陕西师范大学数学分析、高等代数2007真题
2007年陕西省高考数学试卷(理科)及解析

2007年陕西省高考数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)在复平面内,复数z=对应的点位于()A.第一象限B.第二象限C.第在象限D.第四象限2.(5分)已知全集U={1,2,3,4,5},集合A={x∈Z||x﹣3|<2},则集合∁u A 等于()A.{1,2,3,4}B.{2,3,4}C.{1,5}D.{5}Z3.(5分)抛物线y=x2的准线方程是()A.4y+1=0 B.4x+1=0 C.2y+1=0 D.2x+1=04.(5分)已知sinα=,则sin4α﹣cos4α的值为()A.﹣ B.﹣ C.D.5.(5分)各项均为正数的等比数列{a n}的前n项和为S n,若S10=2,S30=14,则S40等于()A.80 B.30 C.26 D.166.(5分)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是()A.B.C.D.7.(5分)已知双曲线C:﹣=1(a>0,b>0),以C的右焦点为圆心且与C的渐近线相切的圆的半径是()A. B. C.a D.b8.(5分)若函数f(x)的反函数为f﹣1(x),则函数f(x﹣1)与f﹣1(x﹣1)的图象可能是()A.B.C.D.9.(5分)给出如下三个命题:①四个非零实数a、b、c、d依次成等比数列的充要条件是ad=bc;②设a,b∈R,则ab≠0若<1,则>1;③若f(x)=log2x,则f(|x|)是偶函数.其中不正确命题的序号是()A.①②③B.①②C.②③D.①③10.(5分)已知平面α∥平面β,直线m⊂α,直线n⊂β,点A∈m,点B∈n,记点A、B之间的距离为a,点A到直线n的距离为b,直线m和n的距离为c,则()A.b≤a≤c B.a≤c≤b C.c≤a≤b D.c≤b≤a11.(5分)f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)+f(x)≤0,对任意正数a、b,若a<b,则必有()A.af(b)≤bf(a)B.bf(a)≤af(b)C.af(a)≤f(b) D.bf(b)≤f(a)12.(5分)设集合S={A0,A1,A2,A3,A4,A5},在S上定义运算“⊕”为:A i⊕A j=A k,其中k为i+j被4除的余数,i,j=0,1,2,3,4,5.则满足关系式(x ⊕x)⊕A2=A0的x(x∈S)的个数为()A.1 B.2 C.3 D.4二、填空题(共4小题,每小题4分,满分16分)13.(4分)=.14.(4分)已知实数x、y满足条件,则z=x+2y的最大值为.15.(4分)如图,平面内有三个向量、、,其中与与的夹角为120°,与的夹角为30°,且||=||=1,||=,若=λ+μ(λ,μ∈R),则λ+μ的值为.16.(4分)安排3名支教老师去6所学校任教,每校至多2人,则不同的分配方案共有种.(用数字作答)三、解答题(共6小题,满分74分)17.(12分)设函数f(x)=•,其中向量=(m,cos2x),=(1+sin2x,1),x∈R,且y=f(x)的图象经过点.(1)求实数m的值;(2)求f(x)的最小正周期.18.(12分)某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰,已知某选手能正确回答第一、二、三轮的问题的概率分别为、、,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手被淘汰的概率;(Ⅱ)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数学期望.19.(12分)如图,在底面为直角梯形的四棱锥P﹣ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,PA=4,AD=2,AB=2,BC=6.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)求二面角A﹣PC﹣D的大小.20.(12分)设函数f(x)=,其中a为实数.(Ⅰ)若f(x)的定义域为R,求a的取值范围;(Ⅱ)当f(x)的定义域为R时,求f(x)的单调减区间.21.(14分)已知椭圆C:(a>b>0)的离心率为,短轴一个端点到右焦点的距离为.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值.22.(12分)已知各项全不为零的数列{a k}的前k项和为S k,且S k=N*),其中a1=1.(Ⅰ)求数列{a k}的通项公式;(Ⅱ)对任意给定的正整数n(n≥2),数列{b k}满足(k=1,2,…,n﹣1),b1=1,求b1+b2+…+b n.2007年陕西省高考数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2007•陕西)在复平面内,复数z=对应的点位于()A.第一象限B.第二象限C.第在象限D.第四象限【分析】本题考查的是复数的计算.【解答】解:Z=,故选D.2.(5分)(2007•陕西)已知全集U={1,2,3,4,5},集合A={x∈Z||x﹣3|<2},则集合∁u A等于()A.{1,2,3,4}B.{2,3,4}C.{1,5}D.{5}Z【分析】由题意U={1,2,3,4,5},集合A={x∈Z||x﹣3|<2},解出集合A,然后根据交集的定义和运算法则进行计算.【解答】解:∵U={1,2,3,4,5},集合A={x∈Z||x﹣3|<2},∴A={2,3,4},∴C u A={1,5},故选C.3.(5分)(2007•陕西)抛物线y=x2的准线方程是()A.4y+1=0 B.4x+1=0 C.2y+1=0 D.2x+1=0【分析】根据抛物线的方程,可求得q,进而根据抛物线的性质可知其准线方程.【解答】解:抛物线y=x2,P=,准线方程为y=,即4y+1=0故选A.4.(5分)(2007•陕西)已知sinα=,则sin4α﹣cos4α的值为()A.﹣ B.﹣ C.D.【分析】用平方差公式分解要求的算式,两个因式中一部分用同角的三角函数关系整理,另一部分把余弦变为正弦,代入题目的条件,得到结论.【解答】解:sin4α﹣cos4α=(sin2α﹣cos2α)(sin2α+cos2α)=sin2α﹣cos2α=2sin2α﹣1=﹣,故选B.5.(5分)(2007•陕西)各项均为正数的等比数列{a n}的前n项和为S n,若S10=2,S30=14,则S40等于()A.80 B.30 C.26 D.16【分析】先由等比数列的前n项和公式列方程组解得q10,然后分别求出q40、,最后再次运用等比数列的前n项和公式求S40.【解答】解:由题意知等比数列{a n}的公比q>0,且q≠1,则有,得1+q10+q20=7,即q20+q10﹣6=0,解得q10=2,则q40=16,且代入①得=﹣2,所以=﹣2×(1﹣16)=30.故选B.6.(5分)(2007•陕西)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是()A.B.C.D.【分析】由题意确定正三棱锥的顶点到底面的距离为1,求出正三棱柱的棱长,求出底面面积,然后可得体积.【解答】解:由题意易知正三棱锥的顶点到底面的距离为1.∵底面是正三角形且球半径为1.∴底面边长为,∴底面积为,∴V=××1=.故选C.7.(5分)(2007•陕西)已知双曲线C:﹣=1(a>0,b>0),以C的右焦点为圆心且与C的渐近线相切的圆的半径是()A. B. C.a D.b【分析】由于双曲线的焦点在x轴上,所以其右焦点坐标为(c,0),渐近线方程为y=±x,则满足要求的圆的半径为右焦点到渐近线的距离,因此只需根据点到线的距离公式求之即可.【解答】解:由题意知,圆的半径是右焦点(c,0)到其中一条渐近线的距离,所以R=.故选D.8.(5分)(2007•陕西)若函数f(x)的反函数为f﹣1(x),则函数f(x﹣1)与f﹣1(x﹣1)的图象可能是()A.B.C.D.【分析】f(x)和f﹣1(x)关于y=x对称是反函数的重要性质;而将f(x)的图象向右平移a个单位后,得到的图象的解析式为f(x﹣a)而原函数和反函数的图象同时平移时,他们的对称轴也相应平移.【解答】解:函数f(x﹣1)是由f(x)向右平移一个单位得到,f﹣1(x﹣1)由f﹣1(x)向右平移一个单位得到,而f(x)和f﹣1(x)关于y=x对称,从而f(x﹣1)与f﹣1(x﹣1)的对称轴也是由原对称轴向右平移一个单位得到即y=x﹣1,排除B,D;A,C选项中各有一个函数图象过点(2,0),则平移前的点坐标为(1,0),则反函数必过点(0,1),平移后的反函数必过点(1,1),由此得:A选项有可能,C选项排除;故选A.9.(5分)(2007•陕西)给出如下三个命题:①四个非零实数a、b、c、d依次成等比数列的充要条件是ad=bc;②设a,b∈R,则ab≠0若<1,则>1;③若f(x)=log2x,则f(|x|)是偶函数.其中不正确命题的序号是()A.①②③B.①②C.②③D.①③【分析】①可取特殊值验证②a、b异号时,一定为负③由奇偶性定义判断.【解答】解:①ad=bc不一定使a、b、c、d依次成等比数列,如取a=d=﹣1,b=c=1;②a、b异号时不正确.③f(|x|)=f(x)=f(﹣x)成立.故选B.10.(5分)(2007•陕西)已知平面α∥平面β,直线m⊂α,直线n⊂β,点A∈m,点B∈n,记点A、B之间的距离为a,点A到直线n的距离为b,直线m和n的距离为c,则()A.b≤a≤c B.a≤c≤b C.c≤a≤b D.c≤b≤a【分析】此题根据平面与平面平行的判断性质,判断c最小,再根据点到直线距离和点到直线上任意点距离判断a最大.【解答】解:由于平面α∥平面β,直线m和n又分别是两平面的直线,则c即是平面之间的最短距离.而由于两直线不一定在同一平面内,则b一定大于或等于c,判断a和b时,因为B是n上任意一点,则a大于b.故选D.11.(5分)(2007•陕西)f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)+f(x)≤0,对任意正数a、b,若a<b,则必有()A.af(b)≤bf(a)B.bf(a)≤af(b)C.af(a)≤f(b) D.bf(b)≤f(a)【分析】先构造函数,再由导数与原函数的单调性的关系解决.【解答】解:xf′(x)+f(x)≤0⇒[xf(x)]′≤0⇒函数F(x)=xf(x)在(0,+∞)上为常函数或递减,又0<a<b且f(x)非负,于是有:af(a)≥bf(b)≥0①②①②两式相乘得:⇒af(b)≤bf(a),故选A.12.(5分)(2007•陕西)设集合S={A0,A1,A2,A3,A4,A5},在S上定义运算“⊕”为:A i⊕A j=A k,其中k为i+j被4除的余数,i,j=0,1,2,3,4,5.则满足关系式(x⊕x)⊕A2=A0的x(x∈S)的个数为()A.1 B.2 C.3 D.4【分析】本题为信息题,学生要读懂题意,运用所给信息式解决问题,对于本题来说,可用逐个验证法【解答】解:当x=A0时,(x⊕x)⊕A2=(A0⊕A0)⊕A2=A0⊕A2=A2≠A0当x=A1时,(x⊕x)⊕A2=(A1⊕A1)⊕A2=A2⊕A2=A4=A0当x=A2时,(x⊕x)⊕A2=(A2⊕A2)⊕A2=A0⊕A2=A2当x=A3时,(x⊕x)⊕A2=(A3⊕A3)⊕A2=A2⊕A2=A0=A0当x=A4时,(x⊕x)⊕A2=(A4⊕A4)⊕A2=A0⊕A2=A2≠A1当x=A5时,(x⊕x)⊕A2=(A5⊕A5)⊕A2=A2⊕A2=A0则满足关系式(x⊕x)⊕A2=A0的x(x∈S)的个数为:3个.故选C.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2007•陕西)=.【分析】先把通分,再消除零因子后简化为,由此能够求出的值.【解答】解:,故答案为.14.(4分)(2007•陕西)已知实数x、y满足条件,则z=x+2y的最大值为8.【分析】先由不等式组画出可行域,再把z=x+2y变形为,只需平移直线,即可发现当直线经过点A时z取得最大值.【解答】解:画出可行域△ABC,直线z=x+2y变形为,可见当直线经过点A时z取得最大.解得A(2,3),所以zmax=2+2×3=8.故答案为8.15.(4分)(2007•陕西)如图,平面内有三个向量、、,其中与与的夹角为120°,与的夹角为30°,且||=||=1,||=,若=λ+μ(λ,μ∈R),则λ+μ的值为6.【分析】过C作与的平行线与它们的延长线相交,可得平行四边形,然后将向量用向量与向量表示出即可.【解答】解:过C作与的平行线与它们的延长线相交,可得平行四边形,由∠BOC=90°,∠AOC=30°,由=||=1,||=得平行四边形的边长为2和4,λ+μ=2+4=6.故答案为6.16.(4分)(2007•陕西)安排3名支教老师去6所学校任教,每校至多2人,则不同的分配方案共有210种.(用数字作答)【分析】安排3名支教老师去6所学校任教,每校至多2人,分成两类解决,一类去三所学校,每校一人;另一类去两所学校,一校一人,一校两人.【解答】解:分两类,(1)每校1人:A63=120;(2)1校1人,1校2人:C32A62=90,不同的分配方案共有120+90=210.故答案为:210三、解答题(共6小题,满分74分)17.(12分)(2007•陕西)设函数f(x)=•,其中向量=(m,cos2x),=(1+sin2x,1),x∈R,且y=f(x)的图象经过点.(1)求实数m的值;(2)求f(x)的最小正周期.【分析】本题考查的知识点是平面向量数量积的运算及三角函数的周期及其求法,(1)由=(m,cos2x),=(1+sin2x,1),我们易出求f(x)=•的解析式(含参数m),同由y=f(x)的图象经过点,将点的坐标代入可以得到一个关于m的方程,解方程即可求出m的值.(2)由(1)的结论,我们可以写出函数f(x)的解析式,利用辅助角公式易将其转化为一个正弦型函数,然后根据正弦型函数的周期T=,求出f(x)的最小正周期.【解答】解:(1)f(x)=•=m(1+sin2x)+cos2x,∵图象经过点,∴,解得m=1.(2)当m=1时,,∴18.(12分)(2007•陕西)某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰,已知某选手能正确回答第一、二、三轮的问题的概率分别为、、,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手被淘汰的概率;(Ⅱ)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数学期望.【分析】(Ⅰ)求该选手被淘汰的概率可先求其对立事件该选手不被淘汰,即三轮都答对的概率;(Ⅱ)ξ的可能值为1,2,3,ξ=i表示前i﹣1轮均答对问题,而第i次答错,利用独立事件求概率即可.【解答】解:(Ⅰ)记“该选手能正确回答第i轮的问题”的事件为A i(i=1,2,3),则,,.∴该选手被淘汰的概率===.(Ⅱ)ξ的可能值为1,2,3.,=,P(ξ=3)=P(A1A2)=P(A1)P(A2)=.∴ξ的分布列为ξ123P∴=.19.(12分)(2007•陕西)如图,在底面为直角梯形的四棱锥P﹣ABCD中,AD ∥BC,∠ABC=90°,PA⊥平面ABCD,PA=4,AD=2,AB=2,BC=6.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)求二面角A﹣PC﹣D的大小.【分析】(Ⅰ)要证BD⊥平面PAC,只需证明BD垂直平面PAC内的两条相交直线PA,AC即可.(Ⅱ)过E作EF⊥PC,垂足为F,连接DF,说明∠EFD为二面角A﹣PC﹣D的平面角,推出Rt△EFC∽Rt△PAC,通过解Rt△EFD,求二面角A﹣PC﹣D的大小.【解答】证明:(Ⅰ)∵PA⊥平面ABCD,BD⊂平面ABCD.∴BD⊥PA.又,.∴∠ABD=30°,∠BAC=60°,∴∠AEB=90°,即BD⊥AC.又PA∩AC=A.∴BD⊥平面PAC(Ⅱ)过E作EF⊥PC,垂足为F,连接DF.∵DE⊥平面PAC,EF是DF在平面PAC上的射影,由三垂线定理知PC⊥DF,∴∠EFD为二面角A﹣PC﹣D的平面角.又∠DAC=90°﹣∠BAC=30°,∴DE=ADsinDAC=1,,又,∴,PC=8.由Rt△EFC∽Rt△PAC得.在Rt△EFD中,,∴.∴二面角A﹣PC﹣D的大小为.20.(12分)(2007•陕西)设函数f(x)=,其中a为实数.(Ⅰ)若f(x)的定义域为R,求a的取值范围;(Ⅱ)当f(x)的定义域为R时,求f(x)的单调减区间.【分析】(Ⅰ)f(x)的定义域为R,说明分母不为零,利用判别式直接求a的取值范围;(Ⅱ)f(x)的定义域为R时,求导数,导数为0确定x的值,根据a的范围,确定导数的符合,求f(x)的单减区间.【解答】解:(Ⅰ)f(x)的定义域为R,∴x2+ax+a≠0恒成立,∴△=a2﹣4a<0,∴0<a<4,即当0<a<4时f(x)的定义域为R.(Ⅱ)由题意可知:,令f'(x)≤0,得x(x+a﹣2)≤0.由f'(x)=0,得x=0或x=2﹣a,又∵0<a<4,∴0<a<2时,由f'(x)<0得0<x<2﹣a;当a=2时,f'(x)≥0;当2<a<4时,由f'(x)<0得2﹣a<x<0,即当0<a<2时,f(x)的单调减区间为(0,2﹣a);当2<a<4时,f(x)的单调减区间为(2﹣a,0).21.(14分)(2007•陕西)已知椭圆C:(a>b>0)的离心率为,短轴一个端点到右焦点的距离为.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值.【分析】(Ⅰ)设椭圆的半焦距为c,依题意求出a,b的值,从而得到所求椭圆的方程.(Ⅱ)设A(x1,y1),B(x2,y2).(1)当AB⊥x轴时,.(2)当AB 与x轴不垂直时,设直线AB的方程为y=kx+m.由已知,得.把y=kx+m代入椭圆方程,整理得(3k2+1)x2+6kmx+3m2﹣3=0,然后由根与系数的关系进行求解.【解答】解:(Ⅰ)设椭圆的半焦距为c,依题意∴b=1,∴所求椭圆方程为.(Ⅱ)设A(x1,y1),B(x2,y2).(1)当AB⊥x轴时,.(2)当AB与x轴不垂直时,设直线AB的方程为y=kx+m.由已知,得.把y=kx+m代入椭圆方程,整理得(3k2+1)x2+6kmx+3m2﹣3=0,∴,.∴|AB|2=(1+k2)(x2﹣x1)2=====.当且仅当,即时等号成立.当k=0时,,综上所述|AB|max=2.∴当|AB|最大时,△AOB面积取最大值.22.(12分)(2007•陕西)已知各项全不为零的数列{a k}的前k项和为S k,且S k=N*),其中a1=1.(Ⅰ)求数列{a k}的通项公式;(Ⅱ)对任意给定的正整数n(n≥2),数列{b k}满足(k=1,2,…,n﹣1),b1=1,求b1+b2+…+b n.【分析】(Ⅰ)由,得a k(a k+1﹣a k﹣1)=2a k.再﹣a k﹣1=2.知a2m﹣1=1+(m﹣1)•2=2m﹣1.a2m=2+(m﹣1)•2=2m,m∈由a k+1N*.由此可知a k=k(k∈N*).(Ⅱ)由题意知=.由此可求出b1+b2+b3+…+b n的值.【解答】解:(Ⅰ)当k=1,由及a1=1,得a2=2.当k≥2时,由,得a k(a k+1﹣a k﹣1)=2a k.因为a k≠0,所以a k+1﹣a k﹣1=2.=1+(m﹣1)•2=2m﹣1.从而a2m﹣1a2m=2+(m﹣1)•2=2m,m∈N*.故a k=k(k∈N*).(Ⅱ)因为a k=k,所以.所以=.故b1+b2+b3+…+b n==.。
2007年普通高等学校招生全国统一考试文科数学试卷及答案-陕西卷

试卷类型:A2007年普通高等学校招生全国统一考试(陕西)文科数学(必修+选修Ⅰ)注意事项:1.本试卷分第一部分和第二部分。
第一部分为选择题,第二部分为非选择题。
2.考生领到试卷后,须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的试卷类型信息点。
3.所有答案必须在答题卡上指定区域内作答。
考试结束后,将本试卷和答题卡一并交回。
第一部分(共60分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共12小题,每小题5分,共60分)。
1.已知全集{}{}632,6,5,4,3,2,1,,集合==A U ,则集合C u A 等于 (A ){1,4} (B ){4,5} (C ){1,4,5} (D ){2,3,6}2.函数21lg )(x x f -=的定义域为 (A )[0,1](B )(-1,1) (C )[-1,1](D )(-∞,-1)∪(1,+∞)3.抛物线y x =2的准线方程是 (A )014=+x(B )014=+y (C )012=+x(D )012=+y4.已知55sin =∂,则∂-∂44cos sin 的值为 (A )53-(B )51-(C )51 (D )53 5.等差数列{a n }的前n 项和为S n ,若等于则442,10,2S S S ==(A )12 (B )18 (C )24 (D )426.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测。
若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是(A )4 (B )5 (C )6 (D )77.Rt △ABC 的三个顶点在半径为13的球面上,两直角边的长分别为6和8,则球心到平面ABC 的距离是 (A )5 (B )6 (C )10 (D )12 8.设函数f (x )=2+1(x ∈R)的反函数为f -1(x ),则函数y = f -1(x )的图象是9.已知双曲线C ∶a by a x (12222==>0,b >0),以C 的右焦点为圆心且与C 的渐近线相切的圆的半径是 (A )a(B)b(C)ab(D)22b a +10.已知P 为平面a 外一点,直线l ⊂a,点Q ∈l ,记点P 到平面a 的距离为a,点P 到直线l 的距离为b ,点P 、Q 之间的距离为c ,则 (A )c b a ≤≤ (B )c b a ≤≤ (C)b c a ≤≤ (D)a c b ≤≤ 11.给出如下三个命题: ①设a,b ∈R,且a b ab 若,0≠>1,则ba<1; ②四个非零实数a 、b 、c 、d 依次成等比数列的充要条件是ad =bc ;③若f (x )=log i x ,则f (|x |)是偶函数. 其中正确命题的序号是 (A )①② (B )②③ (C )①③ (D )①②③ 12.某生物生长过程中,在三个连续时段内的增长量都相等,在各时段内平均增长速度分别为v 1,v 2,v 3,该生物在所讨论的整个时段内的平均增长速度为(A )3321v v v ++(B )3111321v v v ++(C )3321v v v(D )3211113v v v ++第二部分(共90分)二、填空题:把答案填在答题卡相应题号后的横线上(本大题共4小题,每小题4分,共16分). 13.5)21(x +的展开式中2x 项的系数..是 .(用数字作答) 14.已知实数x 、y 满足条件⎪⎩⎪⎨⎧≥≥≤--≥+-,0,0,033,042y x y x y x 则y x z 2+=的最大值为 .15.安排3名支教教师去4所学校任教,每校至多2人,则不同的分配方案共有 种.(用数字作答)16.如图,平面内有三个向量、、,其中与的夹角为120°,OA 与OC 的夹角为30°,=1=22.若=μλμλμλ+∈+则R),,(的值为 .三、解答题:解答应写出文字说明,证明过程或演算步骤(本大题共6小题,共74分). 17.(本小题满分12分)设函数b a x f 、=)(.其中向量2)2π(R,),1,sin 1(),cos ,(=∈+==f x x b x m a 且. (Ⅰ)求实数m 的值; (Ⅱ)求函数)(x f 的最小值.18.(本小题满分12分)某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为54、53、52、51,且各轮问题能否正确回答互不影响. (Ⅰ)求该选手进入第四轮才被淘汰的概率; (Ⅱ)求该选手至多进入第三轮考核的概率. (注:本小题结果可用分数表示) 19.(本小题满分12分)如图,在底面为直角梯形的四棱锥,//,BC AD ABCD P 中-,90︒=∠ABC 平面⊥PA v32,2,3===AB AD PA ,BC =6.(Ⅰ)求证:BD ;PAC BD 平面⊥ (Ⅱ)求二面角A BD P --的大小. 20. (本小题满分12分)已知实数列是}{n a 等比数列,其中5547,14,,1a a a +=且成等差数列.(Ⅰ)求数列}{n a 的通项公式;(Ⅱ)数列}{n a 的前n 项和记为,n S 证明: ,n S <128,3,2,1(=n …). 21. (本小题满分12分)已知cx bx ax x f ++=23)(在区间[0,1]上是增函数,在区间),1(),0,(+∞-∞上是减函数,又.23)21(='f (Ⅰ)求)(x f 的解析式;(Ⅱ)若在区间],0[m (m >0)上恒有)(x f ≤x 成立,求m 的取值范围. 22. (本小题满分14分)已知椭圆C :2222by a x +=1(a >b >0)的离心率为36,短轴一个端点到右焦点的距离为3.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 与椭圆C 交于A 、B 两点,坐标原点O 到直线l 的距离为23,求△AOB 面积的最大值.2007年普通高等学校招生全国统一考试(陕西卷)数 学(文史类)参考答案一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共12小题,每小题5分,共60分)1.C 2.B 3.B 4.A 5.C 6.C 7.D 8.A 9.B 10.A 11.C 12.D二、填空题:把答案填在答题卡相应题号后的横线上(本大题共4小题,每小题4分,共16分).13.40 14.8 15.60 16.6三、解答题:解答应写出文字说明,证明过程或演算步骤(本大题共6小题,共74分) 17.(本小题满分12分) 解:(Ⅰ)()(1sin )cos f x m x x ==++a b ,πππ1sin cos 2222f m ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭,得1m =.(Ⅱ)由(Ⅰ)得π()sin cos 114f x x x x ⎛⎫=++=++ ⎪⎝⎭,∴当πsin 14x ⎛⎫+=- ⎪⎝⎭时,()f x 的最小值为118.(本小题满分12分)解:(Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(1234)i A i =,,,,则14()5P A =,23()5P A =,32()5P A =,41()5P A =,∴该选手进入第四轮才被淘汰的概率41234123432496()()()()()5555625P P A A A A P A P A P A P P ===⨯⨯⨯=. (Ⅱ)该选手至多进入第三轮考核的概率3112123()P P A A A A A A =++112123()()()()()()P A P A P A P A P A P A =++142433101555555125=+⨯+⨯⨯=. 19.(本小题满分12分) 解法一:(Ⅰ)PA ⊥平面ABCD ,BD ⊂平面ABCD .BD PA ∴⊥.又tan AD ABD AB ==tan BC BAC AB ==. 30ABD ∴=∠,60BAC =∠,90AEB ∴=∠,即BD AC ⊥.又PAAC A =.BD ∴⊥平面PAC .(Ⅱ)连接PE .BD ⊥平面PAC .BD PE ∴⊥,BD AE ⊥. AEP ∴∠为二面角P BD A --的平面角.在Rt AEB △中,sin AE AB ABD == tan APAEP AE∴==60AEP ∴=∠, ∴二面角P BD A --的大小为60.解法二:(Ⅰ)如图,建立坐标系,则(000)A ,,,0)B ,,0)C ,,(020)D ,,,(003)P ,,, (003)AP ∴=,,,0)AC =,,(0)BD =-,, 0BD AP ∴=,0BD AC =.BD AP ∴⊥,BD AC ⊥,又PAAC A =,BD ∴⊥面PAC .(Ⅱ)设平面ABD 的法向量为(001)=,,m ,设平面PBD 的法向量为(1)x y =,,n , 则0BP =n ,0BD =n ,AEDPCBC3020y⎧-+=⎪∴⎨-+=⎪⎩,,解得32xy⎧=⎪⎪⎨⎪=⎪⎩,312⎫∴=⎪⎪⎝⎭,,n.cos∴<m,12>==m nnm n.∴二面角P BD A--的大小为60.20.(本小题满分12分)解:(Ⅰ)设等比数列{}n a的公比为()q q∈R,由6711a a q==,得61a q-=,从而3341a a q q-==,4251a a q q-==,5161a a q q-==.因为4561a a a+,,成等差数列,所以4652(1)a a a+=+,即3122(1)q q q---+=+,122(1)2(1)q q q---+=+.所以12q=.故116111642nn nna a q q q----⎛⎫=== ⎪⎝⎭.(Ⅱ)116412(1)1128112811212nnnna qSq⎡⎤⎛⎫-⎢⎥⎪⎡⎤⎝⎭-⎢⎥⎛⎫⎣⎦===-<⎢⎥⎪-⎝⎭⎢⎥⎣⎦-.21.(本小题满分12分)解:(Ⅰ)2()32f x ax bx c'=++,由已知(0)(1)0f f''==,即320ca b c=⎧⎨++=⎩,,解得32cb a=⎧⎪⎨=-⎪⎩,.2()33f x ax ax'∴=-,13332422a af⎛⎫'∴=-=⎪⎝⎭,2a∴=-,32()23f x x x∴=-+.(Ⅱ)令()f x x≤,即32230x x x-+-≤,(21)(1)0x x x∴--≥,12x∴≤≤或1x≥.又()f x x≤在区间[]0m,上恒成立,12m∴<≤.22.(本小题满分14分)解:(Ⅰ)设椭圆的半焦距为c,依题意c a a ⎧=⎪⎨⎪=⎩1b ∴=,∴所求椭圆方程为2213x y +=.(Ⅱ)设11()A x y ,,22()B x y ,. (1)当AB x ⊥轴时,AB = (2)当AB 与x 轴不垂直时, 设直线AB 的方程为y kx m =+.=223(1)4m k =+.把y kx m =+代入椭圆方程,整理得222(31)6330k x kmx m +++-=,122631km x x k -∴+=+,21223(1)31m x x k -=+. 22221(1)()AB k x x ∴=+-22222223612(1)(1)(31)31k m m k k k ⎡⎤-=+-⎢⎥++⎣⎦ 22222222212(1)(31)3(1)(91)(31)(31)k k m k k k k ++-++==++ 2422212121233(0)34196123696k k k k k k=+=+≠+=++⨯+++≤.当且仅当2219k k =,即k =时等号成立.当0k =时,AB = 综上所述max 2AB =.∴当AB 最大时,AOB △面积取最大值max 12S AB =⨯=. B卷选择题答案:1.B 2.C 3.A 4.C 5.B 6.B 7.A 8.D 9.D 10.C11.D 12.B。
2007年普通高等学校招生全国统一考试数学卷(陕西.理)含答案

2007普通高等学校招生全国统一考试(陕西)试卷类型B理科数学 (必修+选修II )注意事项:1.本试卷分第一部分和第二部分,第一部分为选择题,第二部分为非选择题.2.考生领到试卷后,须按规定在试卷上填写姓名,准考证号,并在答题卡上填涂对应的试卷类型信息点.3.所有答案必须在答题卡上指定区域内作答,考试结束后,将本试卷和答题卡一并交回.第一部分(共60分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共12小题,每小题5分,共60分). 1.在复平面内,复数12z i=+对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限2.已知全集{12345}U =,,,,,集合A {3|2}x x =∈-<Z ||,则集合U A ð等于( ) A .{1234},,,B .{234},,C .{15},D .{5}3.抛物线2y x =的准线方程是( ) A .410y +=B .410x +=C .210y +=D .210x +=4.已知sin 5α=,则44sin cos αα-的值为( ) A .15-B .35-C .15D .355.各项均为正数的等比数列{}n a 的前n 项和为n S 为,若2n S =,214n S =,则4n S 等于( ) A .80 B .30 C .26 D .166.一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( )A B C D 7.已知双曲线2222:1x y C a b-=(0a >,0b >),以C 的右焦点为圆心且与C 的渐近线相切的圆的半径是( )ABC .aD .b8.若函数()f x 的反函数为1f x -(),则函数(1)f x -与1(1)fx --的图象可能是( )A. B. C. D. 9.给出如下三个命题:①四个非零实数a b c d ,,,依次成等比数列的充要条件是ad bc =; ②设,a b ∈R ,且 0ab ≠,若1a b <,则1ba>; ③若2()log f x x =,则(||)f x 是偶函数. 其中不正确...命题的序号是( ) A .①②③ B .①②C .②③D .①③10.已知平面α∥平面β,直线m α⊂,直线n β⊂,点A m ∈,点B n ∈,记点A B ,之间的距离为a ,点A 到直线n 的距离为b ,直线m 和n 的距离为c ,则( ) A .b c a ≤≤ B .a c b ≤≤ C .c a b ≤≤ D . c b a ≤≤ 11.()f x 是定义在(0)+∞,上的非负可导函数,且满足()()0xf x f x '+≤.对任意正数a b ,,若a b <,则必有( )A .()()af b bf a ≤B .()()bf a af b ≤C .()()af a f b ≤D .()()bf b f a ≤12.设集合0123{}S A A A A =,,,,在S 上定义运算⊕为:i j k A A A ⊕=,其中k 为i j +被4除的余数,0123i j =,,,,,则满足关系式0()z x x A A ⊕⊕=的()x x S ∈的个数为( ) A .4B .3C .2D .1第二部分(共90分)二、填空题:把答案填在答题卡相应题号后的横线上(本大题共4小题,每小题4分,共16分) 13.21211lim 21x x x x x +⎛⎫-=⎪+--⎝⎭→ . 14.已知实数x y ,满足条件240220330x y x y x y ⎧-+⎪+-⎨⎪--⎩≤≥≤,,,则2z x y =+的最大值为 .x15.如图,平面内有三个向量OAOBOC ,,,其中OA 与OB 的夹角为120°,OA 与OC 的夹角为30°,且1OA OB ==,23OC =()OC OA OB λμλμ=+∈R ,,则λμ+的值为 .16.安排3名支教教师去6所学校任教,每校至多2人,则不同的分配方案共有 种. (用数字作答)三、解答题:解答应写出文字说明,证明过程或演算步骤(本大题共6小题,共74分) 17.(本小题满分12分) 设函数()f x =·a b ,其中向量(cos2)m x =,a ,(1sin 21)x =+,b ,x ∈R ,且()y f x =的图象经过点π24⎛⎫ ⎪⎝⎭,. (Ⅰ)求实数m 的值;(Ⅱ)求函数()f x 的最小值及此时x 值的集合.18.(本小题满分12分)某项选拔共有四轮考核,每轮设有一问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为432555,,,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手被淘汰的概率;(Ⅱ)该选手在选择中回答问题的个数记为ξ,求随机变量ξ的分布列与数学期望. (注:本小题结果可用分数表示) 19.(本小题满分12分)如图,在底面为直角梯形的四棱锥P ABCD -中,90AD BC ABC ∠=,∥°,PA ⊥平面ABCD.326PA AD AB BC ====,,.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)求二面角P BD A --的大小.A OB C20.(本小题满分12分)设函数2()x e f x x ax a=++,其中a 为实数.(I )若()f x 的定义域为R ,求a 的取值范围; (II )当()f x 的定义域为R 时,求()f x 的单调减区间. 21.(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为3.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 与椭圆C 交于A B ,两点,坐标原点O 到直线l,求AOB △面积的最大值. 22.(本小题满分12分)已知各项全不为零的数列{}n a 的前k 项和为k S ,且11()2k k k S a a k +=∈N*,其中11a =. (I )求数列{}n a 的通项公式;(II )对任意给定的正整数(2)n n ≥,数列{}n b 满足1k k b b +=1k k na +-(121k n =-,,,),11b =,求12n b b b +++.PCBADE2007年普通高等学校招生全国统一考试(陕西卷)数 学(理工农医类)参考答案一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共12小题,每小题5分,共60分).1.D 2.B 3.D 4.A 5.C 6.B 7.B 8.D 9.A 10.A 11.C 12.B二、填空题:把答案填在答题卡相应题号后的横线上(本大题共4小题,每小题4分,共16分). 13.1314.8 15.6 16.210 三、解答题:解答应写出文字说明,证明过程或演算步骤(本大题共6小题,共74分) 17.(本小题满分12分) 解:(Ⅰ)()(1sin 2)cos 2f x a b m x x ==++,由已知πππ1sin cos 2422f m ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭,得1m =.(Ⅱ)由(Ⅰ)得π()1sin 2cos 2124f x x x x ⎛⎫=++=++⎪⎝⎭,∴当πsin 214x ⎛⎫+=- ⎪⎝⎭时,()f x 的最小值为1由πsin 214x ⎛⎫+=- ⎪⎝⎭,得x 值的集合为3ππ8x x k k ⎧⎫=-∈⎨⎬⎩⎭Z ,. 18.(本小题满分12分)解法一:(Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(123)i A i =,,,则14()5P A =,23()5P A =,32()5P A =, ∴该选手被淘汰的概率112223112123()()()()()()()P P A A A A A A P A P A P A P A P A P A =++=++ 142433101555555125=+⨯+⨯⨯=. (Ⅱ)ξ的可能值为123,,,11(1)()5P P A ξ===, 1212428(2)()()()5525P P A A P A P A ξ====⨯=,12124312(3)()()()5525P P A A P A P A ξ====⨯=.ξ∴的分布列为11235252525E ξ∴=⨯+⨯+⨯=. 解法二:(Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(123)i A i =,,,则14()5P A =,23()5P A =,32()5P A =. ∴该选手被淘汰的概率1231231()1()()()P P A A A P A P A P A =-=-4321011555125=-⨯⨯=. (Ⅱ)同解法一. 19.(本小题满分12分) 解法一:(Ⅰ)PA ⊥平面ABCD ,BD ⊂平面ABCD .BD PA ∴⊥. 又tan AD ABD AB ==tan BCBAC AB== 30ABD ∴=∠,60BAC =∠,90AEB ∴=∠,即BD AC ⊥.又PAAC A =.BD ∴⊥平面PAC .(Ⅱ)过E 作EF PC ⊥,垂足为F,连接DF .DE ⊥平面PAC ,EF 是DF 在平面PAC 上的射影,由三垂线定理知PC DF ⊥, EFD ∴∠为二面角A PC D --的平面角.又9030DAC BAC =-=∠∠,sin 1DE AD DAC ∴==,sin AE AB ABE ==又AC =EC ∴=,8PC =.由Rt Rt EFC PAC △∽△得332PA EC EF PC ==. 在Rt EFD △中,tan 9DE EFD EF ==,arctan 9EFD ∴=∠. ∴二面角A PC D --的大小为arctan9. AEDPCBF解法二:(Ⅰ)如图,建立坐标系,则(000)A ,,,0)B ,,0)C ,,(020)D ,,,(004)P ,,, (004)AP ∴=,,,0)AC =,,(0)BD =-,,0BD AP ∴=,0BD AC =.BD AP ∴⊥,BD AC ⊥,又PAAC A =,BD ∴⊥平面PAC .(Ⅱ)设平面PCD 的法向量为(1)x y =,,n则0CD =n ,0PD =n ,又(40)CD =--,,(024)PD =-,,, 40240y y ⎧--=⎪∴⎨-=⎪⎩,,解得2x y ⎧=⎪⎨⎪=⎩,213⎛⎫∴=- ⎪ ⎪⎝⎭,n平面PAC 的法向量取为()0BD ==-,m , cos <m ,39331>==m n n m n . ∴二面角A PC D --的大小为arccos31. 20.(本小题满分12分)解:(Ⅰ)()f x 的定义域为R ,20x ax a ∴++≠恒成立,240a a ∴∆=-<,04a ∴<<,即当04a <<时()f x 的定义域为R .(Ⅱ)22(2)e ()()x x x a f x x ax a +-'=++,令()0f x '≤,得(2)0x x a +-≤. 由()0f x '=,得0x =或2x a =-,又04a <<,02a ∴<<时,由()0f x '<得02x a <<-;当2a =时,()0f x '≥;当24a <<时,由()0f x '<得20a x -<<,即当02a <<时,()f x 的单调减区间为(02)a -,; C当24a <<时,()f x 的单调减区间为(20)a -,. 21.(本小题满分14分)解:(Ⅰ)设椭圆的半焦距为c,依题意3c a a ⎧=⎪⎨⎪=⎩1b ∴=,∴所求椭圆方程为2213x y +=.(Ⅱ)设11()A x y ,,22()B x y ,. (1)当AB x ⊥轴时,AB =. (2)当AB 与x 轴不垂直时, 设直线AB 的方程为y kx m =+.=,得223(1)4m k =+.把y kx m =+代入椭圆方程,整理得222(31)6330k x kmx m +++-=,122631kmx x k -∴+=+,21223(1)31m x x k -=+. 22221(1)()AB k x x ∴=+-22222223612(1)(1)(31)31k m m k k k ⎡⎤-=+-⎢⎥++⎣⎦22222222212(1)(31)3(1)(91)(31)(31)k k m k k k k ++-++==++ 2422212121233(0)34196123696k k k k k k=+=+≠+=++⨯+++≤. 当且仅当2219k k =,即k =时等号成立.当0k =时,AB =综上所述max 2AB =.∴当AB 最大时,AOB △面积取最大值max 12S AB =⨯=. 22.(本小题满分12分)解:(Ⅰ)当1k =,由111212a S a a ==及11a =,得22a =. 当2k ≥时,由1111122k k k k k k k a S S a a a a -+-=-=-,得11()2k k k k a a a a +--=.因为0k a ≠,所以112k k a a +--=.从而211(1)221m a m m -=+-=-.22(1)22m a m m =+-=,*m ∈N .故*()k a k k =∈N .(Ⅱ)因为k a k =,所以111k k k b n k n k b a k ++--=-=-+. 所以1121121(1)(2)(1)(1)1(1)21k k k k k k b b b n k n k n b b b b b k k -----+-+-==-- 11(1)(12)k kn C k n n-=-=,,,. 故123n b b b b ++++12311(1)n nn n n n C C C C n -⎡⎤=-+-+-⎣⎦ {}012111(1)n nn n n n C C C C n n ⎡⎤=--+-+-=⎣⎦.B卷选择题答案:1.D 2.C 3.A 4.B 5.B 6.C 7.D 8.A 9.B 10.D 11.A 12.C。
2007年普通高等学校招生全国统一考试文科数学(陕西卷)

试卷类型:A2007年普通高等学校招生全国统一考试(陕西)文科数学(必修+选修Ⅰ)注意事项:1.本试卷分第一部分和第二部分.第一部分为选择题,第二部分为非选择题.2.考生领到试卷后,须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的试卷类型信息点.3.所有答案必须在答题卡上指定区域内作答.考试结束后,将本试卷和答题卡一并交回.第一部分(共60分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共12小题,每小题5分,共60分). 1.已知全集{}123456U =,,,,,,集合{}236A =,,,则集合U A ð等于( ) A.{}14,B.{}45,C.{}145,, D.{}236,,2.函数()f x = ) A.[01],B.(11)-,C.[11]-,D.(1)(1)--+,,∞∞3.抛物线2x y =的准线方程是( ) A.410x +=B.410y +=C.210x +=D.210y +=4.已知sin α=,则44sin cos αα-的值为( ) A.35-B.15- C.15 D.355.等差数列{}n a 的前n 项和为n S ,若22S =,410S =,则6S 等于( )A.12 B.18 C.24 D.426.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是( ) A.4 B.5 C.6 D.77.ABC Rt △的三个顶点在半径为13的球面上,两直角边的长分别为6和8,则球心到平面ABC 的距离是( ) A.5 B.6 C.10 D.12 8.设函数()21()x f x x =+∈R 的反函数为1()f x -,则函数1()y f x -=的图象是( )A. B. C. D.9.已知双曲线22221(00)x y C a b a b-=>>:,,以C 的右焦点为圆心且与C 的渐近线相切的圆的半径是( )A.aB.b10.已知P 为平面α外一点,直线l α⊂,点Q l ∈,记点P 到平面α的距离为a ,点P 到直线l 的距离为b ,点P Q ,之间的距离为c ,则( ) A.a b c ≤≤ B.c a b ≤≤ C.a c b ≤≤ D.b c a ≤≤ 11.给出如下三个命题:①设a b ∈R ,,且0ab ≠,若1b a >,则1ab<; ②四个非零实数a b c d ,,,依次成等比数列的充要条件是ad bc =;③若2()log f x x =,则()f x 是偶函数.其中正确命题的序号是( )A.①② B.②③ C.①③ D.①②③12.某生物生长过程中,在三个连续时段内的增长量都相等,在各时段内平均增长速度分别为123v v v ,,,该生物在所讨论的整个时段内的平均增长速度为( )A.1233v v v ++ B.1231113v v v ++D.1233111v v v ++第二部分(共90分)二、填空题:把答案填在答题卡相应题号后的横线上(本大题共4小题,每小题4分,共16分). 13.5(12)x +的展开式中2x 项的系数..是 .(用数字作答)14.已知实数x y ,满足条件24033000x y x y x y ⎧-+⎪--⎨⎪⎩,,,,≥≤≥≥则2z x y =+的最大值为 .15.安排3名支教教师去4所学校任教,每校至多2人,则不同的分配方案共有 种.(用 数字作答)16.如图,平面内有三个向量OAOB OC ,,,其中OA 与OB 的夹角为120°,OA 与OC 的夹角为30°,且1OA OB ==,23OC =()OC OA OB λμλμ=+∈R ,,则λμ+的值为 .三、解答题:解答应写出文字说明,证明过程或演算步骤(本大题共6小题,共74分). 17.(本小题满分12分)设函数()f x =·a b ,其中向量(cos )m x =,a ,(1sin 1)x =+,b ,x ∈R ,且π22f ⎛⎫= ⎪⎝⎭. (Ⅰ)求实数m 的值;(Ⅱ)求函数()f x 的最小值.18.(本小题满分12分)某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为43215555,,,,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手进入第四轮才被淘汰的概率; (Ⅱ)求该选手至多进入第三轮考核的概率. (注:本小题结果可用分数表示) 19.(本小题满分12分)如图,在底面为直角梯形的四棱锥P ABCD -中,90AD BC ABC ∠=,∥°,PA ⊥平面ABCD .326PA AD AB BC ====,,.(Ⅰ)求证:BD ⊥平面PAC ; (Ⅱ)求二面角P BD A --的大小.AEDPCB A OB C20.(本小题满分12分)已知实数列{}n a 是等比数列,其中71a =,且451a a +,,6a 成等差数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)数列{}n a 的前n 项和记为n S ,证明:128(123)n S n <=,,,. 21.(本小题满分12分)已知32()f x ax bx cx =++在区间[01],上是增函数,在区间(0)(1)-+,,,∞∞上是减函数,又1322f ⎛⎫'= ⎪⎝⎭. (Ⅰ)求()f x 的解析式;(Ⅱ)若在区间[0](0)m m >,上恒有()f x x ≤成立,求m 的取值范围. 22.(本小题满分14分)已知椭圆22221(0)x y C a b a b+=>>:.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 与椭圆C 交于A B ,两点,坐标原点O 到直线l ,求AOB △面积的最大值.2007年普通高等学校招生全国统一考试(陕西卷)数 学(文史类)参考答案一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共12小题,每小题5分,共60分)1.C 2.B 3.B 4.A 5.C 6.C 7.D 8.A 9.B 10.A 11.C 12.D二、填空题:把答案填在答题卡相应题号后的横线上(本大题共4小题,每小题4分,共16分).13.40 14.8 15.60 16.6三、解答题:解答应写出文字说明,证明过程或演算步骤(本大题共6小题,共74分) 17.(本小题满分12分) 解:(Ⅰ)()(1sin )cos f x m x x ==++a b ,πππ1sin cos 2222f m ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭,得1m =.(Ⅱ)由(Ⅰ)得π()sin cos 114f x x x x ⎛⎫=++=++ ⎪⎝⎭,∴当πsin 14x ⎛⎫+=- ⎪⎝⎭时,()f x的最小值为118.(本小题满分12分)解:(Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(1234)i A i =,,,,则14()5P A =,23()5P A =,32()5P A =,41()5P A =,∴该选手进入第四轮才被淘汰的概率412341234432496()()()()()5555625P P A A A A P A P A P A P P ===⨯⨯⨯=. (Ⅱ)该选手至多进入第三轮考核的概率3112123()P P A A A A A A =++112123()()()()()()P A P A P A P A P A P A =++142433101555555125=+⨯+⨯⨯=. 19.(本小题满分12分) 解法一:(Ⅰ)PA ⊥平面ABCD ,BD ⊂平面ABCD .BD PA ∴⊥.又tan 3AD ABD AB ==,tan BCBAC AB==. 30ABD ∴=∠,60BAC =∠, 90AEB ∴=∠,即BD AC ⊥.又PAAC A =.BD ∴⊥平面PAC .(Ⅱ)连接PE .AEDPCBBD ⊥平面PAC .BD PE ∴⊥,BD AE ⊥. AEP ∴∠为二面角P BD A --的平面角.在Rt AEB △中,sin AE AB ABD ==,tan APAEP AE∴==60AEP ∴=∠, ∴二面角P BD A --的大小为60.解法二:(Ⅰ)如图,建立坐标系,则(000)A ,,,0)B ,,0)C ,,(020)D ,,,(003)P ,,, (003)AP ∴=,,,0)AC =,,(20)BD =-,,0BD AP ∴=,0BD AC =.BD AP ∴⊥,BD AC ⊥,又PAAC A =,BD ∴⊥面PAC .(Ⅱ)设平面ABD 的法向量为(001)=,,m ,设平面PBD 的法向量为(1)x y =,,n , 则0BP =n ,0BD =n ,3020y ⎧-+=⎪∴⎨-+=⎪⎩,,解得32x y ⎧=⎪⎪⎨⎪=⎪⎩,312⎫∴=⎪⎪⎝⎭,,n . cos ∴<m ,12>==m n n m n .∴二面角P BD A --的大小为60. 20.(本小题满分12分)解:(Ⅰ)设等比数列{}n a 的公比为()q q ∈R ,由6711a a q ==,得61a q -=,从而3341a a q q -==,4251a a q q -==,5161a a q q -==.因为4561a a a +,,成等差数列,所以4652(1)a a a +=+, 即3122(1)qq q ---+=+,122(1)2(1)q q q ---+=+.所以12q =.故116111642n n n n a a q q q ----⎛⎫=== ⎪⎝⎭.C(Ⅱ)116412(1)1128112811212n n n n a q S q ⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭-⎢⎥⎛⎫⎣⎦===-<⎢⎥ ⎪-⎝⎭⎢⎥⎣⎦-.21.(本小题满分12分)解:(Ⅰ)2()32f x ax bx c '=++,由已知(0)(1)0f f ''==,即0320c a b c =⎧⎨++=⎩,,解得032c b a =⎧⎪⎨=-⎪⎩,.2()33f x ax ax '∴=-,13332422a a f ⎛⎫'∴=-= ⎪⎝⎭,2a ∴=-,32()23f x x x ∴=-+.(Ⅱ)令()f x x ≤,即32230x x x -+-≤,(21)(1)0x x x ∴--≥,102x ∴≤≤或1x ≥.又()f x x ≤在区间[]0m ,上恒成立,102m ∴<≤. 22.(本小题满分14分)解:(Ⅰ)设椭圆的半焦距为c,依题意3c a a ⎧=⎪⎨⎪=⎩1b ∴=,∴所求椭圆方程为2213x y +=.(Ⅱ)设11()A x y ,,22()B x y ,. (1)当AB x ⊥轴时,AB =. (2)当AB 与x 轴不垂直时, 设直线AB 的方程为y kx m =+.=,得223(1)4m k =+.把y kx m =+代入椭圆方程,整理得222(31)6330k x kmx m +++-=,122631kmx x k -∴+=+,21223(1)31m x x k -=+.22221(1)()AB k x x ∴=+-22222223612(1)(1)(31)31k m m k k k ⎡⎤-=+-⎢⎥++⎣⎦ 22222222212(1)(31)3(1)(91)(31)(31)k k m k k k k ++-++==++2422212121233(0)34196123696k k k k k k=+=+≠+=++⨯+++≤.当且仅当2219k k=,即3k =±时等号成立.当0k =时,AB , 综上所述max 2AB =.∴当AB 最大时,AOB △面积取最大值max 1222S AB =⨯⨯=.B卷选择题答案:1.B 2.C 3.A 4.C 5.B 6.B 7.A 8.D 9.D 10.C11.D 12.B。
2007年陕西省高考数学试卷(理科)及解析

2007年陕西省高考数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)在复平面内,复数z=对应的点位于()A.第一象限B.第二象限C.第在象限D.第四象限2.(5分)已知全集U={1,2,3,4,5},集合A={x∈Z||x﹣3|<2},则集合∁u A 等于()A.{1,2,3,4}B.{2,3,4}C.{1,5}D.{5}Z3.(5分)抛物线y=x2的准线方程是()A.4y+1=0 B.4x+1=0 C.2y+1=0 D.2x+1=04.(5分)已知sinα=,则sin4α﹣cos4α的值为()A.﹣ B.﹣ C.D.5.(5分)各项均为正数的等比数列{a n}的前n项和为S n,若S10=2,S30=14,则S40等于()A.80 B.30 C.26 D.166.(5分)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是()A.B.C.D.7.(5分)已知双曲线C:﹣=1(a>0,b>0),以C的右焦点为圆心且与C的渐近线相切的圆的半径是()A. B. C.a D.b8.(5分)若函数f(x)的反函数为f﹣1(x),则函数f(x﹣1)与f﹣1(x﹣1)的图象可能是()A.B.C.D.9.(5分)给出如下三个命题:①四个非零实数a、b、c、d依次成等比数列的充要条件是ad=bc;②设a,b∈R,则ab≠0若<1,则>1;③若f(x)=log2x,则f(|x|)是偶函数.其中不正确命题的序号是()A.①②③B.①②C.②③D.①③10.(5分)已知平面α∥平面β,直线m⊂α,直线n⊂β,点A∈m,点B∈n,记点A、B之间的距离为a,点A到直线n的距离为b,直线m和n的距离为c,则()A.b≤a≤c B.a≤c≤b C.c≤a≤b D.c≤b≤a11.(5分)f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)+f(x)≤0,对任意正数a、b,若a<b,则必有()A.af(b)≤bf(a)B.bf(a)≤af(b)C.af(a)≤f(b) D.bf(b)≤f(a)12.(5分)设集合S={A0,A1,A2,A3,A4,A5},在S上定义运算“⊕”为:A i⊕A j=A k,其中k为i+j被4除的余数,i,j=0,1,2,3,4,5.则满足关系式(x ⊕x)⊕A2=A0的x(x∈S)的个数为()A.1 B.2 C.3 D.4二、填空题(共4小题,每小题4分,满分16分)13.(4分)=.14.(4分)已知实数x、y满足条件,则z=x+2y的最大值为.15.(4分)如图,平面内有三个向量、、,其中与与的夹角为120°,与的夹角为30°,且||=||=1,||=,若=λ+μ(λ,μ∈R),则λ+μ的值为.16.(4分)安排3名支教老师去6所学校任教,每校至多2人,则不同的分配方案共有种.(用数字作答)三、解答题(共6小题,满分74分)17.(12分)设函数f(x)=•,其中向量=(m,cos2x),=(1+sin2x,1),x∈R,且y=f(x)的图象经过点.(1)求实数m的值;(2)求f(x)的最小正周期.18.(12分)某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰,已知某选手能正确回答第一、二、三轮的问题的概率分别为、、,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手被淘汰的概率;(Ⅱ)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数学期望.19.(12分)如图,在底面为直角梯形的四棱锥P﹣ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,PA=4,AD=2,AB=2,BC=6.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)求二面角A﹣PC﹣D的大小.20.(12分)设函数f(x)=,其中a为实数.(Ⅰ)若f(x)的定义域为R,求a的取值范围;(Ⅱ)当f(x)的定义域为R时,求f(x)的单调减区间.21.(14分)已知椭圆C:(a>b>0)的离心率为,短轴一个端点到右焦点的距离为.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值.22.(12分)已知各项全不为零的数列{a k}的前k项和为S k,且S k=N*),其中a1=1.(Ⅰ)求数列{a k}的通项公式;(Ⅱ)对任意给定的正整数n(n≥2),数列{b k}满足(k=1,2,…,n﹣1),b1=1,求b1+b2+…+b n.2007年陕西省高考数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2007•陕西)在复平面内,复数z=对应的点位于()A.第一象限B.第二象限C.第在象限D.第四象限【分析】本题考查的是复数的计算.【解答】解:Z=,故选D.2.(5分)(2007•陕西)已知全集U={1,2,3,4,5},集合A={x∈Z||x﹣3|<2},则集合∁u A等于()A.{1,2,3,4}B.{2,3,4}C.{1,5}D.{5}Z【分析】由题意U={1,2,3,4,5},集合A={x∈Z||x﹣3|<2},解出集合A,然后根据交集的定义和运算法则进行计算.【解答】解:∵U={1,2,3,4,5},集合A={x∈Z||x﹣3|<2},∴A={2,3,4},∴C u A={1,5},故选C.3.(5分)(2007•陕西)抛物线y=x2的准线方程是()A.4y+1=0 B.4x+1=0 C.2y+1=0 D.2x+1=0【分析】根据抛物线的方程,可求得q,进而根据抛物线的性质可知其准线方程.【解答】解:抛物线y=x2,P=,准线方程为y=,即4y+1=0故选A.4.(5分)(2007•陕西)已知sinα=,则sin4α﹣cos4α的值为()A.﹣ B.﹣ C.D.【分析】用平方差公式分解要求的算式,两个因式中一部分用同角的三角函数关系整理,另一部分把余弦变为正弦,代入题目的条件,得到结论.【解答】解:sin4α﹣cos4α=(sin2α﹣cos2α)(sin2α+cos2α)=sin2α﹣cos2α=2sin2α﹣1=﹣,故选B.5.(5分)(2007•陕西)各项均为正数的等比数列{a n}的前n项和为S n,若S10=2,S30=14,则S40等于()A.80 B.30 C.26 D.16【分析】先由等比数列的前n项和公式列方程组解得q10,然后分别求出q40、,最后再次运用等比数列的前n项和公式求S40.【解答】解:由题意知等比数列{a n}的公比q>0,且q≠1,则有,得1+q10+q20=7,即q20+q10﹣6=0,解得q10=2,则q40=16,且代入①得=﹣2,所以=﹣2×(1﹣16)=30.故选B.6.(5分)(2007•陕西)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是()A.B.C.D.【分析】由题意确定正三棱锥的顶点到底面的距离为1,求出正三棱柱的棱长,求出底面面积,然后可得体积.【解答】解:由题意易知正三棱锥的顶点到底面的距离为1.∵底面是正三角形且球半径为1.∴底面边长为,∴底面积为,∴V=××1=.故选C.7.(5分)(2007•陕西)已知双曲线C:﹣=1(a>0,b>0),以C的右焦点为圆心且与C的渐近线相切的圆的半径是()A. B. C.a D.b【分析】由于双曲线的焦点在x轴上,所以其右焦点坐标为(c,0),渐近线方程为y=±x,则满足要求的圆的半径为右焦点到渐近线的距离,因此只需根据点到线的距离公式求之即可.【解答】解:由题意知,圆的半径是右焦点(c,0)到其中一条渐近线的距离,所以R=.故选D.8.(5分)(2007•陕西)若函数f(x)的反函数为f﹣1(x),则函数f(x﹣1)与f﹣1(x﹣1)的图象可能是()A.B.C.D.【分析】f(x)和f﹣1(x)关于y=x对称是反函数的重要性质;而将f(x)的图象向右平移a个单位后,得到的图象的解析式为f(x﹣a)而原函数和反函数的图象同时平移时,他们的对称轴也相应平移.【解答】解:函数f(x﹣1)是由f(x)向右平移一个单位得到,f﹣1(x﹣1)由f﹣1(x)向右平移一个单位得到,而f(x)和f﹣1(x)关于y=x对称,从而f(x﹣1)与f﹣1(x﹣1)的对称轴也是由原对称轴向右平移一个单位得到即y=x﹣1,排除B,D;A,C选项中各有一个函数图象过点(2,0),则平移前的点坐标为(1,0),则反函数必过点(0,1),平移后的反函数必过点(1,1),由此得:A选项有可能,C选项排除;故选A.9.(5分)(2007•陕西)给出如下三个命题:①四个非零实数a、b、c、d依次成等比数列的充要条件是ad=bc;②设a,b∈R,则ab≠0若<1,则>1;③若f(x)=log2x,则f(|x|)是偶函数.其中不正确命题的序号是()A.①②③B.①②C.②③D.①③【分析】①可取特殊值验证②a、b异号时,一定为负③由奇偶性定义判断.【解答】解:①ad=bc不一定使a、b、c、d依次成等比数列,如取a=d=﹣1,b=c=1;②a、b异号时不正确.③f(|x|)=f(x)=f(﹣x)成立.故选B.10.(5分)(2007•陕西)已知平面α∥平面β,直线m⊂α,直线n⊂β,点A∈m,点B∈n,记点A、B之间的距离为a,点A到直线n的距离为b,直线m和n的距离为c,则()A.b≤a≤c B.a≤c≤b C.c≤a≤b D.c≤b≤a【分析】此题根据平面与平面平行的判断性质,判断c最小,再根据点到直线距离和点到直线上任意点距离判断a最大.【解答】解:由于平面α∥平面β,直线m和n又分别是两平面的直线,则c即是平面之间的最短距离.而由于两直线不一定在同一平面内,则b一定大于或等于c,判断a和b时,因为B是n上任意一点,则a大于b.故选D.11.(5分)(2007•陕西)f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)+f(x)≤0,对任意正数a、b,若a<b,则必有()A.af(b)≤bf(a)B.bf(a)≤af(b)C.af(a)≤f(b) D.bf(b)≤f(a)【分析】先构造函数,再由导数与原函数的单调性的关系解决.【解答】解:xf′(x)+f(x)≤0⇒[xf(x)]′≤0⇒函数F(x)=xf(x)在(0,+∞)上为常函数或递减,又0<a<b且f(x)非负,于是有:af(a)≥bf(b)≥0①②①②两式相乘得:⇒af(b)≤bf(a),故选A.12.(5分)(2007•陕西)设集合S={A0,A1,A2,A3,A4,A5},在S上定义运算“⊕”为:A i⊕A j=A k,其中k为i+j被4除的余数,i,j=0,1,2,3,4,5.则满足关系式(x⊕x)⊕A2=A0的x(x∈S)的个数为()A.1 B.2 C.3 D.4【分析】本题为信息题,学生要读懂题意,运用所给信息式解决问题,对于本题来说,可用逐个验证法【解答】解:当x=A0时,(x⊕x)⊕A2=(A0⊕A0)⊕A2=A0⊕A2=A2≠A0当x=A1时,(x⊕x)⊕A2=(A1⊕A1)⊕A2=A2⊕A2=A4=A0当x=A2时,(x⊕x)⊕A2=(A2⊕A2)⊕A2=A0⊕A2=A2当x=A3时,(x⊕x)⊕A2=(A3⊕A3)⊕A2=A2⊕A2=A0=A0当x=A4时,(x⊕x)⊕A2=(A4⊕A4)⊕A2=A0⊕A2=A2≠A1当x=A5时,(x⊕x)⊕A2=(A5⊕A5)⊕A2=A2⊕A2=A0则满足关系式(x⊕x)⊕A2=A0的x(x∈S)的个数为:3个.故选C.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2007•陕西)=.【分析】先把通分,再消除零因子后简化为,由此能够求出的值.【解答】解:,故答案为.14.(4分)(2007•陕西)已知实数x、y满足条件,则z=x+2y的最大值为8.【分析】先由不等式组画出可行域,再把z=x+2y变形为,只需平移直线,即可发现当直线经过点A时z取得最大值.【解答】解:画出可行域△ABC,直线z=x+2y变形为,可见当直线经过点A时z取得最大.解得A(2,3),所以zmax=2+2×3=8.故答案为8.15.(4分)(2007•陕西)如图,平面内有三个向量、、,其中与与的夹角为120°,与的夹角为30°,且||=||=1,||=,若=λ+μ(λ,μ∈R),则λ+μ的值为6.【分析】过C作与的平行线与它们的延长线相交,可得平行四边形,然后将向量用向量与向量表示出即可.【解答】解:过C作与的平行线与它们的延长线相交,可得平行四边形,由∠BOC=90°,∠AOC=30°,由=||=1,||=得平行四边形的边长为2和4,λ+μ=2+4=6.故答案为6.16.(4分)(2007•陕西)安排3名支教老师去6所学校任教,每校至多2人,则不同的分配方案共有210种.(用数字作答)【分析】安排3名支教老师去6所学校任教,每校至多2人,分成两类解决,一类去三所学校,每校一人;另一类去两所学校,一校一人,一校两人.【解答】解:分两类,(1)每校1人:A63=120;(2)1校1人,1校2人:C32A62=90,不同的分配方案共有120+90=210.故答案为:210三、解答题(共6小题,满分74分)17.(12分)(2007•陕西)设函数f(x)=•,其中向量=(m,cos2x),=(1+sin2x,1),x∈R,且y=f(x)的图象经过点.(1)求实数m的值;(2)求f(x)的最小正周期.【分析】本题考查的知识点是平面向量数量积的运算及三角函数的周期及其求法,(1)由=(m,cos2x),=(1+sin2x,1),我们易出求f(x)=•的解析式(含参数m),同由y=f(x)的图象经过点,将点的坐标代入可以得到一个关于m的方程,解方程即可求出m的值.(2)由(1)的结论,我们可以写出函数f(x)的解析式,利用辅助角公式易将其转化为一个正弦型函数,然后根据正弦型函数的周期T=,求出f(x)的最小正周期.【解答】解:(1)f(x)=•=m(1+sin2x)+cos2x,∵图象经过点,∴,解得m=1.(2)当m=1时,,∴18.(12分)(2007•陕西)某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰,已知某选手能正确回答第一、二、三轮的问题的概率分别为、、,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手被淘汰的概率;(Ⅱ)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数学期望.【分析】(Ⅰ)求该选手被淘汰的概率可先求其对立事件该选手不被淘汰,即三轮都答对的概率;(Ⅱ)ξ的可能值为1,2,3,ξ=i表示前i﹣1轮均答对问题,而第i次答错,利用独立事件求概率即可.【解答】解:(Ⅰ)记“该选手能正确回答第i轮的问题”的事件为A i(i=1,2,3),则,,.∴该选手被淘汰的概率===.(Ⅱ)ξ的可能值为1,2,3.,=,P(ξ=3)=P(A1A2)=P(A1)P(A2)=.∴ξ的分布列为ξ123P∴=.19.(12分)(2007•陕西)如图,在底面为直角梯形的四棱锥P﹣ABCD中,AD ∥BC,∠ABC=90°,PA⊥平面ABCD,PA=4,AD=2,AB=2,BC=6.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)求二面角A﹣PC﹣D的大小.【分析】(Ⅰ)要证BD⊥平面PAC,只需证明BD垂直平面PAC内的两条相交直线PA,AC即可.(Ⅱ)过E作EF⊥PC,垂足为F,连接DF,说明∠EFD为二面角A﹣PC﹣D的平面角,推出Rt△EFC∽Rt△PAC,通过解Rt△EFD,求二面角A﹣PC﹣D的大小.【解答】证明:(Ⅰ)∵PA⊥平面ABCD,BD⊂平面ABCD.∴BD⊥PA.又,.∴∠ABD=30°,∠BAC=60°,∴∠AEB=90°,即BD⊥AC.又PA∩AC=A.∴BD⊥平面PAC(Ⅱ)过E作EF⊥PC,垂足为F,连接DF.∵DE⊥平面PAC,EF是DF在平面PAC上的射影,由三垂线定理知PC⊥DF,∴∠EFD为二面角A﹣PC﹣D的平面角.又∠DAC=90°﹣∠BAC=30°,∴DE=ADsinDAC=1,,又,∴,PC=8.由Rt△EFC∽Rt△PAC得.在Rt△EFD中,,∴.∴二面角A﹣PC﹣D的大小为.20.(12分)(2007•陕西)设函数f(x)=,其中a为实数.(Ⅰ)若f(x)的定义域为R,求a的取值范围;(Ⅱ)当f(x)的定义域为R时,求f(x)的单调减区间.【分析】(Ⅰ)f(x)的定义域为R,说明分母不为零,利用判别式直接求a的取值范围;(Ⅱ)f(x)的定义域为R时,求导数,导数为0确定x的值,根据a的范围,确定导数的符合,求f(x)的单减区间.【解答】解:(Ⅰ)f(x)的定义域为R,∴x2+ax+a≠0恒成立,∴△=a2﹣4a<0,∴0<a<4,即当0<a<4时f(x)的定义域为R.(Ⅱ)由题意可知:,令f'(x)≤0,得x(x+a﹣2)≤0.由f'(x)=0,得x=0或x=2﹣a,又∵0<a<4,∴0<a<2时,由f'(x)<0得0<x<2﹣a;当a=2时,f'(x)≥0;当2<a<4时,由f'(x)<0得2﹣a<x<0,即当0<a<2时,f(x)的单调减区间为(0,2﹣a);当2<a<4时,f(x)的单调减区间为(2﹣a,0).21.(14分)(2007•陕西)已知椭圆C:(a>b>0)的离心率为,短轴一个端点到右焦点的距离为.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值.【分析】(Ⅰ)设椭圆的半焦距为c,依题意求出a,b的值,从而得到所求椭圆的方程.(Ⅱ)设A(x1,y1),B(x2,y2).(1)当AB⊥x轴时,.(2)当AB 与x轴不垂直时,设直线AB的方程为y=kx+m.由已知,得.把y=kx+m代入椭圆方程,整理得(3k2+1)x2+6kmx+3m2﹣3=0,然后由根与系数的关系进行求解.【解答】解:(Ⅰ)设椭圆的半焦距为c,依题意∴b=1,∴所求椭圆方程为.(Ⅱ)设A(x1,y1),B(x2,y2).(1)当AB⊥x轴时,.(2)当AB与x轴不垂直时,设直线AB的方程为y=kx+m.由已知,得.把y=kx+m代入椭圆方程,整理得(3k2+1)x2+6kmx+3m2﹣3=0,∴,.∴|AB|2=(1+k2)(x2﹣x1)2=====.当且仅当,即时等号成立.当k=0时,,综上所述|AB|max=2.∴当|AB|最大时,△AOB面积取最大值.22.(12分)(2007•陕西)已知各项全不为零的数列{a k}的前k项和为S k,且S k=N*),其中a1=1.(Ⅰ)求数列{a k}的通项公式;(Ⅱ)对任意给定的正整数n(n≥2),数列{b k}满足(k=1,2,…,n﹣1),b1=1,求b1+b2+…+b n.【分析】(Ⅰ)由,得a k(a k+1﹣a k﹣1)=2a k.再﹣a k﹣1=2.知a2m﹣1=1+(m﹣1)•2=2m﹣1.a2m=2+(m﹣1)•2=2m,m∈由a k+1N*.由此可知a k=k(k∈N*).(Ⅱ)由题意知=.由此可求出b1+b2+b3+…+b n的值.【解答】解:(Ⅰ)当k=1,由及a1=1,得a2=2.当k≥2时,由,得a k(a k+1﹣a k﹣1)=2a k.因为a k≠0,所以a k+1﹣a k﹣1=2.=1+(m﹣1)•2=2m﹣1.从而a2m﹣1a2m=2+(m﹣1)•2=2m,m∈N*.故a k=k(k∈N*).(Ⅱ)因为a k=k,所以.所以=.故b1+b2+b3+…+b n==.。
2007高考数学试题(陕西.理)含答案

2007普通高等学校招生全国统一考试(陕西)理科数学第一部分(共60分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共12小题,每小题5分,共60分). 1.在复平面内,复数12z i=+对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限2.已知全集{12345}U =,,,,,集合A {3|2}x x =∈-<Z ||,则集合U A ð等于( ) A .{1234},,,B .{234},,C .{15},D .{5}3.抛物线2y x =的准线方程是( ) A .410y +=B .410x +=C .210y +=D .210x +=4.已知sin α=,则44sin cos αα-的值为( ) A .15-B .35-C .15D .355.各项均为正数的等比数列{}n a 的前n 项和为n S 为,若2n S =,214n S =,则4n S 等于( ) A .80 B .30 C .26 D .166.一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( )A .4B .3C .4D .127.已知双曲线2222:1x y C a b-=(0a >,0b >),以C 的右焦点为圆心且与C 的渐近线相切的圆的半径是( )ABC .aD .b8.若函数()f x 的反函数为1f x -(),则函数(1)f x -与1(1)f x --的图象可能是( )A. B. C. D. 9.给出如下三个命题:①四个非零实数a b c d ,,,依次成等比数列的充要条件是ad bc =; ②设,a b ∈R ,且 0ab ≠,若1a b <,则1ba>; ③若2()log f x x =,则(||)f x 是偶函数. 其中不正确...命题的序号是( ) A .①②③ B .①②C .②③D .①③10.已知平面α∥平面β,直线m α⊂,直线n β⊂,点A m ∈,点B n ∈,记点A B ,之间的距离为a ,点A 到直线n 的距离为b ,直线m 和n 的距离为c ,则( ) A .b c a ≤≤ B .a c b ≤≤ C .c a b ≤≤ D . c b a ≤≤ 11.()f x 是定义在(0)+∞,上的非负可导函数,且满足()()0xf x f x '+≤.对任意正数a b ,,若a b <,则必有( )A .()()af b bf a ≤B .()()bf a af b ≤C .()()af a f b ≤D .()()bf b f a ≤12.设集合0123{}S A A A A =,,,,在S 上定义运算⊕为:i j k A A A ⊕=,其中k 为i j +被4除的余数,0123i j =,,,,,则满足关系式0()z x x A A ⊕⊕=的()x x S ∈的个数为( ) A .4B .3C .2D .1第二部分(共90分)二、填空题:把答案填在答题卡相应题号后的横线上(本大题共4小题,每小题4分,共16分) 13.21211lim 21x x x x x +⎛⎫-=⎪+--⎝⎭→ . 14.已知实数x y ,满足条件240220330x y x y x y ⎧-+⎪+-⎨⎪--⎩≤≥≤,,,则2z x y =+的最大值为 .15.如图,平面内有三个向量OAOBOC ,,,其中OA 与OB 的夹角为120°,OA 与OC 的夹角x为30°,且1OA OB ==,OC = .若()OC OA OB λμλμ=+∈R,,则λμ+的值为.16.安排3名支教教师去6所学校任教,每校至多2人,则不同的分配方案共有 种. (用数字作答)三、解答题:解答应写出文字说明,证明过程或演算步骤(本大题共6小题,共74分) 17.(本小题满分12分) 设函数()f x =·a b ,其中向量(cos2)m x =,a ,(1sin21)x =+,b ,x ∈R ,且()y f x =的图象经过点π24⎛⎫ ⎪⎝⎭,.(Ⅰ)求实数m 的值;(Ⅱ)求函数()f x 的最小值及此时x 值的集合.18.(本小题满分12分)某项选拔共有四轮考核,每轮设有一问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为432555,,,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手被淘汰的概率;(Ⅱ)该选手在选择中回答问题的个数记为ξ,求随机变量ξ的分布列与数学期望. (注:本小题结果可用分数表示) 19.(本小题满分12分)如图,在底面为直角梯形的四棱锥P ABCD -中,90AD BC ABC ∠=,∥°,PA ⊥平面ABCD.326PA AD AB BC ====,,.(Ⅰ)求证:BD ⊥平面PAC ;(Ⅱ)求二面角P BD A --的大小.A OB C20.(本小题满分12分)设函数2()x e f x x ax a=++,其中a 为实数.(I )若()f x 的定义域为R ,求a 的取值范围; (II )当()f x 的定义域为R 时,求()f x 的单调减区间. 21.(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 与椭圆C 交于A B ,两点,坐标原点O 到直线l,求AOB △面积的最大值. 22.(本小题满分12分)已知各项全不为零的数列{}n a 的前k 项和为k S ,且11()2k k k S a a k +=∈N*,其中11a =. (I )求数列{}n a 的通项公式;(II )对任意给定的正整数(2)n n ≥,数列{}n b 满足1k k b b +=1k k na +-(121k n =- ,,,),11b =,求12n b b b +++ .PC BADE2007年普通高等学校招生全国统一考试(陕西卷)数 学(理工农医类)参考答案一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共12小题,每小题5分,共60分).1.D 2.B 3.D 4.A 5.C 6.B 7.B 8.D 9.A 10.A 11.C 12.B二、填空题:把答案填在答题卡相应题号后的横线上(本大题共4小题,每小题4分,共16分). 13.1314.8 15.6 16.210 三、解答题:解答应写出文字说明,证明过程或演算步骤(本大题共6小题,共74分) 17.(本小题满分12分) 解:(Ⅰ)()(1sin 2)cos 2f x a b m x x ==++ ,由已知πππ1sin cos 2422f m ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭,得1m =.(Ⅱ)由(Ⅰ)得π()1sin 2cos 2124f x x x x ⎛⎫=++=+⎪⎝⎭,∴当πsin 214x ⎛⎫+=- ⎪⎝⎭时,()f x 的最小值为1由πsin 214x ⎛⎫+=- ⎪⎝⎭,得x 值的集合为3ππ8x x k k ⎧⎫=-∈⎨⎬⎩⎭Z ,. 18.(本小题满分12分)解法一:(Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(123)i A i =,,,则14()5P A =,23()5P A =,32()5P A =, ∴该选手被淘汰的概率112223112123()()()()()()()P P A A A A A A P A P A P A P A P A P A =++=++142433101555555125=+⨯+⨯⨯=. (Ⅱ)ξ的可能值为123,,,11(1)()5P P A ξ===, 1212428(2)()()()5525P P A A P A P A ξ====⨯=, 12124312(3)()()()5525P P A A P A P A ξ====⨯=.ξ∴的分布列为11235252525E ξ∴=⨯+⨯+⨯=. 解法二:(Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(123)i A i =,,,则14()5P A =,23()5P A =,32()5P A =. ∴该选手被淘汰的概率1231231()1()()()P P A A A P A P A P A =-=-4321011555125=-⨯⨯=. (Ⅱ)同解法一. 19.(本小题满分12分) 解法一:(Ⅰ)PA ⊥平面ABCD ,BD ⊂平面ABCD .BD PA ∴⊥. 又tan AD ABD AB ==tan BCBAC AB== 30ABD ∴= ∠,60BAC = ∠,90AEB ∴= ∠,即BD AC ⊥.又PA AC A = .BD ∴⊥平面PAC .(Ⅱ)过E 作EF PC ⊥,垂足为F,连接DF .DE ⊥平面PAC ,EF 是DF 在平面PAC上的射影,由三垂线定理知PC DF ⊥, EFD ∴∠为二面角A PC D --的平面角.又9030DAC BAC =-=∠∠,sin 1DE AD DAC∴==, sin AE AB ABE ==又AC =EC ∴=,8PC =.由Rt Rt EFC PAC △∽△得2PAEC EF PC == . 在Rt EFD △中,tan 9DE EFD EF ==,arctan 9EFD ∴=∠. ∴二面角A PC D --的大小为arctan. AEDP CBF解法二:(Ⅰ)如图,建立坐标系,则(000)A ,,,0)B ,,0)C ,,(020)D ,,,(004)P ,,, (004)AP ∴= ,,,0)AC = ,,(0)BD =- ,,0BD AP ∴= ,0BD AC =.BD AP ∴⊥,BD AC ⊥,又PA AC A = ,BD ∴⊥平面PAC . (Ⅱ)设平面PCD 的法向量为(1)x y =,,n则0CD = n ,0PD = n ,又(40)CD =-- ,,(024)PD =-,,, 40240y y ⎧--=⎪∴⎨-=⎪⎩,,解得2x y ⎧=⎪⎨⎪=⎩,21⎛⎫∴= ⎪ ⎪⎝⎭,n平面PAC 的法向量取为()20BD ==-,m , cos <m ,31>== m n n m n . ∴二面角A PC D --的大小为arccos31. 20.(本小题满分12分)解:(Ⅰ)()f x 的定义域为R ,20x ax a ∴++≠恒成立,240a a ∴∆=-<,04a ∴<<,即当04a <<时()f x 的定义域为R .(Ⅱ)22(2)e ()()x x x a f x x ax a +-'=++,令()0f x '≤,得(2)0x x a +-≤. 由()0f x '=,得0x =或2x a =-,又04a << ,02a ∴<<时,由()0f x '<得02x a <<-;当2a =时,()0f x '≥;当24a <<时,由()0f x '<得20a x -<<, 即当02a <<时,()f x 的单调减区间为(02)a -,;C当24a <<时,()f x 的单调减区间为(20)a -,. 21.(本小题满分14分)解:(Ⅰ)设椭圆的半焦距为c,依题意3c a a ⎧=⎪⎨⎪=⎩1b ∴=,∴所求椭圆方程为2213x y +=.(Ⅱ)设11()A x y ,,22()B x y ,. (1)当AB x ⊥轴时,AB =. (2)当AB 与x 轴不垂直时, 设直线AB 的方程为y kx m =+.=223(1)4m k =+. 把y kx m =+代入椭圆方程,整理得222(31)6330k x kmx m +++-=,122631kmx x k -∴+=+,21223(1)31m x x k -=+. 22221(1)()AB k x x ∴=+-22222223612(1)(1)(31)31k m m k k k ⎡⎤-=+-⎢⎥++⎣⎦22222222212(1)(31)3(1)(91)(31)(31)k k m k k k k ++-++==++ 2422212121233(0)34196123696k k k k k k=+=+≠+=++⨯+++≤. 当且仅当2219k k =,即3k =±时等号成立.当0k =时,AB =综上所述max 2AB =.∴当AB 最大时,AOB △面积取最大值max 1222S AB =⨯⨯=. 22.(本小题满分12分)解:(Ⅰ)当1k =,由111212a S a a ==及11a =,得22a =. 当2k ≥时,由1111122k k k k k k k a S S a a a a -+-=-=-,得11()2k k k k a a a a +--=.因为0k a ≠,所以112k k a a +--=.从而211(1)221m a m m -=+-=- . 22(1)22m a m m =+-= ,*m ∈N .故*()k a k k =∈N .(Ⅱ)因为k a k =,所以111k k k b n k n kb a k ++--=-=-+. 所以1121121(1)(2)(1)(1)1(1)21k k k k k k b b b n k n k n b b b b b k k -----+-+-==-- 11(1)(12)k kn C k n n-=-= ,,,.故123n b b b b ++++ 12311(1)n nn n n n C C C C n -⎡⎤=-+-+-⎣⎦ {}012111(1)n nn n n n C C C C n n⎡⎤=--+-+-=⎣⎦ .B卷选择题答案:1.D 2.C 3.A 4.B 5.B 6.C 7.D 8.A 9.B 10.D 11.A 12.C。
2007年考研数学三真题与完整解析

2007 年研究生入学考试数学三试题一、选择题: 1~ 10 小题,每小题 4 分,共 40 分. 在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.( 1)当 x0 时,与 x 等价的无穷小量是( A )1 e x( )1 x ( ) 1x 1 ( D)1 cos x[]B lnxC1( 2)设函数 f ( x) 在 x0 处连续,下列命题错误的是:(A )若 limf ( x) 存在,则 f (0)0 ( B )若 lim f (x)f ( x)存在,则 f (0) 0 .x 0xx 0x(B )若 limf ( x)存在,则 f (0)0 ( D )若 lim f (x)f (x)存在,则 f (0) 0 .xxx 0x[ ]( 3 )如图,连续函数y f (x) 在区间 3, 2 , 2,3 上的图形分别是直径为1 的上、下半圆周,在区间2, 0 , 0, 2 的图形分别是直径为2 的下、上半圆周,设 F ( x)xf (t )dt ,则下列结论正确的是:(A ) F(3)3F( 2)(B)F (3)5F(2)44(C ) F (3)3F(2)(D ) F(3)5F( 2)[]414( 4)设函数 f ( x, y) 连续,则二次积分f ( x, y)dy 等于dxsin x21dyf (x, y)dx1 f ( x, y)dx( A )( B )dy0 arcsin y 0 arcsin y 1arcsin y1arcsin y( C )dyf (x, y)dx(D )dyf ( x, y)dx22( 5)设某商品的需求函数为 Q 1602P ,其中 Q, P 分别表示需要量和价格,如果该商品需求弹性的绝对值等于 1,则商品的价格是(A) 10.(B) 20 (C) 30.(D)40.[]( 6)曲线 y1 ln 1 e x 的渐近线的条数为x(A )0.(B )1. (C )2. (D )3. []( 7)设向量组 1 , 2 , 3 线性无关,则下列向量组线性相关的是线性相关,则(A) 12 ,23 ,31(B) 12 ,23 ,3 1(C)122 ,223 ,32 1 .(D)12 2 ,223 ,32 1 .[]2 1 1 1 0 0( 8)设矩阵 A1 21 , B 0 1 0 ,则 A 与B1120 0(A) 合同且相似( B )合同,但不相似 .(C) 不合同,但相似. (D) 既不合同也不相似 []( 9)某人向同一目标独立重复射击,每次射击命中目标的概率为p(0p 1) ,则此人第 4 次射击恰好第 2 次击中目标的概率为(A ) 3 p(1p) 2 .( B ) 6 p(1 p) 2 .(C ) 3 p 2 (1 p)2 .(D ) 6 p 2 (1 p) 2[ ]( 10)设随机变量 X ,Y 服从二维正态分布,且X 与 Y 不相关, f X ( x), f Y ( y) 分别表示 X ,Y 的概率密度,则在 Yy 的条件下, X 的条件概率密度f X|Y ( x | y) 为(A) f X ( x) .(B)f Y ( y) . (C) f X ( x) f Y ( y) . (D)f X (x)[].f Y ( y)二、填空题 : 11~ 16 小题,每小题 4 分,共 24 分 . 把答案填在题中横线上 .( 11)x 3 x 2 1cos x)__________.limx3(sin xx2x( 12)设函数 y1,则 y ( n ) (0)________.2x3( 13) 设 f (u, v) 是二元可微函数, zfy , x,则 x zyz__________.x y xy3( 14)微分方程dyy 1 y 满足 y x 1 1的特解为y________.dxx 2 x0100( 15)设矩阵A0010,则 A3的秩为.00010000( 16)在区间0,1 中随机地取两个数,则这两个数之差的绝对值小于1的概率为. 2三、解答题:17~ 24 小题,共86 分 . 解答应写出文字说明、证明过程或演算步骤.( 17)(本题满分 10分 )设函数 y y(x) 由方程 y ln y x y0 确定,试判断曲线y y( x) 在点 (1,1)附近的凹凸性.( 18)(本题满分 11分)x2 ,| x | | y |1设二元函数 f (x, y)1, 1| x || y |2,计算二重积分 f ( x, y)d ,其中Dx2y 2D x, y | x | | y | 2.( 19)(本题满分 11分)设函数 f ( x), g ( x) 在a, b上连续,在 (a, b) 内具有二阶导数且存在相等的最大值,f (a)g(a), f (b)g(b) ,证明:存在(a, b) ,使得 f( )g ( ) .( 20)(本题满分 10分 )将函数 f ( x)1展开成 x1的幂级数,并指出其收敛区间. x23x4( 21)(本题满分 11分)x1x2x30设线性方程组x12x2ax30与方程 x12x2x3a1有公共解,求 a 的值及所有公共解.x14x2a2x3 0( 22)(本题满分 11分)设三阶对称矩阵 A 的特征向量值11, 22, 3 2 ,1(1, 1,1)T是 A 的属于 1 的一个特征向量,记 B A54A3E,其中E为3阶单位矩阵 .(I )验证1是矩阵B的特征向量,并求B的全部特征值与特征向量;(II )求矩阵B .(23)(本题满分 11 分)设二维随机变量( X , Y) 的概率密度为2 x y, 0x 1,0 y 1f ( x, y).0,其他(I)求P X 2Y;(II)求Z X Y 的概率密度. 2007 答案1⋯ .【分析】本题为等价无穷小的判定,利用定义或等价无穷小代换即可.【详解】当 x0 时,1 e x x ,1x 11x , 1cos x1x21x ,222故用排除法可得正确选项为( B ) .ln1xln(1 x)ln(1x )111事实上, lim1x lim lim1x11x 2 x1,x0x x 0x x 02x1xx)ln(1x)x o(x)x o(x )x o(x)x .或 ln ln(11x所以应选( B)【评注】本题为关于无穷小量比较的基本题型,利用等价无穷小代换可简化计算..2⋯⋯ .【分析】本题考查可导的极限定义及连续与可导的关系. 由于题设条件含有抽象函数,本题最简便的方法是用赋值法求解,即取符合题设条件的特殊函数 f ( x) 去进行判断,然后选择正确选项.【详解】取 f (x)| x |,则 lim f ( x) f ( x)0 ,但 f ( x) 在 x0 不可导,故选(D).x 0x事实上,在 (A),(B) 两项中,因为分母的极限为0,所以分子的极限也必须为0,则可推得 f (0) 0 .在( C)中,lim f (x)存在,则 f (0) 0, f(0)lim f ( x)f(0)lim f ( x)0 ,所以(C)项正确,x 0x x0x0x 0x故选 (D)【评注】对于题设条件含抽象函数或备选项为抽象函数形式结果以及数值型结果的选择题,用赋值法求解往往能收到奇效 .3⋯⋯ .【分析】本题实质上是求分段函数的定积分.【详解】利用定积分的几何意义,可得F(3) 1211213,F(2)1221,222822121F( 2) f (x)dx f ( x)d x f (x)dx1.20202022所以 F (3)3F(2)3F( 2) ,故选( C ).44【评注 】本题属基本题型 . 本题利用定积分的几何意义比较简便.4⋯⋯ .【分析 】本题更换二次积分的积分次序,先根据二次积分确定积分区域,然后写出新的二次积分.【详解 】由题设可知,x,sin x y 1,则 0 y 1,arcsin y x,2故应选( B ).【评注 】本题为基础题型. 画图更易看出 .5⋯⋯ .【分析 】本题考查需求弹性的概念 .【详解 】选( D ) .dQ P 2P P 40,商品需求弹性的绝对值等于Q1dP 160 2P故选( D ) .【评注 】需掌握微积分在经济中的应用中的边际,弹性等概念 .6⋯⋯ .【分析 】利用曲线的渐近线的求解公式求出水平渐近线,垂直渐近线和斜渐近线,然后判断 .【详解 】 lim ylim 1 ln 1 e x, lim ylim 1 ln 1 e x0 ,xxxxxx所以y 0是曲线的水平渐近线;lim ylim1 ln 1 e x,所以 x0 是曲线的垂直渐近线;x 0x 0xlim ylim 1 ln 1 e xln 1 e xe x x 1xlimlim 1e ,xx xxx xx11 x,所以 y x是曲线的斜渐近线 .b l i m y xl i ml n 1 exxxx故选( D ) .【评注 】本题为基本题型,应熟练掌握曲线的水平渐近线,垂直渐近线和斜渐近线的求法.注意当曲线存在水平渐近线时,斜渐近线不存在. 本题要注意 e x 当 x, x时的极限不同 .7⋯⋯ ..【分析 】本题考查由线性无关的向量组1, 2 , 3 构造的另一向量组 1, 2 , 3 的线性相关性 . 一般令1, 2, 31, 2, 3 A ,若 A 0,则 1, 2,3线性相关;若 A0,则1, 2,3线性无关.但考虑到本题备选项的特征,可通过简单的线性运算得到正确选项.【详解】由1223310 可知应选( A ).或者因为1 0 1 1 0 112 ,23 ,311,2,31 1 0 ,而 1 1 00 ,0 1 1 0 1 1所以12 ,23 ,3 1 线性相关,故选( A ) .1,0,0 TT0,0,1 T【评注 】本题也可用赋值法求解,如取1,20,1,0 , 3 ,以此求出 ( A ),( B ),( C ),( D )中的向量并分别组成一个矩阵,然后利用矩阵的秩或行列式是否为零可立即得到正确选项.8⋯⋯ 【分析】本题考查矩阵的合同关系与相似关系及其之间的联系,只要求得 A 的特征值,并考虑到实对称矩阵 A 必可经正交变换使之相似于对角阵,便可得到答案.2 1 1【详解】由 E A1 2 1(3)2可得 123,3 0,112所以 A 的特征值为 3,3,0;而 B 的特征值为 1,1,0.所以 A 与 B 不相似,但是A 与B 的秩均为 2,且正惯性指数都为 2,所以 A 与 B 合同,故选( B ) .【评注 】若矩阵 A 与 B 相似,则 A 与 B 具有相同的行列式,相同的秩和相同的特征值.所以通过计算 A 与 B 的特征值可立即排除( A )(C ).9⋯⋯ ..【分析 】本题计算贝努里概型,即二项分布的概率 . 关键要搞清所求事件中的成功次数 .【详解 】p ={前三次仅有一次击中目标,第4 次击中目标}C 31 p(1 p) 2 p 3p 2 (1 p) 2 ,故选( C ) .【评注 】本题属基本题型 .10⋯⋯ .【分析 】本题求随机变量的条件概率密度,利用X 与 Y 的独立性和公式f X |Y ( x | y)f ( x, y) 可求解 .f Y ( y)【详解】因为 X ,Y 服从二维正态分布,且 X 与 Y 不相关,所以 X 与 Y 独立,所以 f (x, y) f X ( x) f Y ( y) .故 f X |Y ( x | y)f (x, y) f X (x) f Y ( y)f X ( x) ,应选( A ) .f Y ( y)f Y ( y)【评注 】若X ,Y 服从二维正态分布,则 X 与 Y 不相关与 X 与 Y 独立是等价的 .11⋯ .【分析】本题求类未定式,可利用“抓大头法”和无穷小乘以有界量仍为无穷小的结论 .x 3x 2x 3x 2 1【详解 】因为 lim x 3 1lim 2x2x3 2x 00,| sin x cos x | 2 ,x2 xxx 112x所以 lim x3x x23 1(sin x cos x)0 .x2x【 评注 】无穷小的相关性质:( 1) 有限个无穷小的代数和为无穷小;( 2) 有限个无穷小的乘积为无穷小;( 3) 无穷小与有界变量的乘积为无穷小.12,⋯⋯ ..【分析 】本题求函数的高阶导数,利用递推法或函数的麦克老林展开式.【详解 】 y1 , y 2,则 y ( n) ( x) ( 1)n 2n n! ,故 y (n) (0) ( 1)n 2n n! .2x 32x 3 2(2 x 3)n 13n 1【评注 】本题为基础题型 .13⋯⋯ .【分析 】本题为二元复合函数求偏导,直接利用公式即可 .【详解 】利用求导公式可得z y 1 x x 2 f1f 2 ,yz 1 f 1 x2 f 2 ,yxy所以 xzyz2 f 1 yf 2 x.xyxy【评注 】二元复合函数求偏导时,最好设出中间变量,注意计算的正确性 .14⋯ ..【分析 】本题为齐次方程的求解,可令uy.xy,则原方程变为【详解 】令 uxu x du1 u 3 dudx .udx2u 3 2x两边积分得11ln x1ln C ,2u 2221y 2即 x1e u 2x1e x 2 ,将 y x 11代入左式得 Ce ,CCx 2x故满足条件的方程的特解为ex e y 2 ,即 y, x e 1 .ln x1【评注 】本题为基础题型 .15⋯⋯⋯ .【分析 】先将 A 3 求出,然后利用定义判断其秩 .0 1 0 0 0 0 0 10 0 1 00 0 0 0【详解】A0 0A30 0 0 r ( A) 1.0 1 0 0 0 0 00 0 0 0【评注 】本题为基础题型 .16⋯⋯⋯ .【分析 】根据题意可得两个随机变量服从区间0,1 上的均匀分布,利用几何概型计算较为简便 .【 详解 】利用几何概型计算 . 图如下: y1AO 1/2 1/2x1 2S A 132所求概率1.S D4【评注 】本题也可先写出两个随机变量的概率密度,然后利用它们的独立性求得所求概率.17⋯⋯ ..【分析 】由凹凸性判别方法和隐函数的求导可得.【详解 】 方程 y ln y x y 0 两边对 x 求导得y ln y yy1 y 0 , y即 y (2 ln y)1,则1 y (1).2上式两边再对 x 求导得y2y (2ln y)0y1,所以曲线 y y( x) 在点 (1,1)附近是凸的.则 y (1)8【评注】本题为基础题型 .18⋯⋯ .【分析】由于积分区域关于x, y 轴均对称,所以利用二重积分的对称性结论简化所求积分.【详解】因为被积函数关于x, y 均为偶函数,且积分区域关于x, y 轴均对称,所以f (x, y)d f (x, y)d,其中 D1为 D 在第一象限内的部分.D D1而 f ( x, y)d x2d1dD1x y 1,x 0, y 0 1 x y2,x 0, y 0x2y21x12x1dy22x1dydx x2 dy dx dx000 1 xx2y210x2y212 ln 1 2 .12所以 f ( x, y)d 14 2 ln1 2 . 3D【评注】被积函数包含x 2y 2时 , 可考虑用极坐标,解答如下:f (x, y)d1d x 2y 21 x y2 1 x y 2x 0, y 0x0, y 022 d sin1cos drsin cos2 ln(12) ..19⋯⋯ . 【分析】由所证结论 f ( ) g ( ) 可联想到构造辅助函数 F ( x) f (x)g ( x) ,然后根据题设条件利用罗尔定理证明.【详解】令 F (x) f (x) g( x) ,则 F ( x) 在a,b上连续,在 (a,b) 内具有二阶导数且 F (a) F (b)0 .( 1)若f (x), g( x)在(a, b)内同一点c取得最大值,则 f (c) g(c) F (c)0 ,于是由罗尔定理可得,存在1( a,c), 2(c,b) ,使得F(1) F(2) 0.再利用罗尔定理,可得存在( 1 , 2 ) ,使得 F ( ) 0 ,即 f ( ) g ( ) .( 2)若 f (x), g( x) 在 (a, b) 内不同点 c 1, c 2 取得最大值,则 f (c 1) g(c 2 ) M ,于是F (c 1 ) f (c 1 ) g(c 1) 0, F (c 2 ) f (c 2 ) g( c 2 ) 0 ,于是由零值定理可得,存在c 3 (c 1 , c 2 ) ,使得 F (c 3 ) 0于是由罗尔定理可得,存在1( a,c 3 ), 2 (c 3 ,b) ,使得F(1) F(2) 0.再利用罗尔定理,可得,存在( 1 , 2),使得 F () 0 ,即 f( ) g ( ) .【评注 】对命题为 f ( n) () 0 的证明,一般利用以下两种方法:方法一:验证 为 f (n 1) ( x) 的最值或极值点,利用极值存在的必要条件或费尔马定理可得证;方法二:验证 f ( n 1) ( x) 在包含 x于其内的区间上满足罗尔定理条件..20⋯ .【分析 】本题考查函数的幂级数展开,利用间接法.【详解 】 f (x)11 1 11 ,而3x 4 ( x 4)( x 1) 5 x 4 x 1x 21 1 11x 1n( x n1)1n, 2 x 4 ,1x 43 1 x 3 n 03 n 03311 11n( 1)n( x 1)nx 11 x 3 ,x 1n 1, x 1 2 12 n 02n 022所以 f ( x)(x 1)n( 1)n ( x 1)n1( 1)n nn 102n 1n 1n 1 ( x 1) ,n 03n n 032收敛区间为 1 x 3 .【评注 】请记住常见函数的幂级数展开 .21⋯ ..【分析 】将方程组和方程合并,然后利用非齐次线性方程有解的判定条件求得a .【详解 】将方程组和方程合并,后可得线性方程组x1x2x30x12x2ax302x14x2 a x30x12x2x3 a 1其系数矩阵11101110A12a001a10.1 4 a200 3 a2 1 0121 a 1010a111101110 01a1001a100 0 a23a 2 00 0 1 a.a 10 0 1 a a 10 0 (a 1)(a 2)0显然,当 a1, a 2 时无公共解.当时,可求得公共解为Ta1k 1 , 0 ,1为任意常数;, k当 a 2 时,可求得公共解为T 0,1, 1.【评注】本题为基础题型,考查非齐次线性方程组解的判定和结构.22⋯⋯【分析】本题考查实对称矩阵特征值和特征向量的概念和性质.【详解】(I)B1A54A3 E 1543543 1 1 2 1,1 1 1 1111则1是矩阵 B 的属于-2的特征向量.同理可得532 ,B 543133.B22 4 2 12333所以 B 的全部特征值为2,1, 1设B的属于 1 的特征向量为2( x1, x2 , x3 )T,显然 B 为对称矩阵,所以根据不同特征值所对应的特征向量正交,可得T120 .即x1x2x30 ,解方程组可得 B 的属于1的特征向量2k1 (1,0, 1)T k2 (0,1,0) T,其中 k1 , k2为不全为零的任意常数.由前可知 B 的属于-2的特征向量为k3 (1, 1,1)T,其中 k3不为零.101100(II)令P011,由(Ⅰ)可得 P-1BP010,则101002011B10 1 .110【评注】本题主要考查求抽象矩阵的特征值和特征向量,此类问题一般用定义求解,要想方设法将题设条件转化为 Ax x 的形式.请记住以下结论:(1)设是方阵 A 的特征值,则kA, aA bE, A2 , f ( A), A 1, A*分别有特征值k, a b, 2 , f ( ),1A, ( A 可逆),且对应的特征向量是相同的.( 2)对实对称矩阵来讲,不同特征值所对应的特征向量一定是正交的23⋯⋯ .【分析】(I)可化为二重积分计算;(II)利用卷积公式可得.1x7【详解】(I)P X 2Y dx 22 x y dxdy 2 x y dy.0024x 2 y(II)利用卷积公式可得f Z ( z) f ( x, z x)dxz(2x)dx,0z102z z20z11(2x)dx,1z2(2z)21z 2 .z10,其他0,其他【评注】 (II) 也可先求出分布函数,然后求导得概率密度..(24) (本题满分 11 分)设总体 X 的概率密度为10x,21,x 1f ( x)2(1)0,其他( X1, X 2 , ,, X n ) 为来自总体X 的简单随机样本,X 是样本均值.( I )求参数 的矩估计量;(II )判断 4X 2 是否为2的无偏估计量,并说明理由 .【分析 】利用 EX X 求( I );判断 E 4X 2?2.【详解】(I ) EX xf ( x)d xx dx1xdx1 ,222 14令 X11242X.2(II )E 4X24E X24 DXEX 241DXEX 2,n而 EX2x 2f ( x)dxx 21x 221 ,dxdx330 22 16EX2225所以DXEX,121248所以E 4X24 1DX EX11 2111 52 ,2n3n3n4 12n故4X 2 不是2的无偏估计量 .【评注 】要熟练掌握总体未知参数点估计的矩估计法,最大似然估计法和区间估计法 .。
2007年普通高等学校招生全国统一考试文科数学试卷及答案-陕西卷

景云制作
(Ⅰ)求数列 {a n } 的通项公式; (Ⅱ)数列 {a n } 的前 n 项和记为 S n , 证明: S n , <128 ( n 1,2,3, …). 21. (本小题满分 12 分) 已知 f ( x) ax bx cx 在区间 [0,1] 上是增函数 , 在区间 ( ,0), (1,) 上是减函数 , 又
(Ⅱ)该选手至多进入第三轮考核的概率
P3 P ( A1 A1 A2 A1 A2 A3 ) P ( A1 ) P ( A1 ) P ( A2 ) P ( A1 ) P ( A2 ) P ( A3 ) 1 4 2 4 3 3 101 . 5 5 5 5 5 5 125
19. (本小题满分 12 分) 解法一: (Ⅰ) 又 tan ABD
PA ⊥ 平面 ABCD , BD 平面 ABCD . BD ⊥ PA .
P
AD 3 BC , tan BAC 3. AB 3 AB
A
∠ABD 30 ,∠BAC 60 , ∠AEB 90 ,即 BD ⊥ AC . AC A . BD ⊥ 平面 PAC . (Ⅱ)连接 PE . BD ⊥ 平面 PAC . BD ⊥ PE , BD ⊥ AE . ∠AEP 为二面角 P BD A 的平面角.
景云制作
试卷类型:A
2007 年普通高等学校招生全国统一考试(陕西)
文科数学(必修+选修Ⅰ)
注意事项: 1.本试卷分第一部分和第二部分。第一部分为选择题,第二部分为非选择题。 2.考生领到试卷后,须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的 试卷类型信息点。 3.所有答案必须在答题卡上指定区域内作答。 考试结束后, 将本试卷和答题卡一并交回。 第一部分(共 60 分) 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共 12 小题,每小题 5 分,共 60 分) 。 1.已知全集 U 1,2,3,4,5,6, 集合A 2, 3, 6 ,则集合 CuA 等于 (A){1,4} (B){4,5} (C){1,4,5} (D){2,3,6}
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、计算题(30 分) 1、 lim
1 1 1 n sin ; n 1 2 n 23 n n 1
n m ; (m,n 正整数) m x 1 1 x 1 xn
2、 lim
3、
1 e dx ;
0 x 2
R x2 y2 R2
xe x
4、 lim
x
ydx xdy
2 xy y 2来自2;5、设 f x 1 x sin x ,求 f x , f x 1 .
2
二、解答题(30 分) 1、设函数 f 在 R , 上有定义, f 0 1 ,且满足条件:
2 3 3
三、 (15 分)已知三级方阵 B 的每一个列向量都是以下三元线性方程组的解
x1 2 x 2 2 x3 1 2 x1 x 2 x3 2 且 r B 2 。 3 x x x 1 2 3 1
(1) 求 的值; (2) 设 A 为此线性方程组的系数矩阵,求 AB 。
证明(1) f 在(0,0)点连续且偏导数存在;(2) f 在(0,0)点不可微. 5、设函数 f 在 a, b 上连续,证明
lim
1 x f t h f t dt f x f a x a, b . h 0 h a
6、设函数 f 在 0,1 0,1上连续且 f x, y f y, x x, y 0,1 ,证明
0 0 A 0 0
求 A 的若当标准型。 九、 (20 分)设 R
2
22
是 2 级实方阵构成的欧氏空间,其内积为
A, B aij bij , A aij 22 , B bij 22 R 22
2 i 1 j 1
又设 A1
dx f x, y dy dx f 1 x,1 y dy .
1 x 1 x 0 0 0 0
一、(10 分)计算行列式
2
5
1
2
3 7 1 4 5 9 2 7 4 6 1 2
二、 (15 分)证明:如果 ( x x 1) | f1 ( x ) xf 2 ( x ) ,那么 ( x 1) | f1 ( x) , ( x 1) | f 2 ( x) .
f .
3 2
第 1 页 共 3 页
3、设函数 f 在 a, b 上连续且单调递增,证明:
ab xf x dx 2 f x dx .
b b a a
4、设函数
x2 y , ( x, y ) (0,0) f ( x, y ) x 2 y 2 0, ( x, y ) (0,0)
求满足(1)中条件的可逆矩阵 Q 。 五、 (15 分)设 A 是 m n 实矩阵, B 是 n 级实方阵, B 是 n m 实矩阵,如果 AB 2 A, BC 0, 且
r A n. 证明:矩阵 B T AT A CC T 为正定矩阵。
六、 (15 分)设 V1 , V2 是线形空间 V 的两个非平凡子空间,证明:在 V 中存在 使 V1 , i 1,2. 七、 (25 分)设 A 为三级方阵,有三个不同的特征值 1 , 2 , 3 , 对应的特征向量分别为 1 , 2 , 3 , 令
x2 xn ,证明: 2! n!
(1)当 n 为偶数时, f x 在 R 上无零点; (2) 当 n 为奇数时, f x 在上 R 有且只有一个零点。 2、设 0 a b ,函数 f 在 a, b 上可导,证明:存在两点 , a, b 使得
f a 2 ab b 2
f x y f x f y x, y R ,
试求 f x . 2、求幂级数
1
n 1
n
n 2 x n 的收敛区间与和函数。
2 2
3、求 a, b 使得
a bx x dx 最小。
3 1
三、证明题(90 分) 1、设 f x 1 x
1 1 0 1 , A , 求由 A1 , A2 生成的子空间 W L A1 , A2 的正交补空间 W 的一组标 2 0 0 1 1
准正交基。
第 3 页 共 3 页
n
四、 (20 分)矩阵的列向量是线性无关的,就称该矩阵为列满秩的。 (1)设 A 是 m n 矩阵,则 A 是列满秩的充分必要条件是存在 m n 可逆矩阵 Q 使
En A Q 0 。
第 2 页 共 3 页
(3) 已知
1 1 1 2 1 0 A 1 1 0 4 1 1 5 3 1
1 2 3 。
(1)证明 不是 A 的特征向量; (2)证明 , A , A (3)若 A
3 2
线形无关;
A ,计算行列式 2 A 3E ,其中 E 是三阶单位矩阵。
1 1 1 0 1 1 0 0 1 0 0 0
八、 (15 分)已知