高等数学典型例题与应用实例(重积分B部分)
高等数学 第九章 重积分 第四节 重积分应用

∫∫∫Ω xd xd y d z ∫∫∫Ω
V zd x d y d z V
∫∫∫Ω yd xd y d z
V
,
( V = ∫∫∫ d x d y d z为Ω的体积 ) Ω
上页 下页 返回 结束
若物体为占有xOy 面上区域 D 的平面薄片 其面密度 的平面薄片, 若物体为占有 则它的质心坐标 质心坐标为 则它的质心坐标为
上页 下页 返回 结束
三、物体的质心
设空间有n个质点 设空间有 个质点, 分别位于 (xk , yk , zk ) , 其质量分别 个质点 为 mk ( k =1, 2, L, n ) ,由力学知 该质点系的质心坐标 由力学知,
∑xk mk
为
n
x=
k =1 n
∑yk mk
, y=
k =1 n
n
∑zk mk
∴ dA = 1 + f x2 + f y2 dσ 曲面S的面积元素 曲面S
∴ A = ∫∫ 1 + f x2 + f y2 dσ ,
D
∂z ∂z A = ∫∫ 1 + (∂x )2 + (∂y )2dxdy 曲面面积公式为: 曲面面积公式为: Dxy
上页
下页
返回
结束
小结 1. 设曲面 S 的方程为:z = f ( x , y ) 的方程为:
设曲面的方程为: 3.设曲面的方程为:y = h( z , x ) 则曲面面积公式为: 则曲面面积公式为: A =
∫∫
Dzx
1+ (
∂y 2 ∂z
) + ( ) dzdx.
∂y 2 ∂x
上页 下页 返回 结束
例 4. 求球面 x 2 + y 2 + z 2 = a 2 含在圆柱体 2 2 x + y = ax 内部的那部分面积 内部的那部分面积.
重积分典型例题

重积分典型例题
例 1 在下列积分中改变累次积分的次序: (1) 解 (2) 解
ò
b a
dx ò f ( x , y ) dy , ( a < b ) ;
a
x
ò
b a
dx ò f ( x , y ) dy = ò dy ò f ( x , y ) dx .
a a y 2 ax 2 ax - x 2 2 ax 2 ax - x 2
òò ( x - a )( y - b ) dxdy £ òò | x - a | | y - b | dxd y £ òò
D D
| x - a || y - b | dxdy
[ a ,b ]´[ c , d }
= ò | x - a | dx × ò | y - b | dy
a c b =æ - x ) dx + ò ( x - a ) dx ö ç òa (a ÷× a è ø
2 2
f ( x , y ) dx + ò dy ò x , y ) dy . y f (
2
2 a
2 a
a
2 a
例 2 计算下列重积分:
(1)
òò xy dxdy ,D 为抛物线 y
D p 2 òò xy dxdy = ò 2 xdx ò 0 D p 4 p 2 p 2 7 p 5 2 2 = × x 0 = . 3 7 21 2 px - 2 px
解
令 x = ar cos q , y = br sin q ,则 0 £ q £ 2 p , 0 £ r £ 1 ,
¶ ( x, y ) = abr .有 ¶ ( r , q )
数学分析21.6重积分的应用(含习题及参考答案)

第二十一章 重积分 6重积分的应用一、曲面的面积问题:设D 为可求面积的平面有界区域,函数f(x,y)在D 上具有连续的一阶偏导数,讨论由方程z=f(x,y), (x,y)∈D 所确定的曲面S 的面积.分析:对区域D 作分割T ,把D 分成n 个小区域σi (i=1,2,…,n). 曲面S 同时也被分割成相应的n 个小曲面片S i (i=1,2,…,n). 在每个S i 上任取一点M i , 作曲面在这一点的切平面πi , 并 在πi 上取出一小块A i , 使得A i 与S i 在xy 平面上的投影都是σi . 现在M i 附近,用切平面A i 代替小曲面片S i . 则当T 充分小时,有 △S=∑=∆ni i S 1≈∑=∆ni i A 1, 这里的△S, △S i , △A i 分别表示S, S i 和A i 的面积.∴当T →0时,可用和式∑=∆ni i A 1的极限作为S 的面积.建立曲面面积计算公式:∵切平面πi 的法向量就是曲面S 在点M i (ξi ,ηi ,ζi )处的法向量, 记其与z 轴的夹角为γi , 则|cos γi |=),(),(1122i i yi i xf f ηξηξ++.∵A i 在xy 平面上投影为σi , ∴△A i =iiγσcos ∆=i i i y i i x f f σηξηξ∆++),(),(122. 又和数∑=∆ni i A 1=∑=∆++ni i i i y i i x f f 122),(),(1σηξηξ是连续函数),(),(122y x f y x f y x ++在有界闭区域D 上的积分和,∴当T →0时,有△S=∑=→∆++ni i i i y i i x T f f 1220),(),(1lim σηξηξ=⎰⎰++Dy x dxdy y x f y x f ),(),(122, 或△S=∑=→∆ni i iT 1cos limγσ=⎰⎰∧Dz n dxdy ),cos(,其中),cos(∧z n 为曲面的法向量与z 轴正向夹角的余弦.例1:求圆锥z=22y x +在圆柱体x 2+y 2≤x 内那一部分的面积. 解:由x 2+y 2≤x, 得D={(r,θ)|0≤r ≤21, 0≤θ≤2π}, 又z x =22y x x +=r r θcos =cos θ, z y =22yx y+=r r θsin =sin θ, ∴△S=⎰⎰++Dyxdxdy z z 221=⎰⎰πθ202102rdr d =π42.例2:设平面光滑曲线的方程为y=f(x), x ∈[a,b] (f(x)>0). 求证:此曲线绕x 轴旋转一周得到的旋转曲面的面积为: S=⎰'+ba dx x f x f )(1)(22π.证:由上半旋转面方程为z=22)(y x f -, 得 z x =22)()()(yx f x f x f -', z y =22)(yx f y --. 即有221yxz z ++=2222222)()()()(1yx f y y x f x f x f -+-'+=2222)())(1)((yx f x f x f -'+. ∴S=⎰⎰--'+b a x f x f dy y x f x f x f dx )()(222)()(1)(2=⎰⎰-'+b a x f dyy x f dx x f x f )(0222)(1)(1)(4=⎰⎰---'+ba x f x yf d x f y dx x f x f )(01222))(()(11)(1)(4=⎰⎰-'+b a dt tdx x f x f 102211)(1)(4=⎰'+b adx x f x f )(1)(22π.注:若空间曲面S 由参量方程:x=x(u,v),y=y(u,v),z=z(u,v),(u,v)∈D 确定, 其中x(u,v), y(u,v), z(u,v)在D 上具有连续一阶偏导数,且),(),(v u u y x ∂,),(),(v u u z y ∂,),(),(v u u x z ∂中至少有一个不等于0,则 曲面S 在点(x,y,z)的法线方向数为⎝⎛∂),(),(v u u z y ,),(),(v u u x z ∂,⎪⎪⎭⎫∂),(),(v u u y x , 则 它与z 轴的夹角的余弦的绝对值为:),cos(∧z n =222),(),(),(),(),(),(),(),(⎪⎪⎭⎫ ⎝⎛∂+⎪⎪⎭⎫ ⎝⎛∂+⎪⎪⎭⎫ ⎝⎛∂∂v u u y x v u u x z v u u z y v u u y x=2222222)())((),(),(v u v u v u vvvuuuz z y y x x z y x z y x v u u y x ++-++++∂=21),(),(FEG v u u y x -∂,其中E=222u u u z y x ++,G=222v v v z y x ++,F=v u v u v u z z y y x x ++.当),(),(v u u y x ∂≠0,则有△S=⎰⎰∧Dz n dxdy ),cos(=dudv z n v u u y x D ⎰⎰'∧∂),cos(),(),(=dudv F EG D ⎰⎰'-2.例3:求球面上两条纬线和两条经线之间 的曲面的面积(图中阴影部分). 解:设球面方程为:(R 为球的半径). x=Rcos ψcos φ,y=Rcos ψsin φ, z=Rsin ψ.由E=222ψψψz y x ++=R 2, G=222ϕϕϕz y x ++=R 2cos 2ψ, F=ϕψϕψϕψz z y y x x ++=0, 得2F EG -=R 2cos ψ. ∴△S=⎰⎰2121cos 2ψψϕϕψψϕd R d =R 2(φ2-φ1)(sin ψ2-sin ψ1).二、质心引例:设V 是密度函数为ρ(x,y,z)的空间物体,ρ(x,y,z)在V 上连续. 为求得V 的质心坐标公式,先对V 作分割T ,在属于T 的每一小块v i 上任取一点(ξi ,ηi ,ζi ),则小块v i 的质量可用ρ(ξi ,ηi ,ζi )△v i 近似代替. 若把每一小块看作质量集中在(ξi ,ηi ,ζi )的质点时,整个物体就可用这n 个质点的质点系来近似代替. 由于质点系的质心坐标公式为:∑∑==∆∆=ni iiiini iiiiin v v x 11),,(),,(ζηξρζηξρξ, ∑∑==∆∆=ni iiiini iiiiin v v y 11),,(),,(ζηξρζηξρη, ∑∑==∆∆=n i iiiini ii i i in v v z 11),,(),,(ζηξρζηξρζ.当T →0时,n x , n y , n z 的极限x , y , z 就定义为V 的质心坐标,即⎰⎰⎰⎰⎰⎰=VVdVz y x dVz y x x x ),,(),,(ρρ, ⎰⎰⎰⎰⎰⎰=VVdVz y x dVz y x y y ),,(),,(ρρ, ⎰⎰⎰⎰⎰⎰=VVdVz y x dVz y x z z ),,(),,(ρρ.当物体V 的密度均匀即ρ为常数时,则有⎰⎰⎰∆=VxdV Vx 1, ⎰⎰⎰∆=VydV Vy 1, ⎰⎰⎰∆=VzdV Vz 1, 这里△V 为V 的体积.又密度分布为ρ(x,y)的平面薄板D 的质心坐标为:⎰⎰⎰⎰=DDd y x d y x x x σρσρ),(),(, ⎰⎰⎰⎰=DDd y x d y x y y σρσρ),(),(. 当平面薄板的密度均匀时,即ρ为常数时,则有⎰⎰∆=Dxd D x σ1, ⎰⎰∆=D yd D y σ1, △D 为薄板D 的面积.例4:求密度均匀的上半椭球体的质心.解:设椭球体由不等式a x 2+by 2+c z 2≤1表示.由对称性知x =0, y =0, 又由ρ为常数,得z =⎰⎰⎰⎰⎰⎰VVdVdVz ρρ=abc abc ππ3242=83c .三、转动惯量质点A 对于轴l 的转动惯量J 是质点A 的质量m 和A 与转动轴l 的距离r 的平方的乘积,即J=mr 2.设ρ(x,y,z)为空间物体V 的密度分布函数,它在V 上连续. 对V 作分割T ,在属于T 的每一小块v i 上任取一点(ξi ,ηi ,ζi ),则v i 的质量可用ρ(ξi ,ηi ,ζi )△v i 近似代替. 当以质点系{(ξi ,ηi ,ζi ), i=1,2,…, n}近似替代V 时,质点系对于x 轴的转动惯量为:i i i i ni i i x v J n∆+=∑=),,()(122ζηξρζη.当T →0时,上述积分和的极限就是物体V 对于x 轴的转动惯量 J x =⎰⎰⎰+VdV z y x z y ),,()(22ρ. 类似地,V 对于y 轴与z 轴的转动惯量分别为:J y =⎰⎰⎰+VdV z y x x z ),,()(22ρ, J z =⎰⎰⎰+VdV z y x y x ),,()(22ρ.同理,V 对于坐标平面的转动惯量分别为:J xy =⎰⎰⎰VdV z y x z ),,(2ρ, J yz =⎰⎰⎰VdV z y x x ),,(2ρ, J xz =⎰⎰⎰VdV z y x y ),,(2ρ.平面薄板对于坐标轴的转动惯量分别为:J x =⎰⎰Dd y x y σρ),(2, J y =⎰⎰Dd y x x σρ),(2. 以及有J l =⎰⎰Dd y x y x r σρ),(),(2,其中l 为转动轴, r(x,y)为D 中点(x,y)到l 的距离函数.例5:求密度均匀的圆环D 对于垂直于圆环面中心轴的转动惯量. 解:设圆环D 为R 12≤x 2+y 2≤R 22, 密度为ρ, 则D 中任一点(x,y)与转轴的距离平方为x 2+y 2, 于是转动惯量为:J=⎰⎰+Dd y x σρ)(22=⎰⎰21320R R dr r d πθρ=2πρ(R 24-R 14)=例6:求均匀圆盘D 对于其直径的转动惯量.解:设D 为x 2+y 2≤R 2, 密度为ρ, D 内任一点(x,y)与y 轴的距离为|x|, 于是转动惯量为:(m 为圆盘质量) J=⎰⎰Dd x σρ2=⎰⎰Rdr r d 02320cos θθρπ=⎰πθθρ2024cos 4d R =44R ρπ=42mR .例7:设某球体的密度与球心的距离成正比,求它对于切平面的转动惯量.解:设球体由x 2+y 2+z 2≤R 2表示,密度为k 222z y x ++, k 为比便常数. 切平面方程为x=R, 则球体对于平面x=R 的转动惯量为: J=k ⎰⎰⎰-++VdV x R z y x 2222)(=k ⎰⎰⎰-ππϕθϕϕθ003220sin )cos sin (Rdr r r R d d=kR 6⎰⎰⎪⎭⎫ ⎝⎛+-ππϕθϕθϕθ023220cos sin 61cos sin 5241d d =⎰πθθ2026cos 911d kR =911k πR 6.四、引力求密度为ρ(x,y,z)的立体对立体外质量为1的质点A 的引力.设A 的坐标为(ξi ,ηi ,ζi ),V 中点的坐标用(x,y,z)表示. V 中质量微元dm=ρdV 对A 的引力在坐标轴上的投影为 dF xyz其中K 为引力系数, r=222)()()(ζηξ-+-+-z y x 是A 到dV 的距离,于是 力F 在三个坐标轴上的投影分别为: F x =K ⎰⎰⎰-VdV r x ρξ3, F y =K ⎰⎰⎰-V dV r y ρη3, F z =K ⎰⎰⎰-VdV r z ρζ3, 所以F=F x i+F y j+F z k.例8:设球体V 具有均匀的密度ρ, 求V 对球外一点A(质量为1)的引力(引力系数为k).解:设球体为x 2+y 2+z 2≤R 2,球外一点坐标为(0,0,a) (R<a). 则F x =F y =0,F z =k ⎰⎰⎰-++-V dV a z y x a z ρ2/3222])([=k ρ⎰⎰⎰-++--zD R R a z y x dxdydz a z 2/3222])([)(, 其中D z ={(x,y)|x2+y2≤R 2-z 2}. 运用极坐标计算得: F z =k ρdr a z r rd dz a z z R RR ⎰⎰⎰---+-2202/32220])([)(πθ =2πk ρ⎰-+----R R dz aaz R a z )21(22=2πk ρ⎪⎪⎭⎫⎝⎛+--++-+-⎰-R R dz a az R R a a az R a R 22222222212= 2πk ρ⎥⎦⎤⎢⎣⎡-+----+---⎰⎰--RRRRaz d a az R a R a az d a az R a R )2(214)2(241222222222=2πk ρ⎥⎦⎤⎢⎣⎡+---+-----RRRRa az R a R a a az R a R 22222322222)2(612 =2πk ρ⎥⎦⎤⎢⎣⎡-++----222233)(6)()(2a R a R a a R R a R=2πk ρ⎪⎪⎭⎫⎝⎛-+++-232332a R R a R R R =2334a R k ρπ-. (注:z ≤R<a)习题1、求曲面az=xy 包含在圆柱x 2+y 2=a 2内那部分的面积.解:∵z x =a y, z y =ax , D={(r,θ)|0≤r ≤a, 0≤θ≤2π}, ∴曲面面积为: S=⎰⎰⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+Ddxdy a x a y 221=⎰⎰+a dr a r r d 022201πθ=)122(322-a π.2、求锥面z=22y x +被柱面z 2=2x 所截部分的曲面面积. 解:且面在xy 平面的投影区域为:D={(r,θ)|0≤r ≤1, 0≤θ≤2π}, 且z x =22yx x +, z y =22yx y +, ∴曲面面积为:S=⎰⎰⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++Ddxdy y x y y x x 2222221=⎰⎰10202rdr d πθ=π2.3、求下列均匀密度的平面薄板质心:(1)半椭圆2222by a x +≤1, y ≥0;(2)高为h, 底分别为a 和b 的等腰梯形.解:(1)设质心位置为(x ,y ), 由对称性得x =0.y =⎰⎰⎰⎰DDd yd σρσρ=⎰⎰⎰⎰DDd yd σσ=⎰⎰Dyd ab σπ2=dr r ab d ab ⎰⎰πθθπ122sin 2=π34b . (2)不妨设a 为下底,以下底中点为原点建立直角坐标系,则 D={(x,y)|l 1(y)≤x ≤l 2(y),0≤y ≤h}.设质心位置为(x ,y ), 由对称性得x =0.又等腰三角形的面积为2)(hb a +, ∴y =⎰⎰+D yd h b a σ)(2=⎰⎰+h y l y l dx ydy h b a 0)()(21)(2=⎰⎥⎦⎤⎢⎣⎡+---+--+h ydy a h y h a b a h y h b a h b a 02)(22)(2)(2=⎰⎥⎦⎤⎢⎣⎡+--+h ydy a h y h b a h b a 0)()(2=⎰⎪⎭⎫ ⎝⎛+-+h dy by y h b a h b a 02)(2=h b a a b )(32++. 其中:l 1(y): x=2)(2a h y h a b ---; l 2(y): x=2)(2ah y h b a +--.4、求下列均匀密度物体的质心.(1)z ≤1-x 2-y 2, z ≥0;(2)由坐标面及平面x+2y-z=1所围的四面体. 解:(1)设质心为(x ,y ,z ), 由对称性x =y =0, 应用柱面坐标变换有,z =⎰⎰⎰⎰⎰⎰VVdV dV z ρρ=⎰⎰⎰⎰⎰⎰--221020110201r r dz r d r d zdz r d r d ππθθ=dr r r dr r r )1()1(212102210--⎰⎰=31. (2)设质心为(x ,y ,z ),∵V=⎰⎰⎰VdV =121, ∴x =⎰⎰⎰--+21001211x y x dz dy xdx V =⎰⎰---2101)21(12x dy y x xdx =⎰-1024)1(12dx x x =41. y =⎰⎰⎰--+yy x dz dx ydy V 210122101=⎰⎰---ydx x y ydy 210210)21(12=⎰-21022)21(12dy y y =81. z =⎰⎰⎰--+yy x zdz dx dy V21012211=⎰⎰--+-ydx y x dy 2102210)12(6=⎰--21033)21(6dy y =41-.5、求下列均匀密度的平面薄板的转动惯量: (1)半径为R 的圆关于其切线的转动惯量;(2)边长为a 和b, 且夹角为φ的平行四边形,关于底边b 的转动惯量.解:(1)设切线为x=R, 密度为ρ.则对任一点P(x,y)∈D, P 到x=R 的距离为R-x ,从而转动惯量 J=ρ⎰⎰-Dd x R σ2)(=ρ⎰⎰+-Rdr r Rr R r d 022220)cos cos 2(θθθπ=ρ⎰+-πθθθ2024)cos 41cos 3221(d R= R 4. (2)设密度为ρ. 以底边为x 轴,左端点为原点,则转动惯量 J=⎰⎰Dd y σ2=ρ⎰⎰+by y a dx dy y ϕϕϕcot cot sin 02=3sin 33ϕρb a .6、计算下列引力:(1)均匀薄片x 2+y 2≤R 2, z=0对于轴上一点(0,0,c) (c>0)处的单位质量的引力;(2)均匀柱体x 2+y 2≤a 2, 0≤z ≤h 对于点P(0,0,c) (c>h)处的单位质量的引力;(3)均匀密度的正圆锥体(高h, 底半径R)对于在它的顶点处质量为m 的质点的引力.解:(1)根据对称性知引力方向在z 轴上,∴F z =0, F y =0.F z =k ρ⎰⎰++Ddxdy c y x c 2/3222)(=kc ρ⎰⎰+R dr c r r d 02/32220)(πθ=2k .∴F={0,0,2k }.(2)根据对称性知引力方向在z 轴上,∴F z =0, F y =0. F z =k ρ⎰⎰⎰-++-VdV c z y x c z 2/3222])([=k ρ⎰⎰⎰-+-a h dr c z r rd dz c z 02/322200])([)(πθ=-2k πρdz c z a c z h⎰⎥⎥⎦⎤⎢⎢⎣⎡-+-+022)(1=2k πρ[]h c h a c a --+-+2222)(. ∴F={0,0,2k πρ[]h c h a c a --+-+2222)(}.(3)以圆锥体的顶点为原点, 对称轴为z 轴建立xyz 三维直角坐标系. 根据对称性知引力方向在z 轴上,∴F z =0, F y =0.F z =k ρm ⎰⎰⎰++V dV z y x z 2/3222)(=k ρm ⎰⎰⎰+R hrR dz z r zrdr d 02/322020)(πθ=2k πR ρm ⎪⎪⎭⎫⎝⎛++-22221R h R h R . ∴F={0,0, 2k πR ρm ⎪⎪⎭⎫ ⎝⎛++-22221R h R h R }.7、求曲面⎪⎩⎪⎨⎧=+=+=ψϕψϕψsin sin )cos (cos )cos (a z a b y a b x (0≤φ≤2π, 0≤ψ≤2π) 的面积,其中常数a,b 满足0≤a ≤b.解:∵x φ=-(b+acos ψ)sin φ, y φ=(b+acos ψ)cos φ, z φ=0; x ψ=-asin ψcos φ, y ψ=-asin ψsin φ, z ψ=acos ψ.∴E=222ϕϕϕz y x ++=(b+acos ψ)2, G=222ψψψz y x ++=a 2, F=ψϕψϕψϕz z y y x x ++=0. ∴S=σd F EG D ⎰⎰'-2=σψd a b a D ⎰⎰'+)cos (=⎰⎰+ππψψϕ2020)cos (d a b d a =4ab π2.8、求螺旋面⎪⎩⎪⎨⎧===ϕϕϕb z r y r x sin cos (0≤r ≤a, 0≤φ≤2π) 的面积.解:∵x r =cos φ, y r =sin φ, z r =0; x φ=-rsin φ, y φ=rcos φ, z φ=b.∴E=222r r r z y x ++=1, G=222ϕϕϕz y x ++=r 2+b 2, F=ϕϕϕz z y y x x r r r ++=0.∴S=σd F EG D ⎰⎰'-2=σd b r D ⎰⎰'+22=⎰⎰+πϕ20022d dr b r a=π⎪⎪⎭⎫⎝⎛++++b b a a b b a a 22222ln .9、求边长为a 密度均匀的正方体关于其任一棱边的转动变量. 解:以正方体的一个顶点为原点,顶点上方的棱为z 轴,使 正方体处于第一卦限中,则正方体对z 轴上的棱的转动变量为: J z =ρ⎰⎰⎰+V dV y x )(22=ρ⎰⎰⎰+aaadz y x dy dx 00220)(=a ρ⎰⎰+aady y x dx 0220)(=a ρ⎰+adx a ax 032)31(=32a 5ρ. (ρ为正方体密度)。
重积分的运用举例

2R cosφ r 2 sinφ dr
4π R3 ( 1 cos4α )
0
0
0
3
例2.求双曲抛物面z xy ,圆柱面 x 2 y ax ( a )与平面z
a 所围成的体积
z x 2 y 2 ax
xy
y
z
a
o
x
例2.求双曲抛物面z xy ,圆柱面 x 2 y ax ( a )与平面z
2a2
0
0a
a2 (6 2 5 5 1). 6
Hw p199 1(3,5,7).
三. 物体的质量
占平面区域 D,面密度为 ( x, y),则质量
m ( x, y)dxdy
D
占空间区域 ,体密度为 ( x, y, z),则质量
m ( x, y, z)dxdydz
例9. 某物体所占空间由x2 y2 z2 2 和 z x2 y2 所确定,其任一点处的密度和该点到球心的距离 的平方成正比,且在球面上密度等于1,求该物体 的质量;
Dxy
0
a 2 r 2
rd r
b3 ( 2 b ) 3 4a
.
问题:
.
. .
1 是不是曲顶柱体?
.
2 用哪种坐标系?
柱系. (球系?需分块儿!)
上顶: z b2 r2
下底:z a a2 r2
3 交线 L的方程?
r2 b2 b4 4a 2
4 Dxy ?
.
x
y
二. 曲面的面积
引理
0
Pi Ai
x
S f x ( x, y) f y ( x, y)dxdy
D
.
.
.
.
i (xi , yi)
高等数学三重积分例题

高等数学三重积分例题一、计算三重积分∭_varOmega z dV,其中varOmega是由锥面z = √(x^2)+y^{2}与平面z = 1所围成的闭区域。
1. 利用柱坐标计算在柱坐标下x = rcosθ,y = rsinθ,z = z,dV = rdzdrdθ。
锥面z=√(x^2)+y^{2}在柱坐标下就是z = r。
由锥面z = r与平面z = 1所围成的闭区域varOmega,其在柱坐标下的范围为:0≤slantθ≤slant2π,0≤slant r≤slant1,r≤slant z≤slant1。
2. 计算积分则∭_varOmegaz dV=∫_0^2πdθ∫_0^1rdr∫_r^1zdz。
先计算关于z的积分:∫_r^1zdz=(1)/(2)(1 r^2)。
再计算关于r的积分:∫_0^1r×(1)/(2)(1 r^2)dr=(1)/(2)∫_0^1(rr^3)dr=(1)/(2)((1)/(2)-(1)/(4))=(1)/(8)。
最后计算关于θ的积分:∫_0^2πdθ = 2π。
所以∭_varOmegaz dV=(1)/(8)×2π=(π)/(4)。
二、计算三重积分∭_varOmega(x + y+z)dV,其中varOmega是由平面x = 0,y = 0,z = 0及x + y+z = 1所围成的四面体。
1. 利用直角坐标计算对于由平面x = 0,y = 0,z = 0及x + y + z=1所围成的四面体varOmega,其范围为0≤slant x≤slant1,0≤slant y≤slant1 x,0≤slant z≤slant1 x y。
则∭_varOmega(x + y + z)dV=∫_0^1dx∫_0^1 xdy∫_0^1 x y(x + y + z)dz。
2. 计算积分先计算关于z的积分:∫_0^1 x y(x + y+z)dz=(x + y)z+(1)/(2)z^2big|_0^1 x y=(x + y)(1 x y)+(1)/(2)(1 x y)^2展开得x + y-(x^2+2xy + y^2)+(1)/(2)(1 2x 2y+x^2+2xy + y^2)进一步化简为x + y x^2-2xy y^2+(1)/(2)-x y+(1)/(2)x^2+xy+(1)/(2)y^2即(1)/(2)-x^2-xy (1)/(2)y^2。
高等数学重积分.pptx

/61
【例1】
【解】
如图
X—型域
作直线穿越Ω内部
第43页/共61页
/61
故
则
第44页/共61页
/61
【解】
得交线投影区域
第45页/共61页
/61
【解】
如图
第46页/共61页
/61
【例4】
【解】
如图示
第47页/共61页
/61
【方法Ⅱ】
截面法(切片法)【 “先二后一”】
【“先二后一”法的一般步骤】
第15页/共61页
/61
【例3】
【解】
D是Y—型域也可以视X—型域
先求交点
第16页/共61页
/61
[法1]
视为X—型域
(计算较繁)
本题进一步说明两种积分次序的不同计算效果!
[法2]
(计算简单)
第17页/共61页
/61
【例4】
【解】
X-型
第18页/共61页
/61
【例5】
【解】
先去掉绝对值符号,如图
第8页/共61页
/61
公式2
第9页/共61页
/61
(3)[既非X-型域也非Y-型域]
在分割后的三个区域上分别都是X-型域(或Y—型域)
如图 , 则必须分割.
由二重积分积分区域的可加性得
2.【二重积分的计算步骤可归结为】
①画出积分域的图形,标出边界线方程;
②根据积分域特征,确定积分次序;
③根据上述结果,化二重积分为二次积分并计算.
第48页/共61页
/61
(?)
Dz之面积
作业: 同济P164: 4,5
高等数学 重积分 (9.4.2)--重积分的应用

习题 9.41. 求下列平面闭区域D 的面积.(1) D 由曲线e ,e x x y y -==及1x =围成;(2) D 由曲线21,1y x y x =+=--围成;(3) D 由双纽线22222()4()x y x y +=-围成;(4) {(cos ,sin )|24sin }D r r r θθθ=≤≤;(5) 1(cos ,sin )1cos 2D r r r θθθ⎧⎫=≤≤+⎨⎬⎩⎭; (6) D 由曲线2223()2(0)x y ax a +=>围成;(7) D 由椭圆22(234)(567)9x y x y +++++=围成;(8) D 是由曲线3y x =,34y x =,3x y =,34x y =所围成的位于第一象限部分;2. 利用二重积分计算下列各题中立体Ω的体积.(1) Ω为第一卦限中由圆柱面224y z +=与平面2,0,0x y x z ===所围成;(2) Ω由平面0,0,y z y x ===及6236x y z ++=围成;(3) 22{(,,)|1x y z x y z Ω=+≤≤+;(4) 222{(,,)|1,11}x y z x y z z Ω=+≤+-≤≤;(5) Ω由平面0,0,0,1x y z x y ===+=及抛物面226x y z +=-围成.3. 设平面薄片所占的闭区域是由直线2,x y y x +==和x 轴所围成,它的面密度22(,)x y x y ρ=+,求该薄片的质量.4. 在一半径为R 的球体内,以某条直径为中心轴用半径为r 的圆柱形钻孔机打一个孔(r R <),求剩余部分的体积. 若圆柱形孔的侧面高为h ,证明所求体积只与h 有关,而与r 和R 无关.5. 利用三重积分求所给立体Ω的体积.(1) Ω是由柱面2x y =和平面0z =及1x z +=所围成的立体;(2) Ω是由抛物面22z x y =+和所2218z x y =--围成的立体;(3) Ω为圆柱体cos r a θ≤内被球心在原点、半径为a 的球所割下的部分;(4) Ω是由单叶双曲面2222x y z R +-=和平面0,z z H ==围成的立体;(5) 1Ω是Oxyz 坐标系中体积为5的立体,Ω为1Ω在变换448u x y z =++,274v x y z =++,43w x y z =++下的像.6. 已知物体Ω的底面是xOy 平面上的圆域222{(,)|}x y x y R +≤,当用垂直于x 轴的平面截Ω均得到正三角形, Ω的体密度函数为(,,)1x x y z Rρ=+,试求其质量. 7. 计算下列曲面的面积.(1) 平面63212x y z ++=位于第一卦限部分的曲面;(2) 正弦曲线的一拱sin y x =(0πx ≤≤)绕x 轴旋转一周而成的曲面;(3) 球面2222x y z a ++=含在圆柱面22x y ax +=内部的曲面;(4) 曲面222z x y =+被柱面22222()x y x y +=-所截下部分的曲面;(5) 抛物面22z y x =-夹在圆柱面221x y +=和224x y +=之间部分的曲面;(6) 球面22223x y z a ++=(0z >)和抛物面222x y az +=(0a >)所围成立体的表面;(7) 圆柱面229x y +=,平面4312y z +=和4312y z -=所围成立体的表面;(8) 两个底面半径都为R , 轴相互正交的圆柱所围立体的表面.8. 求占有下列区域D , 面密度为(,)x y μ的平面薄片的质量与质心:(1) D 是以(0,0),(2,1),(0,3)为顶点的三角形闭区域, (,)x y x y μ=+;(2) D 是第一象限中由抛物线2y x =与直线1y =围成的闭区域, (,)x y xy μ=;(3) D 是由心脏线1sin r θ=+所围成的闭区域, (,)2x y μ=;(4) 22{(,)|(1)1}D x y x y =+-≤, (,)|1|x y y y μ=+-.9. 计算下列立体Ω的体积和形心:(1) 2222{(,,)|3633}x y z x y z x y Ω=+≤≤--;(2) 2222(,,)1x y x y z z a b ⎧⎫⎪⎪Ω=+≤≤⎨⎬⎪⎪⎩⎭; (3) Ω位于锥面3πϕ=上方,球面4cos ρϕ=下方.10. 若半径为R 的半球体上任一点密度与该点到底面之距离成正比(比例系数为k ), 求其质量与质心.11. 求下列平面薄片或物体对指定轴的转动惯量.(1) 均匀薄片{(cos ,sin )|2sin 4sin }D r r r θθθθ=≤≤(面密度为1)对极轴;(2) 底长为a ,高为h 的等腰三角形均匀薄片(面密度为1)对其高;(3) 质量为M , 半径为R 的非均匀球体(其上任一点的密度与球心到该点的距离成正比)对其直径;(4) 密度为1的均匀物体2222x y z ++≤,222x y z +≥对Oz 轴.12. 设物体Ω占有的区域为222{(,,)|,||}x y z x y R z H +≤≤,其密度为常数. 已知Ω关于x 轴及z 轴的转动惯量相等. 证明:2H R =.13. 求下列密度为1的均匀物体对指定质点的引力(引力常数为k ).(1) 高为h ,半顶角为α的圆锥体对位于其顶点的单位质量质点;(2) 柱体222x y R +≤(0z h ≤≤)对位于点0(0,0,)()M a a h >处的单位质量质点;(3) 半径为R 的球体对球内的单位质量质点P .。
高等数学第九章 重积分

第9章 重积分典型例题一、二重积分的概念、性质 1、二重积分的概念:d 01(,)lim(,)niiii Df x y f λσξησ→==∆∑⎰⎰其中:D :平面有界闭区域,λ:D 中最大的小区域的直径(直径:小区域上任意两点间距离的最大值者),i σ∆:D 中第i 个小区域的面积2、几何意义:当(,)0f x y ≥时,d (,)Df x y σ⎰⎰表示以曲面(,)z f x y =为曲顶,D 为底的曲顶柱体的体积。
所以d 1Dσ⎰⎰表示区域D 的面积。
3、性质(与定积分类似)::线性性、对积分区域的可加性、比较性质、估值性质、二重积分中值定理二、二重积分的计算1、在直角坐标系下计算二重积分(1) 若D 为X 型积分区域:12,()()a x b y x y y x ≤≤≤≤,则21()()(,)(,)by x ay x Df x y dxdy dx f x y dy =⎰⎰⎰⎰(2)若D 为Y 型积分区域:12,()()c y d x y x x y ≤≤≤≤,则21()()(,)(,)dx y cx yf x y dxdy dy f x y dx =⎰⎰(3X -型或者Y -型区域之和,如图,则123(,)(,)(,)(,)D D D f x y d x d y f x y d x d y f x y d x d y f x y d x d=++⎰⎰⎰⎰⎰⎰⎰(4(5)对称性的应用1(,)2(,),(,)0(,)DD f x y dxdy f x y dxdy f x y y D x f x y y ⎧=⎪⎨⎪⎩⎰⎰⎰⎰关于为偶函数区域关于轴对称, 关于为奇函数1(,)2(,),(,)0(,)D D f x y dxdy f x y dxdy f x y x D y f x y x ⎧=⎪⎨⎪⎩⎰⎰⎰⎰关于为偶函数区域关于轴对称, 关于为奇函数(6)积分顺序的合理选择:不仅涉及到计算繁简问题,而且又是能否进行计算的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例 利用二重积分的性质,估计积分2222(2)d Dx y x y σ+-⎰⎰ 的值,其中D 为半圆形区域224,0x y y +≤≥.解 我们先求函数2222(,)2f x y x y x y =+-在区域22{(,)4,0}D x y x y y =+≤≥上的最大值和最小值.由22220,420,x yf x xy f y x y '⎧=-=⎪⎨'=-=⎪⎩解得D 内驻点为(2,1)±,(2,1)2f ±=. 在边界1:0L y =(22)x -≤≤上,2()(,0)g x f x x ==在1L 上(,)f x y 的最大值为4,最小值为0.在边界222:4L x y +=(0)y ≥上,242()(,4)58(22)h x f x x x x x =-=-+-≤≤由3()4100h x x x '=-=得驻点123550,,22x x x ==-=,(0)(0,2)8h f ==. 5537()(,)2224h f ±=±=. 综上,(,)f x y 在D 上的最大值为8,最小值为0.又D 的面积为2π,所以由二重积分的估值性质知222202(2)d 82Dx y x y πσπ⋅≤+-≤⋅⎰⎰,即22220(2)d 16Dx y x y σπ≤+-≤⎰⎰.例 设D 为xoy 平面上以(1,1),(1,1),(1,1)---为顶点的三角形区域,1D 为D 在第一象限的部分,则(cos sin )()Dxy x y dxdy +=⎰⎰.(A )12cos sin D x y dxdy ⎰⎰ (B )12D xy dxdy ⎰⎰(C )14(cos sin )D xy x y dxdy +⎰⎰ (D )0解 区域D 如图所示,并记0D 为以(1,1),(1,1),(0,0)-为顶点的三角形区域,则0D 关于y 轴对称,且1D 为0D 在y 轴右侧的部分区域,区域0D D -关于x 轴对称.又xy 关于x 和y 均为奇函数;而cos sin x y 关于x 为偶函数.关于y 为奇函数,由二重积分的奇偶对称性得0,0D D D xy dxdy xy dxdy -==⎰⎰⎰⎰,故0Dxy dxdy =⎰⎰;1cos sin 2cos sin ,cos sin 0D D D D x ydxdy x y dxdy x y dxdy -==⎰⎰⎰⎰⎰⎰,故1cos sin 2cos sin DD x y dxdy x y dxdy =⎰⎰⎰⎰.所以1(cos sin )cos sin 2cos sin DDDD xy x y dxdy xy dxdy x y dxdy x y dxdy +=+=⎰⎰⎰⎰⎰⎰⎰⎰.因此我们选(A ).例 设区域}0,0,4),{(22≥≥≤+=y x y x y x D ,()f x 为D 上的正值连续函数,,a b 为常数,则Dσ= .解 由题意知,D 关于直线y x =对称,由二重积分轮换对称性得DσDσ=12D d σ=⎰⎰ 211()π2π22242D D a b a b a b a b d d σσ+++=+==⋅⋅=⎰⎰⎰⎰. 因此,我们应填“π2a b+.”例 计算二次积分220sin xydx dy yππ⎰⎰解 积分区域如图,则 原式20sin yydy dx yπ=⎰⎰2200sin sin sin y dy ydy ydy ππππ==+-⎰⎰⎰4=;例设D为椭圆区域22(1)(2)149x y--+≤,计算二重积分()Dx y dxdy+⎰⎰.解令12cos,23sin,x ry r=+⎧⎨=+⎩θθ则D的极坐标表示为01,02r≤≤≤≤θπ,且(,)6(,)x yrrθ∂=∂.由式(10.2.8),可得2100()6(32cos3sin)Dx y dxdy d r r rdr+=++⎰⎰⎰⎰πθθθ2326(cos sin)1823d=++=⎰πθθθπ.例计算二重积分⎰⎰+Dyxyx dd)(,其中D为.122++≤+yxyx解解法1 D的边界曲线为,2/3212122=⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛-yx这是一个以⎪⎭⎫⎝⎛21,21为圆心,23为半径的圆域,采用一般的变量代换,令⎪⎪⎩⎪⎪⎨⎧-=-=,21,21yvxu即作变换⎪⎪⎩⎪⎪⎨⎧+=+=,21,21vyux于是D变为.2/3:22≤+'vuD.111),(),(==∂∂=vuyxJ所以,()d d(1)1d dD Dx y x y u v u v'+=++⋅⋅⎰⎰⎰⎰(再用极坐标).23023d d )cos (sin d d d )1sin cos (d 222/30202/3020ππθθθθθθθππ=+⎪⎪⎭⎫ ⎝⎛⋅=++=++=⎰⎰⎰⎰⎰⎰r r r r rr r r D解法2 由于积分区域D :23212122≤⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-y x 关于21=x (即)021=-x 对称,故⎰⎰=⎪⎭⎫ ⎝⎛-D y x x .0d d 21 类似地,由于D 关于⎪⎭⎫⎝⎛=-=02121y y 即对称,故 ⎰⎰=⎪⎭⎫ ⎝⎛-D y x y .0d d 21 从而.2323d d d d 1d d 21d d 21d d )(2ππ=⎪⎪⎭⎫ ⎝⎛⋅===⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰面积D y x y x y x y y x x y x y x D D D DD例 计算y x e I Dy xd d },max{22⎰⎰=,其中,}10,10|),{(≤≤≤≤=y x y x D解 D 由x y =分为D 2,D 2两部分,如图.⎪⎩⎪⎨⎧≤≤≤≤≤≤≤≤=1,10:,0,10:,21},max{2222y x x D e x y x D e e y x y x x e y y e x y x e y x e I yy xx D y D x d d d d d d d d 01010222212⎰⎰⎰⎰⎰⎰⎰⎰+=+=21110d d 2d d 2222x e x xe y e x x x xx ⎰⎰⎰⎰===.1102-==e e x例 利用二重积分计算定积分1(,0)ln b ax x I dx a b x-=>⎰解 因为1ln ln bb a btt aa x x x dt x x x-==⎰所以 ⎰⎰⎰⎰⎰⎪⎭⎫⎝⎛++=+=+===bab aba batta b t dt t dx x dt dx dt x I 11ln )1ln(11)(11例 ],[)(b a x f 为上的连续函数,且0)(>x f ,试利用二重积分证明.)()(1d )(2a b x f x x f baba-≥⎰⎰证 因为x x f y y f x x f x x f b a b a babad )(1d )(d )(1d )(⎰⎰⎰⎰=,d d )()(d d )()(y x y f x f y x x f y f DD⎰⎰⎰⎰≥= 其中 所以},,|),{(b y a b x a y x D ≤≤≤≤=⎰⎰⎰⎰⎰⎰+=DD bab ay x y f x f y x x f y f x x f x x f d d )()(d d )()(d )(1d )(2 y x y f x f y f x f y x y f x f x f y f DDd d )()()()(d d )()()()(22⎰⎰⎰⎰≥+=,)(2d d 22a b y x D-==⎰⎰亦即.)(d )(1d )(2a b x x f x x f baba-≥⎰⎰例 计算⎰1d )(x x xf ,其中⎰=21d int)(x t tS x f 解 当10,102≤≤≤≤x x 时⎰⎰⎰-===111222,d sin d sin d sin )(x x x y yy y y y t t tx f从而x y y y x x x xf x d d sin d )(101102⎰⎰⎰⎥⎦⎤⎢⎣⎡-= 图y x y yx y y y x x xDd d sin d sin d 1102⎰⎰⎰⎰-=⋅-=,其中D 曲线1,2==y x y ,和0=x 所围成,如图10-8。
改变积分顺序,则)11(cos 21cos 21d sin 21d 2sin d sin d d d sin 1101002100-==-=⎥⎦⎤⎢⎣⎡-=⋅-==⎰⎰⎰⎰⎰⎰y y y y x y y xy yx y y x y y x yy D原积分例 设二元函数,⎪⎩⎪⎨⎧≤+<+≤+=.2||||111||||),(222y x y x y x x y x f计算⎰⎰=Dd y x f I σ),(,其中}.2||||),{(≤+=y x y x D 解:由区域的对称性和被积函数的奇偶性、有⎰⎰⎰⎰=DD d y x f d y x f 1),(4),(σσ其中,D 1为D 位于第一象限部分,D 1由1=+y x 分成两部分:}10,10|),{(11≤≤-≤≤=x x y y x D 图 }.0,0,21|),{(12≥≥≤+≤=y x y x y x D⎰⎰⎰⎰⎰⎰++=12111d d 1d d ),(222D D D y x yx y x x d y x f σ因为⎰⎰⎰⎰⎰=-==-11102102102121d )1(d d d d D xx x x y x x y x x ⎰⎰⎰⎰⎰+=+==+++2sin cos 2sin cos 12022)12ln(2d cos sin 1d d d d 112πθθθθπθθθθr y x y x D所以 ).12ln(2431)12ln(21214d ),(++=⎥⎦⎤⎢⎣⎡++=⎰⎰Dy x f σ例 求∑∑==∞→n i nj n nj n i n112.2cos 1limπ 解 设平面区域D :,10,10≤≤≤≤y x 则二元函数y x y x f 2cos),(π=在D 上连续,二重积分⎰⎰Dy x y x f d d ),(存在,用平行于x 轴和y 轴的两组平行线把D 分成n 2个全等的正方形,如图,取,1,,2nn i n i ij i i =∆==σηξ则 .2cos 112cos ),(22nj n i nn n j n i f ij i i ππσηξ⋅=⋅⎪⎭⎫ ⎝⎛⋅⋅=故∑∑⎰⎰==→∞=ni nj D n y x y x n j n i n112d d 2cos 2cos 1lim ππ ⎰⎰=⋅=110.34d 2cosd ππy y x x 图例 设)(u f 有一阶导数且,9)0(,0)0(='=f f 求y x y x f t t y x t d d )(1lim 2230222+⎰⎰≤+→+。