最新文档