磁场中的带电粒子运动

合集下载

带电粒子在有界磁场磁场中的运动

带电粒子在有界磁场磁场中的运动

d
αR O
过程模型:匀速圆周运动 规律:牛顿第二定律 + 圆周运动公式 条件:要求时间最短
t
s v
速度 v 不变,欲使穿过磁场时间最短,须使 s 有最 小值,则要求弦最短。
题1 一个垂直纸面向里的有界匀强磁场形 状如图所示,磁场宽度为 d。在垂直B的平面
内的A点,有一个电量为 -q、质量为 m、速
y B
如粒子带正电,则: 如粒子带负电,则:
60º v
60º
O 120º
x
A. 2mv qB
B. 2mvcosθ qB
C. 2mv(1-sinθ) qB
2mv(1-cosθ)
D. qB
M
D
C
θ θ θθ
P
N
θθ
练、 一个质量为m电荷量为q的带电粒子(不计重力)
从x轴上的P(a,0)点以速度v,沿与x正方向成60º的
束比荷为q/m=2 ×1011 C/kg的正离子,以不同角度α入射,
其中入射角 α =30º,且不经碰撞而直接从出射孔射出的
离子的速度v大小是 (
C)
αa
A.4×105 m/s B. 2×105 m/s
r
C. 4×106 m/s D. 2×106 m/s O′
O
解: 作入射速度的垂线与ab的垂直平分线交于 r
P
B v0
O
AQ
例、如图,A、B为水平放置的足够长的平行板,板间距离为
d =1.0×10-2m,A板上有一电子源P,Q点在P点正上方B
板上,在纸面内从P点向Q点发射速度在0~3.2×107m/s范
围内的电子。若垂直纸面内加一匀强磁场,磁感应强度
B=9.1×10-3T,已知电子质量 m=9.1×10-31kg ,电子电

《带电粒子在磁场中的运动》 说课稿

《带电粒子在磁场中的运动》 说课稿

《带电粒子在磁场中的运动》说课稿尊敬的各位评委、老师:大家好!今天我说课的题目是“带电粒子在磁场中的运动”。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计以及教学反思这几个方面来展开我的说课。

一、教材分析“带电粒子在磁场中的运动”是高中物理选修 3-1 第三章第六节的内容。

这部分知识是磁场这一章的重点和难点,也是高考的热点之一。

它不仅在电磁学中有着重要的地位,还为后续学习带电粒子在复合场中的运动以及现代科技中的应用奠定了基础。

本节课的主要内容包括:带电粒子在匀强磁场中的运动规律,如匀速圆周运动的半径和周期公式;带电粒子在有界磁场中的运动轨迹分析。

教材在编排上,先通过实验引入,让学生观察带电粒子在磁场中的运动现象,然后从理论上进行分析推导,得出运动规律。

这种从感性认识到理性认识的过程,符合学生的认知规律,有助于学生对知识的理解和掌握。

二、学情分析学生已经学习了电场、磁场的基本概念和性质,掌握了牛顿运动定律、圆周运动的相关知识,具备了一定的分析和解决问题的能力。

但是,对于带电粒子在磁场中的运动这一较为抽象的内容,学生可能会感到理解困难。

在学习过程中,学生可能会遇到以下几个问题:一是对洛伦兹力的方向判断不够熟练;二是难以将牛顿运动定律和圆周运动的知识灵活应用到带电粒子在磁场中的运动分析中;三是对于有界磁场中带电粒子运动轨迹的分析,空间想象力不足。

三、教学目标基于以上对教材和学情的分析,我制定了以下教学目标:1、知识与技能目标(1)理解带电粒子在匀强磁场中做匀速圆周运动的条件和规律。

(2)掌握带电粒子在匀强磁场中做匀速圆周运动的半径和周期公式,并能熟练应用。

(3)学会分析带电粒子在有界磁场中的运动轨迹。

2、过程与方法目标(1)通过实验观察和理论推导,培养学生的观察能力、分析推理能力和逻辑思维能力。

(2)通过对带电粒子在有界磁场中运动轨迹的分析,提高学生的空间想象力和应用数学知识解决物理问题的能力。

带电粒子在磁场中的运动

带电粒子在磁场中的运动

1 2
mv22
1 2
mv12
f nd 0 12 mv12
n
v12 v22 v12
R2 R2 r2
1 1 0.81
5.3
∴ α粒子可穿过板5 次
(4)带电粒子在磁场中的运动周期与速度和 半径的大小都无关。
t= 1.5T1+1.5T2=3T=3×2πm/qB= 6 πm/qB
返回
(2002年全国) 、电视机的显像管中,电子束的偏转 是用磁偏转技术实现的。电子束经过电压为U的加速电 场后,进入一圆形匀强磁场区,如图所示。磁场方向 垂直于圆面。磁场区的中心为O,半径为r。当不加磁 场时,电子束将通过O点而打到屏幕的中心M点。为了 让电子束射到屏幕边缘P,需要加磁场,使电子束偏转 一已知角度θ,此时的磁场的磁感应强度B应为多少?
y
r=mv/qB.
只有沿y 轴方向射出的粒子跟
x 轴的交点离O点最远,
x=2r= 2mv/qB
只有沿 – x 轴方向射出的粒子跟y
O
x
轴的交点离O点最远,
y=2r= 2mv/qB 返回
5. 如图所示,在垂直纸面向里的匀强磁场中,有一 个带电量为q 的正离子自A点垂直射入磁场,沿半径为 R 的圆形轨道运动,运动半周到达B点时,由于吸收
返回
4、(1997年高考) 如图13在x轴的上方(y≥0)存在着
垂直于纸面向外的匀强磁场,磁感强度为B.在原点O有
一个离子源向x轴上方的各个方向发射出质量为m、电量
为q的正离子,速率都为v,对那些在xy平面内运动的离
子,在磁场中可能到达的最大x=
2mv/q,B最大y
= 2mv/qB .
解: 从O点射出的粒子,速度v相同,所以半径相同,均为

1.3带电粒子在匀强磁场中的运动

1.3带电粒子在匀强磁场中的运动
思路导引:
依据所给数据分别计算出带电粒子所受的重力和洛伦兹力,就可求出
所受重力与洛伦兹力之比。带电粒子在匀强磁场中受洛伦兹力并做匀速圆
周运动,由此可以求出粒子运动的轨道半径及周期。
完全解答:
重力与洛伦兹力之比
(1)粒子所受的重力
G= mg = 1.67×10-27kg×9.8 N= 1.64×10-26N
匀强磁场中。求电子做匀速圆周运动的轨道半径和周期。
解:洛伦兹力提供向心力,首先列:
2
v
qvB m
r
2πr
T
v
mv
9.110 31 1.6 10 6
2



.
55

10
m
r
19
4
1.6 10 2 10
qB
2m
T
qB
2 9.110 31
7


5
.
6875






洛伦兹力提供向心力
v2
qvB m
r



圆周运动的半径
mv
r
qB
粒子在匀强磁场中做匀速圆周运动的半径与它的质量、速度成
正比,与电荷量、磁感应强度成反比。
观察带电粒子的运动径迹
洛伦兹力演示仪示意图
洛伦兹力演示仪
励磁线圈
玻璃泡
电子枪
加速极电压
励磁电流
选择档
选择档
电子枪可以发射电子束
玻璃泡内充有稀薄的气体,在电
2 m
T
eB
电子在矩形磁场中沿圆弧从
a点运动到c点的时间

t
T

带电粒子在磁场中运动的多解问题

带电粒子在磁场中运动的多解问题

内) 侧中点处有一质量为m,电荷量为e的静止电子,经
过M、N间电压为U的电场加速后射入圆筒,在圆筒壁
上碰撞n次后,恰好沿原路返回到出发点。(不考虑重
力,设碰撞过程中无动能损失)求:
⑴电子到达小孔S时的速度大小;
⑵电子第一次到达S所需要的时间; ⑶电子第一次返回出发点所需的时间。
OR
NS M me
解:⑴ 设加速后获得的速度为v ,根据
当粒子从左边射出时, 若运动轨迹半径最大,
则其圆心为图中O1点, 半径 r1=d/4。 因由此于粒r子从mq左Bv0边,射所出以必v须0 满r足Bmqr≤,r1。Or11
Bdq 即 v0 4m
l
d/2 v0 乙
当粒子从右边射出时,若运动轨迹半径最小,则其圆
心为图中O2点,半径为r2。由几何关系可得
当减速到v1时,若qv1B=mg f1=0则以v1作匀速运动
Wf=1/2mv02 - 1/2mv12 < I2/2m 所以选项A C D正确。
qv0B qv1B f
mg mg
4. 运动的重复性形成多解 带电粒子在部分是磁场,部分是电场的空间运动时,
运动往往具有重复性,因而形成多解。
例6. 如图所示,在x轴上方有一匀强电场,场强为E,
r22
(r2
d)2 2
l 2,
d l2 r2 4 d
因此粒子从右边射出必须满足的条件是r≥r2
( d 2 4l 2 )qB
即 v0
4dm
所以当
v0
Bdq 4m
O2
r2-d/2 r2
l

v0
(dΒιβλιοθήκη 24l 2 4dm
)qB
时,

带电粒子在磁场中运动的半径公式

带电粒子在磁场中运动的半径公式

带电粒子在磁场中运动的半径公式引言:带电粒子在磁场中运动的半径公式是物理学中的一个重要公式,它描述了带电粒子在磁场中受力的情况,是磁场中粒子运动的基础。

本文将从理论和实践两个方面,详细介绍带电粒子在磁场中运动的半径公式。

理论分析:带电粒子在磁场中运动的半径公式是由洛伦兹力和向心力共同作用得出的。

洛伦兹力是指带电粒子在磁场中受到的力,它的大小与粒子的电荷量、速度和磁场的强度有关。

向心力是指粒子在磁场中受到的向心力,它的大小与粒子的速度和半径有关。

根据牛顿第二定律,带电粒子在磁场中的运动可以用以下公式表示:F = ma其中,F是带电粒子在磁场中受到的合力,m是粒子的质量,a是粒子的加速度。

由于带电粒子在磁场中只受到洛伦兹力和向心力的作用,因此可以将F表示为:F = F_L + F_c其中,F_L是洛伦兹力,F_c是向心力。

洛伦兹力的大小可以用以下公式表示:F_L = qvB其中,q是粒子的电荷量,v是粒子的速度,B是磁场的强度。

向心力的大小可以用以下公式表示:F_c = \frac{mv^2}{r}其中,r是粒子在磁场中运动的半径。

将F_L和F_c代入F = ma中,可以得到:qvB = \frac{mv^2}{r}整理得到带电粒子在磁场中运动的半径公式:r = \frac{mv}{qB}实践应用:带电粒子在磁场中运动的半径公式在实践中有着广泛的应用。

例如,在粒子加速器中,带电粒子需要在磁场中运动,以达到加速的目的。

在核磁共振成像中,磁场可以使带电粒子的运动轨迹发生变化,从而实现对物质的成像。

此外,在电子显微镜中,磁场也可以用来控制电子的运动轨迹,从而实现对样品的观察和分析。

结论:带电粒子在磁场中运动的半径公式是物理学中的一个重要公式,它描述了带电粒子在磁场中受力的情况,是磁场中粒子运动的基础。

理论分析表明,带电粒子在磁场中运动的半径公式是由洛伦兹力和向心力共同作用得出的。

实践应用表明,带电粒子在磁场中运动的半径公式在粒子加速器、核磁共振成像和电子显微镜等领域有着广泛的应用。

带电粒子在磁场中的运动

带电粒子在磁场中的运动

带电粒子在磁场中的运动因为洛伦兹力F始终与速度v垂直,即F只改变速度方向而不改变速度的大小,所以运动电荷非平行与磁感线进入匀强磁场且仅受洛伦兹力时,一定做匀速圆周运动,由洛伦磁力提==2/。

带电粒子在磁场中运动问题大致可分两种情况:1. 做供向心力,即F qvB mv R完整的圆周运动(在无界磁场或有界磁场中);2. 做一段圆弧运动(一般在有界磁场中)。

无论何种情况,其关键均在圆心、半径的确定上。

1. 找圆心方法1:若已知粒子轨迹上的两点的速度方向,则可根据洛伦兹力F⊥v,分别确定两点处洛伦兹力F的方向,其交点即为圆心。

方法2:若已知粒子轨迹上的两点和其中一点的速度方向,则可作出此两点的连线(即过这两点的圆弧的弦)的中垂线,再画出已知点v的垂线,中垂线与垂线的交点即为圆心。

2. 求半径圆心确定下来后,半径也随之确定。

一般可运用平面几何知识来求半径的长度。

3. 画轨迹在圆心和半径确定后可根据左手定则和题意画出粒子在磁场中的轨迹图。

4. 应用对称规律带电粒子如果从一直线边界进入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,入射速度方向与出射速度方向与边界的夹角相等,利用这一结论可以轻松画出粒子的轨迹。

临界点是粒子轨迹发生质的变化的转折点,所以只要画出临界点的轨迹就可以使问题得解。

一、由两速度的垂线定圆心例1. 电视机的显像管中,电子(质量为m,带电量为e)束的偏转是用磁偏转技术实现的。

电子束经过电压为U的加速电场后,进入一圆形匀强磁场区,如图1所示,磁场方向垂直于圆面,磁场区的中心为O,半径为r。

当不加磁场时,电子束将通过O点打到屏幕的中心M点。

为了让电子束射到屏幕边缘P,需要加磁场,使电子束偏转一已知角度θ,此时磁场的磁感强度B应为多少?图1解析:如图2所示,电子在匀强磁场中做圆周运动,圆周上的两点a、b分别为进入和射出的点。

做a、b点速度的垂线,交点O1即为轨迹圆的圆心。

图2设电子进入磁场时的速度为v,对电子在电场中的运动过程有=22/eU mv对电子在磁场中的运动(设轨道半径为R)有=2/evB mv R由图可知,偏转角θ与r、R的关系为θ2=r Rtan(/)/联立以上三式解得θ122=(/)/tan(/)B r mU e二、由两条弦的垂直平分线定圆心例2. 如图3所示,有垂直坐标平面的范围足够大的匀强磁场,磁感应强度为B,方向向里。

磁场中带电粒子的实验运动轨迹分析

磁场中带电粒子的实验运动轨迹分析

偏转角和偏转量的计算
带电粒子在磁场中 受到洛伦兹力作用, 偏转角正切值等于 粒子速度与磁感应 强度的比值。
带电粒子在磁场中 做匀速圆周运动, 偏转量等于粒子运 动半径与磁感应强 度的乘积。
带电粒子在磁场中 做螺旋线运动,偏 转量等于粒子运动 轨迹的弧长。
带电粒子在磁场中 做直线运动,偏转 量等于粒子运动方 向与磁感应强度的 夹角。
聚焦和散焦的应用
粒子加速器: 利用磁场聚焦, 提高带电粒子
能量
粒子成像:通 过散焦技术, 获得粒子的运 动轨迹和分布
情况
医学诊断:利 用聚焦技术, 实现医学影像
的清晰化
工业检测:通 过散焦技术, 检测物体表面 的缺陷和不平
整度
磁场中带电粒子的实验应用
电子束曝光机
原理:利用磁场中带电粒子的运动轨迹,控制电子束的投射,实现曝光 应用领域:微电子、光电子、纳米科技等 优点:高精度、高分辨率、高可靠性 实验条件:需要真空环境,对磁场和电场有较高要求
质谱仪
添加标题
简介:质谱仪是一种测量带电粒子质量的仪器,通过磁场中带电粒子的运动轨迹分析,可以精确测 定粒子的质量。
添加标题
工作原理:带电粒子在磁场中受到洛伦兹力作用,发生偏转,通过测量偏转角度和速度,可以推算 出粒子的质量和电荷数。
添加标题
应用领域:质谱仪在科学研究、医学诊断、环境监测等领域有广泛应用,例如用于检测生物样品中 的元素组成、测量气体中的痕量污染物等。
磁场中带电粒子的实验运动轨 迹分析
汇报人:XX
磁场中带电粒子的受力分析
带电粒子在磁场中的运动轨迹
带电粒子在磁场中的偏转 带电粒子在磁场中的聚焦和散焦 磁场中带电粒子的实验应用
磁场中带电粒子的受力分析
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁场中的带电粒子运动
在物理学中,磁场是指由带电粒子或者磁体所产生的力场。

而带电粒子在磁场中的运动则是一个重要的研究课题。

本文将探讨带电粒子在磁场中的运动规律以及影响因素。

1. 磁力对带电粒子的作用
磁场和电场一样,都是一种力场,对带电粒子具有作用力。

在磁场中,带电粒子会受到洛伦兹力的作用。

洛伦兹力的方向垂直于带电粒子的速度方向和磁场方向,根据洛伦兹力的大小和方向可以确定带电粒子的运动轨迹。

2. 带电粒子的运动轨迹
带电粒子在磁场中的运动轨迹可以采用圆周运动或者螺旋线运动。

当带电粒子的速度垂直于磁场时,洛伦兹力会使得粒子绕着磁场线圈成圆周运动。

当带电粒子的速度和磁场方向成一定的角度时,洛伦兹力会使得粒子绕着磁场线圈形成螺旋线运动。

3. 磁场对带电粒子的限制
由于洛伦兹力的作用,磁场对带电粒子提供了一种限制。

带电粒子在磁场的作用下会遵循一定的运动轨迹,并受到磁场的约束。

这种约束可以用来控制带电粒子的行为,如在粒子加速器中,利用磁场可以使带电粒子产生逐渐加速的效果。

4. 影响带电粒子运动的因素
带电粒子在磁场中的运动受到多种因素的影响。

首先是带电粒子的
电量大小,电量越大,受到的洛伦兹力就越大。

其次是带电粒子的质量,质量越大,惯性越大,运动轨迹就越不容易改变。

还有带电粒子
的速度,速度越大,洛伦兹力对其的作用也越大。

最后是磁场的强度,强磁场会对带电粒子的运动产生更大的影响。

5. 应用于物理实验和技术领域
带电粒子在磁场中的运动规律被广泛应用于物理实验和技术领域。

例如,在核物理中,可以利用磁场对带电带中子进行分离和加速。


医学成像中,磁共振成像技术利用磁场对带电粒子进行探测和成像。

磁流体技术也利用磁场对带电粒子进行操控和分离。

总之,带电粒子在磁场中的运动是一个重要的物理学研究领域。


究带电粒子在磁场中的运动规律,不仅有助于深入理解粒子物理学,
还可以应用于各种实践应用中。

通过对带电粒子在磁场中的运动的研究,我们可以更好地探索和理解自然界的奥秘。

相关文档
最新文档