一元函数微分学教案

合集下载

一元函数微分学(二)

一元函数微分学(二)
因为 F(0)=0,F(ζ3)=0。
根据罗尔定理,在(0, ζ3)中至少存在一点 ζ,使得 F’(ζ)=0,即 f’(ζ)+2ζf’(ζ)+
ζf’’( ζ)=0,得证。
会用罗尔定理、拉格朗日中值定理
证明一些简单的等式或不等式。
1
f(x)在[1,2]上连续,
(1,2)上可导,f(1)= ,f(2)=2,证明:
(2) 在开区间 ( a , b ) 内可导,
(3) f (a) f (b) .
则 y f (x) 在开区间 ( a , b ) 内至少存在一点 ,使得 f ( ) =0
罗尔(Rolle)中值定理的几何意义
罗尔定理的几何意义
拉格朗日(Lagrange)中值定理
定理(
拉格朗日定理 ): 设函数 y f (x) 满足下列条件
f(ζ)、ζf’( ζ),可以考虑原函数为 ζekζ f(ζ),经求导比较,k 取 2。
设 F(x)=x 2 f’(x),F(0)=0。
1
因为 f(0)=0,f(1)=1,f(2)=-1,在(0,1)存在一点 ζ1,f(ζ1)= , 在(1,2)
3
1
存在一点 ζ2,f(ζ2)= 。
3
根据罗尔定理,在(ζ1, ζ2)中至少存在一点 ζ3,使得 f’(ζ3)=0,则 F(ζ3)=0。
lim
→0 ln(1 + )
ln 1 + −
→0
2
lim
洛必达(L’Hospital)法则求未定式的极

lim
→0
1 − 2
1 + 2
洛必达(L’Hospital)法则求极限
若f(x)在x=1处的某个邻域中还有连续的一阶导数,且f(1)=1,f’(1)=0,

第2章 一元函数微分学

第2章 一元函数微分学

第二章一元函数微分学110拐点判断定理:若曲线)(x f y =,0连续在点x 0)(0=′′x f 或不存在,但)(x f ′′在两侧异号,0x 则点))(,(00x f x 是曲线)(x f y =的一个拐点.曲线的渐近线(1)水平渐近线.)(),()(lim )(lim 的一条水平渐近线就是那么为常数或如果x f y b y b b x f b x f x x ====−∞→+∞→考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理.拉格朗日(Lagrange)中值定理.了解泰勒(Taylor)定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.136.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性,会求函数图形的拐点和渐近线.9.会描述简单函数的图形.1419设||3)(23x x x x f +=,则)(x f 在0=x 处可求导的最高阶数为( ). (A) 0 (B) 1 (C) 2 (D) 3 只要考虑||2x x 的可导性,)(x g ′′在0=x 处的左、右导数分别为6和6−,故不可导,故)(x f 在0=x 处可求导的最高阶数为2阶,本题应选C.例5解⎪⎩⎪⎨⎧<−=>=,0,,0,0,0,)(33x x x x x x g ⎪⎩⎪⎨⎧<−=>=′,0,3,0,0,0,3)(22x x x x x x g ⎪⎩⎪⎨⎧<−=>=′′.0,6,0,0,0,6)(x x x x x x g21设)(x y y =是由方程y x xy+=e 所确定的隐函数,求:)0(),0(y y ′′′.方程两边关于x 求导,得)1(,1)( y y x y xye ′+=′+,11)0(0式带入及将)(==y x .0)0(=′∴y (1)式两边再关于x 求导,得,)2()(2y y x y y x y xyxy ′′=′′+′+′+e e ,代入及将0)0(1)0(,0=′==y y x .1)0(=′′y 得例7解33。

(优选)一元函数微分学ppt讲解

(优选)一元函数微分学ppt讲解

x0 x
1
(二)导数的运算 • 基本初等函数的导数公式
导数的四则运算法则
设u=u(x),v=v(x)都可导,则
反函数的求导法则
复合函数的求导法则
隐函数求导法则
设y=f(x)由方程F(x,y)=0确定,求y′,只需直接由方 程F(x,y)=0关于x求导,将y当做中间变量,依复 合函数链式法则求之。
★ f (x)在开区间(a,b)内的导函数为f '(x)
f '(a ) lim f '(x) xa
f '(b ) lim f '(x) xb
称为导函数的右极限 称为导函数的左极限
★ 设f (x)在闭区间[a,b]连续, 开区间(a,b)内的可导,记导函数为f '(x) 若f '(a 0)存在,则f (x)在a点右可导, 若f '(b 0)存在,则f (x)在b点左可导
记为y
,dy xx0 dx
或 df (x)
x x0
Hale Waihona Puke dxx x0关于导数的说明:
★ 导数是因变量在点x0处的变化率,它反映了 因变量随自变量的变化而变化的快慢程度. ★ 如果函数 y f (x)在开区间I内的每点
处都可导,就称函数f (x)在开区间I内可导.
★ 对于任一x I ,都对应着f (x)的一个确定的
2.右导数:
f( x0 )
lim
x x0 0
f (x) x
f (x0 ) x0
lim
x 0
f (x0
x) x
f (x0 );
★ 函数 f ( x)在点 x0处可导 左导数 f( x0 )和右导数 f( x0 )都存在且相等.

高等数学讲义--一元函数微分学

高等数学讲义--一元函数微分学

第二章 一元函数微分学§2.1 导数与微分(甲)容要点一、导数与微分概念 1、导数的定义设函数)(x f y =在点0x 的某领域有定义,自变量x 在0x 处有增量x ∆,相应地函数增量)()(00x f x x f y -∆+=∆。

如果极限x x f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000 存在,则称此极限值为函数)(x f 在0x 处的导数(也称微商),记作0()f x ',或0x x y =',x x dxdy=,)(x x dxx df =等,并称函数)(x f y =在点0x 处可导。

如果上面的极限不存在,则称函数)(x f y =在点0x 处不可导。

导数定义的另一等价形式,令x x x ∆+=0,0x x x -=∆,则000()()()limx x f x f x f x x x →-'=-我们也引进单侧导数概念。

右导数:0000000()()()()()lim lim x x x f x f x f x x f x f x x x x +++→∆→-+∆-'==-∆ 左导数:0000000()()()()()lim lim x x x f x f x f x x f x f x x x x---→∆→-+∆-'==-∆ 则有)(x f 在点0x 处可导)(x f ⇔在点0x 处左、右导数皆存在且相等。

2.导数的几何意义与物理意义如果函数)(x f y =在点0x 处导数0()f x '存在,则在几何上0()f x '表示曲线)(x f y =在点()(,00x f x )处的切线的斜率。

切线方程:000()()()y f x f x x x '-=-法线方程:00001()()(()0)()y f x x x f x f x '-=--≠' 设物体作直线运动时路程S 与时间t 的函数关系为)(t f S =,如果0()f t '存在,则0()f t '表示物体在时刻0t 时的瞬时速度。

经济数学一一元微积分教学设计

经济数学一一元微积分教学设计

经济数学一一元微积分教学设计前言经济学是一门非常重要的学科,而微积分更是经济学中必不可少的一部分。

本文将就如何设计一堂经济数学一一元微积分课程进行讨论。

教学目标经过学习本课程,学生应该能够:1.了解微积分的基本概念与方法;2.理解微积分的应用场景,如经济学中的边际效应等;3.能够运用微积分的方法进行经济学问题的求解。

教学内容第一部分:微积分基础1.微积分的基本概念,如导数、微分、积分等;2.常见微积分公式的推导与运用;3.隐函数求导等高阶微积分概念的引入。

第二部分:微积分在经济学中的应用1.边际效应的概念与解析;2.经济学中优化问题的微积分求解;3.积分在经济学中的应用,如消费者剩余等。

教学方法1.讲授式教学:通过PPT等多媒体工具讲解相关微积分概念及其应用;2.课堂练习:针对每个小节的内容提供相关的练习,以帮助学生掌握所学知识;3.实例分析:通过实际经济问题进行分析,引导学生进行思考与求解。

教学评估方式1.课堂测试:在每个小节学习内容后进行测试,以便及时纠正学生的理解问题;2.课后作业:针对每个小节的内容布置相关的作业,确保学生对本节内容进行掌握;3.期末考试:考察学生对整个学期内容的掌握程度。

教学资源1.课堂教学PPT;2.经济学相关案例资源;3.智能互动平台。

教学安排第一周1.微积分的基本概念;2.导数的求法及其应用。

第二周1.微积分的基本定理;2.隐函数求导的方法。

第三周1.边际效应的概念及其解析;2.优化问题的微积分求解。

第四周1.积分的概念及其性质;2.消费者剩余的应用。

结语本教学设计通过讲授微积分基础、微积分在经济学中的应用、实例分析等方式,旨在帮助学生快速掌握微积分概念及其在经济学中的应用。

同时,通过课堂测试、课后作业、期末考试等方式进行教学评估,以确保学生掌握本课程中的重点内容。

8.第三章一元函数微分学(求导法则)

8.第三章一元函数微分学(求导法则)
§ 3.1导数与微分
二 初等函数的求导公式
1. 基本初等函数的导数公式
(1)C 0(C 为常数);
(3)ex ex ;
(2) (x ) x 1 ;
(4)ax ax ln a ;
(5)
ln
x
'
1 x

(6) (loga
x) '
1 x ln
a

(7) (sin x) ' cos x ; (9)tan x sec2 x;
的值.
解:因为 f x 在 x 1处可导,从而 f x 在 x 1处也连续.但
lim f x a; lim f x 1 b; 故 a 1 b .
x1
x1
再由于 f x 在 x 1处可导,则 f/ 1 f/ 1.
又 f/ 1 a; f/ 1 2; 所以, a 2,b 1.
y f (x),其中函数 (t), (t)可导,且(t) 0,则 y f (x)可
导,且
dy (t) ,t (, ) dx (t)

8
已知椭圆的参数方程为xy
a cost bsin t
,求椭圆在
t
4
处的切线方程.
解 当t 时,椭圆上的相应点 M 的坐标是
4
0
x a cos 2 a, y bsin 2 b
sin x cos x
例 4 y ln cos(ex ),求 dy

dx
ln cos(ex )
1 cos(ex )
(cos(ex ))
1 cos(ex )
sin(ex
)
(ex
)
ex tan(ex )
5 三个求导方法

一元函数微分学

一元函数微分学

α、β、γ等表示。
注: (1)无穷小量是一个特殊的变量
(2)无穷小量与有极限变量的关系是:变量y以A为极限的 充分必要条件是y可以表示为A与与一个无穷小量的和
即 lim y A y A (lim 0)
定义2 无穷小量与有界变量的乘积仍为无穷小量。
如:lim kx 0(其中k为常数)
x0
1
x0
x
x0
x x0
1
f
(0 )
lim (1
x0
x
)
1 x
2
lim
x0
(1
x 2
)
2 x
2
1
e2
e
f(x)在x=0处有极限存在,必须
得 b e
三、函数的连续性
1、函数的连续与连续函数
定义6 设函数f(x)在点x0及其邻域内有定义并满

lim
xx0
f
(x)
f
(x0 )
lim y
x0
0
(△x为x0点处自变量的改变量,△y为相应的函数 改变量)
分母的最高次幂系数之比。如
lim
x
2x3 5x3
x2 2x
1 3
2 5
②当分子的最高次幂小于分母的最高次幂时,其极限值
=0
③当分子的最高次幂大于分母的最高次幂时,其极限值
=∞
2、两个重要极限
(1) lim sin x 1
x0 x
注:①该极限呈 " 0 "型
0
②一般形式为: lim
sin (x) 1
(6)对于连续函数(基本初等函数在其定义区间上都是连续
函数),极限符号与函数符号可以互相交换。

一元函数微分学

一元函数微分学

第二章一元函数微分学一.先回顾导数的定义:设函数在内有定义,如果极限存在,则称在处可导,称为函数的可导点,且称上述极限值为函数在处的导数,记为:或;或简记为.注意导数的本质是瞬时变化率,它还有另外两种常见的等价定义:1.=;2.;要特别关注处的导数有特殊形式:(更特别地,要知道两个重要的结论:1.可导必连续;2。

函数在处可导的充要条件是对于分段函数在分段点处的可导性,一定从要考察其左、右导出发.例1.已知=A,试求下列极限的值(1)(2)。

例2.研究函数在处的可导性.解:因为同理,可求得.由于,所以在处不可导。

(记住这个结论)练习:设在处可导,求的值.解:(一)因为在处可导,从而在处也连续.所以,即(二)由得.例3.已知,试求在处的导数.解:因为,所以,由此例可见,在导数存在的情况下,求导问题就归结为求一个型的极限.故求导就是求极限,不必多举例,今后很少针对具体函数计算在一点处的导数值.如把函数在一点处可导的概念推广到一个区间,则可得到导函数的概念.大家要牢记基本导数表(共十五、六条)。

这里的每一条都是根据导数的定义推出来的,请大家在下面自己试着也推推.如:,求.二.导数的几何意义关于导数的几何意义,主要考察的题型有两种。

一种题型是选择题或判断题。

比如:若函数在处可导,则曲线在处必有切线;(√);反之,若曲线在处有切线,则在处必可导,则(×).另一种题型是根据几何意义找切线.例4.求曲线与直线垂直的切线.解:设切点.切线斜率由题意,即故切线方程为下面举一个复杂点的,把前面的知识点窜起来.例5.设为连续函数,且求曲线在点处的切线方程。

(08年研究生考试题)解:由于,且故(前面已讲过理由)而,所以,切线方程为三.导数的四则运算四则求导法则非常简单,但不注意的话,容易犯错误。

下面举几个小例子.例6.求的导数.注意:部分同学可能会犯下面的错误:.例7.设求此题应先化简再求导:注意:个别同学容易把幂函数求导与指数函数求导的公式搞混.例8.求的导数.解:.四.反函数求导法则若函数,其反函数为.若在的某邻域内连续、严格单调且,则在点可导,且.例9.求的导数.解:设原函数,则其反函数为.根据反函数求导法则.有.五.复合求导法则大家可能还有印象,复合函数的导数是.(与直接套用基本导数表相比,这个2从何而来?)如果记,则,故此题恰好满足等式:(*)这是否是巧合的?我们说不是.事实上,(*)式正揭示出了复合函数的求导法则.定理:若函数在可导,而函数在对应的处也可导,则复合函数在处也可导,且或(或.注意:复合函数的链式求导法则可推广至复合两次以上的情形,如:对函数,如记,则各变量间的关系是:有上式可通过连续使用两次链式法则得到。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 一元函数微分学一、 导数(一)、导数概念一、导数的概念:设函数)(x f y =在点0x 的某个邻域内有概念,当自变量在点0x 处取得改变量x ∆时,函数)(x f 取得相应的改变量,)()(00x f x x f y -∆+=∆,若是当0→∆x 时,xy ∆∆的极限存在,即x y x ∆∆→∆0limx x f x x f x ∆-∆+=→∆)()(lim 000存在,则此极限值为函数)(x f 在点0x 的导数,可记作)(0x f '或|0x x y ='或|0x x dx dy =或|0)(x x dxx df = 二、依照概念求导数的步骤(即三步曲)①求改变量)()(x f x x f y -∆+=∆ ②算比值x y ∆∆xx f x x f ∆-∆+=)()( ③取极限x y x f y x ∆∆='='→∆0lim )(x x f x x f x ∆-∆+=→∆)()(lim 0 例1:依照概念求2x y =在点3=x 处的导数。

解:223)3(-∆+=∆x y 2)(6x x ∆+∆= x xy ∆+=∆∆6 6)6(lim lim 00=∆+=∆∆→∆→∆x x y x x 3、导数概念的几种不同表达形式 ①x x x xx f x x f x f x ∆+=⇓∆-∆+='→∆00000)()(lim)(令 ②000)()(lim )(0x x x f x f x f x x --='→ 时=当0)()(lim)(0000x xx f x f x f x ⇓∆-='→∆ ③x f x f f x )0()(lim )0(0-='→ 4、左右导数的概念:若是当)0(0-+→∆→∆x x 时,xy ∆∆的极限存在,则称此极限为)(x f 在点0x 为右导数(左导数),记为)(0x f +'[)(0x f -']000000)()(lim )()(lim )(x x x f x f x x f x x f x f x x --=∆-∆+='--→∆→∆- 0000000)()(lim )()(lim )(x x x f x f x x f x x f x f x x --=∆-∆+='++→∆→∆+ 五、函数)(x f 在点0x 处可导的充要条件:)(x f 在点0x 的左、右导数都存在且相等即)(0x f '存在)(0x f +'⇔=)(0x f -' 【或x y x ∆∆→∆0lim 存在xy x y x x ∆∆=∆∆⇔+-→∆→∆00lim lim 】 六、函数的可导性与持续性的关系:若是函数)(x f y =在点0x 处可导,则)(x f 在点0x 处必持续,反之不必然成立。

即连续可导→例如:||x y =在0=x 处持续,但不可导。

解:⎩⎨⎧<-≥==0,0,||x x x x x y 0lim lim 00=∆=∆→∆→∆x y x x 持续 又10lim )()(lim )(0000-=--=-='--→∆→∆-xx x x f x f x f x x 10lim )()(lim )(0000=-=-='++→→+xx x x f x f x f x x )0(+'f )0(-'≠f )0(f ∴不存在7、导数)(0x f '与导函数)(x f '之间的区别,联系是什么?①区别:)(0x f '是数值,)(),,(00是取定的x b a x ∈;)(x f '是函数x b a x (),,(∈是任意一点); ②联系:)()(0|0x f x f x x '='=注:导函数)(x f '简称导数八、导数的物理意义和几何意义?① 物理意义:瞬时转变率因变量相对自变量的瞬时转变率②几何意义:曲线)(x f y =在点))((0,0x f x 处切线的斜率。

现在曲线)(x f y =过点))((0,0x f x 处的切线方程:))(()(000x x x f x f y -'=- 法线方程:)()(1)(000x x x f x f y -'=- )0)((0≠'x f 例2、依照概念求x y =的导数 解:x x x y -∆+=∆x x x x x y x x ∆-∆+=∆∆→∆→∆00lim lim)(lim 0x x x x x x x x +∆+∆-∆+=→∆x x x x +∆+=→∆1lim 0x 21=因此x x 21)(=' 或xdx x d 21)(= 同理可推导:n x y = 1-='n nx y例3、依照概念求x y sin =的导数 xx x x x y y x x ∆-∆+=∆∆='→∆→∆sin )sin(lim lim00x x x x x ∆∆∆+-=→∆2sin )2cos(2lim 0 x xx x x x cos 22sin )2cos(lim 0=∆∆∆+-=→∆ 因此x x cos )(sin ='同理可推导x x sin )(cos -='例4、依照概念求x y ln =的导数 xx x x x y y x x ∆-∆+=∆∆='→∆→∆ln )ln(lim lim00x x x x ∆∆+=→∆)1ln(lim 0x x x x ∆→∆∆+=10)1ln(lim x e x x x x x x x 1ln ])1[ln(lim 110==∆+=∆→∆ 例5、求正弦曲线x y sin =在3π=x 时的切线方程和法线方程。

解:x y cos =' 213cos |3=='==ππx y k 当3π=x 时,233sin ==πy 切线方程:)3(2123π-=-x y 即03363=+--πy x 法线方程:)3(223π--=-x y 即:1203346=--+πy x小结如何验证)(x f y =在0x 处的可导性: ⑴、用概念的三种表达形式之一;⑵、也能够用左导数,右导数是不是存在而且相等;⑶、下列三种情形之一,函数在0x 处确信不可导:①、函数在0x 处不持续;②、函数在0x 处左导数和右导数至少有一个不存在;③、函数在0x 处左、右导数都存在,但不相等。

(二)、导数的大体公式与运算法则一、导数的四则运算⑴、v u v u '±'='±)(例5、x x x y ln sin 4-+= 解:xx x y 1cos 43-+=' ⑵、v u v u uv '+'=')(当C u =时,u c cu '=')(w uv w v u vw u uvw '+'+'=')(例6、x x y cos 7=解:x x y cos )(7'=')(cos 7'+x x x x cos 76=x x sin 7-例7、ax x y a ln ln log == 解:ax x a y ln .1)(ln ln 1='=' 即:ax x a ln .1)(log =' ⑶、2)(vv u v u v u '-'=' )0(≠v 例8、x y tan = 解:x x x x x x x y 2cos )(cos sin cos )(sin )cos sin ('-'='='x x x 222cos sin cos -=x x22sec cos 1== 即:x x 2sec )(tan ='同理可推得x x 2csc )(cot -='例9、x y sec = 解:xx x y 2cos )(cos )cos 1('-='='x x 2cos sin =x x tan .sec = 类似可得:x x x cot .csc )(csc -='二、导数的大体公式一、0)(='C 二、1)(-='αααxx 3、)1,0(ln )(≠>='a a aa a x x 4、x x e e =')( 五、)1,0(ln 1)(log ≠>='a a ax x a 六、x x 1)(ln =' 7、x x cos )(sin =' 八、x x sin )(cos -='九、x x 2sec )(tan =' 10、x x 2csc )(cot -='1一、x x x tan sec )(sec =' 1二、x x x cot csc )(csc -='13、211)(arcsin x x -=' 14、211)(arccos x x --='1五、211)(arctan x x +=' 1六、211)cot (x x arc +-=' (三)、求导方式1、 复合函数求法设函数)(u f y =、)(x u ϕ=且)(x ϕ在点x 处可导,)(u f 在对应点u 处可导,则复合函数)]([x f y ϕ=在点x 处可导,且)()(x u f dxdy ϕ''= 或写成dx du du dy dx dy .=或写成dxdu du df dx df .= 例10、x y 3cot = 解:函数的复合形式3u y =、x u cot =)(cot )(3''='x u y )csc (322x u -=x x 22csc cot 3-=例11、3sin ln x y =解:函数的复合形式w y ln =、u w sin =、3x u = 322332cot .33.cos .sin 13.cos 1x x x x xx u w y ===' 二、分段函数的求导法设分段函数⎩⎨⎧≥<=00),(),()(x x x v x x x u x f 求其导数)(x f '的步骤①按导数公式别离求)(x u '、)(x v '②判定)(x f 在分段点0x 处的持续性,若在分段点)(x f 不持续,则)(x f 在点0x 不可导,若是)(x f 在点0x 处持续,则继续讨论。

③求分段点的左(右)导数)(lim 0x u x x '-→、)(lim 0x v x x '+→,若是)(lim 0x u x x '-→)(lim 0x v x x '=+→,则)(x f 在点0x 处可导。

相关文档
最新文档