马氏体相变
第四章 马氏体相变

第四章 马氏体相变随着科学技术的发展和人们对材料性能的要求越来越高,材料相变的研究也成为了一个热门的领域。
其中,固态相变是最为基础和广泛的相变形式之一。
在这其中,马氏体相变是一个相对特殊和有意义的相变过程。
一、马氏体相变的定义和分类马氏体相变,是指在含碳钢中,当钢经过一定的热处理过程后,在室温下形成一种具有变形性能的组织结构。
其核心原理是在高温下形成一种奥氏体,然后通过快速冷却过程,在室温下形成一种具有弹性、变形及塑性的马氏体组织结构。
根据马氏体相变的不同起始组织结构,其可以分为两种类型:一类是由完全奥氏体组成的马氏体相变,另一类是由贝氏体(以及在贝氏体上产生马氏体)组成的马氏体相变。
1.完全奥氏体马氏体相变当钢经过高温处理后,在其细小的晶粒中,完全转化为奥氏体组织。
通过钢的快速冷却 (通常在水、油、盐水等介质中进行),奥氏体中的部分碳原子被固溶,在马氏体的组织中重新排列,最终形成一种具有高强度和塑性的马氏体组织结构。
这种马氏体相变过程,称为完全奥氏体马氏体相变。
2.贝氏体马氏体相变贝氏体正常情况下是由冷却慢、回火温度低的钢中形成的。
它是由一种由铁与铁素体间化合物构成的细小晶粒组成的组织,这种组织强度比较低,韧性高,且具有较高的弹性变形和形变能力。
当这种钢经过高温处理后,由于组织发生了相变,大量贝氏体消失,而代替它的则是奥氏体组织。
这样在快速冷却的过程中,就会在奥氏体中形成一定数量的针状马氏体组织结构。
二、马氏体相变的影响因素马氏体相变的过程涉及到多个变量和影响因素,其中最重要的一些因素包括:1.冷却速度作为一种固态相变过程,马氏体相变的核心就是快速冷却过程。
通常来说,冷却速度越快,产生的马氏体组织也就越细小,强度也就越高。
2.合金元素含量合金元素在钢制造中有着重要的作用。
它们可以调节钢的合金成分和钢的性能,使钢的性能得到提升。
其中,加入Cr、Ni、Mn等元素可以有效地提高马氏体相变的开始和结束温度,这有利于得到良好的马氏体组织结构。
《马氏体相变 》课件

2 条件的作用原理是什么?
马氏体相变的条件是实现马氏体相变的必要 前提,它们直接影响马氏体晶体结构和材料 性能的形成和转化。
马氏体相变的过程
1
马氏体相变的步骤和原理
马氏体相变包括两个基本过程——形变和回复过程,当材料由奥氏体转变为马氏 体时,晶体结构发生相应的改变。
2
过程中有哪些需要注意的地方?
马氏体相变的过程会受到多种因素的干扰,如温度、压力、组织性能等,需要注 意这些影响因素对相变的影响。
应用领域
哪些领域得到应用?
马氏体相变广泛应用于机械、电子、材料等领域, 如机械弹簧、手机天线、记忆合金等。
应用的优势和局限是什么?
马氏体相变具有自修复性、快速响应、压电性、形 状记忆等特性,但仍然存在加工困难和应用的局限 性等问题。
结论和展望
总结发现和成果
本课件详细介绍了马氏体相变的背景、条件、过程和应用,使人们更好地了解该领域的发展 现状。
展望未来的发展前景
马氏体相变技术在自动化、能源、环境等领域有广阔的应用前景,我们期待它能在未来发挥 更大的作用。
参考文献
• 李新. 材料科学[M]. 化学工业出版社, 2013. • 关辰. 马氏体相变的研究进展[C]// 2019第五届全国现代材料学术会议论文集. 2019: 254-259. • 郭宝昌, 焦彦龙. 马氏体晶体几何结构及马氏体相变过程的研究进展[J]. 您刊, 2018, 39(05): 57-63.
马氏体晶体结构
晶结构是什么?
马氏体的晶体结构是单斜晶体结构,其单斜晶体形 状由一维位错和孪晶形成。
性质和特点是什么?
马氏体晶体中存在位形、变形、弹性、能量等多种 耦合,与其他晶体类似,但具有独特的特点和性质。
马氏体相变

极快,特点:马氏体降温瞬间形核,瞬间长大,可以认为 马氏体转变速度取决于形核率而与长大速度无关。 马氏体转变量取决于冷却所达到的温度,而与时间无关。
2、等温形成马氏体的动力学
特点:马氏体等温形核,瞬间长大,形核需要孕育期,形核率 随过冷度增大而先增后减,转变量随等温时间延长而增加。等 温转变动力学图呈C字形。
各种马氏体的晶体结构、惯习面、亚结构、位向关系汇总表
2、影响马氏体形态及亚结构的因素
化学成分 马氏体形成温度 奥氏体的层错能 奥氏体与马氏体的强度 主要是化学成分和马氏体形成温度
化学成分:片状马氏体的组织形态随合金成分的变化而改变。
对于碳钢: 1)C%<0.3%时, 板条马氏体; 2)0.3%~1.0%时,板条和透镜片状混合的马氏体; 3)C% >1.0%时, 全部为透镜片状马氏体。并且 随着C%增加,残余奥氏体的含量逐渐增加。 合金元素: 1)缩小γ相区,促进板条马氏体。 2)扩大γ相区,促进透镜片状马氏体。
特征5:转变的非恒温性和不完全性
1. 奥氏体以大于某一临界冷却速度的速度冷却到某一温度(马氏 体转变开始温度Ms),不需孕育,转变立即发生,并且以极大 速度进行,但很快停止,不能进行终了。为使转变继续进行, 必须继续降低温度,所以马氏体转变是在不断降温的条件下才 能进行。当温度降到某一温度之下时,马氏体转变已不能进行, 该温度称为马氏体转变终了点即Mf 。 2. 马氏体转变量是温度的函数,与等温时间无关。马氏体的降温 转变称为马氏体转变的非恒温性。由于多数钢的 Mf 在室温以下, 因此钢快冷到室温时仍有部分未转变奥氏体存在,称为残余奥氏 体,记为Ar。有残余奥氏体存在的现象,称为马氏体转变不完全 性。要使残余奥氏体继续转变为马氏体,可采用冷处理。
不锈钢的马氏体相变

不锈钢的马氏体相变不锈钢是一种在各种环境条件下都具有高度耐腐蚀性的合金。
其名称源于其成分中含有的高比例铬元素,这有助于防止材料在暴露于氧气和其他腐蚀性物质时发生氧化。
不锈钢根据其微观结构,可以分为不同的类型,其中最常见的是奥氏体不锈钢和马氏体不锈钢。
马氏体相变是金属材料的一种重要现象,尤其是不锈钢。
在本文中,我们将深入探讨不锈钢中的马氏体相变,包括其定义、影响因素以及与不锈钢性能的关系。
一、马氏体相变的定义马氏体相变是一种固态相变过程,发生在铁基合金中,特别是在不锈钢中。
当温度降低时,奥氏体不锈钢会通过马氏体相变转变成一种硬且脆的同素异形体,称为马氏体。
这种转变是热力学上的自发过程,通常伴随着体积的膨胀和磁性的改变。
二、马氏体相变的影响因素1. 温度:马氏体相变通常在特定的温度以下发生。
对于大多数不锈钢,这个温度大约在200°C至300°C之间。
2. 合金成分:不同类型的不锈钢具有不同的马氏体相变温度。
这主要取决于其合金成分,特别是碳和其他合金元素的比例。
3. 应力和应变:应力和应变状态也会影响马氏体相变。
例如,淬火可以提高材料的硬度,这是由于马氏体相变和随后的组织结构变化。
三、马氏体相变与不锈钢性能的关系马氏体相变对不锈钢的性能有重要影响,主要包括以下几个方面:1. 机械性能:马氏体相变会导致不锈钢的硬度增加,从而提高其耐磨性和耐腐蚀性。
然而,这也可能导致材料变脆,特别是在较低温度下进行淬火处理时。
2. 耐腐蚀性:马氏体相变对不锈钢的耐腐蚀性有双重影响。
一方面,由于硬度增加,材料更难以被腐蚀;另一方面,淬火处理可能会在材料表面形成微裂纹,从而降低耐腐蚀性。
3. 磁性和热性能:马氏体相变还影响不锈钢的磁性和热性能。
例如,某些类型的马氏体不锈钢具有高磁导率,这在某些应用中是有利的。
此外,马氏体相变也影响不锈钢的热导率和热膨胀系数。
四、不锈钢中马氏体的应用场景由于马氏体相变对不锈钢的性能有显著影响,这种相变在许多应用场景中都得到了利用。
马氏体相变的基本特征

马氏体相变的基本特征一、马氏体相变的概念及基本过程马氏体相变是指在一定条件下,由奥氏体向马氏体的转变。
奥氏体是指碳钢中的一种组织结构,具有良好的塑性和韧性,但强度和硬度较低;而马氏体则是碳钢中另一种组织结构,具有较高的强度和硬度,但韧性较差。
因此,在特定情况下将奥氏体转变为马氏体可以提高材料的强度和硬度。
马氏体相变的基本过程包括两个阶段:淬火和回火。
淬火是指将钢件加热至适宜温度后迅速冷却至室温,使其形成完全马氏体组织;回火是指将淬火后的钢件加热至适宜温度后进行恒温保持一段时间,然后缓慢冷却至室温,使其形成具有良好韧性和适当硬度的马氏体-贝氏体组织。
二、影响马氏体相变的因素1. 淬火介质淬火介质的选择对马氏体相变的影响非常大。
常用的淬火介质包括水、油和空气等。
水冷却速度最快,可以使钢件形成完全马氏体组织,但易产生变形和裂纹;油冷却速度较慢,可以降低变形和裂纹的风险,但易产生不完全马氏体组织;空气冷却速度最慢,可以避免变形和裂纹,但难以形成马氏体组织。
2. 淬火温度淬火温度是指将钢件加热至何种温度后进行淬火。
淬火温度越高,钢件中残留奥氏体的含量越高,从而影响马氏体相变的程度。
一般来说,淬火温度越低,马氏体相变越充分。
3. 回火温度回火温度是指将淬火后的钢件加热至何种温度进行回火处理。
回火温度对马氏体-贝氏体组织的形成有重要影响。
过高或过低的回火温度都会导致组织不均匀或性能下降。
4. 淬火时间淬火时间是指将钢件放入淬火介质中的时间。
淬火时间越长,相变程度越充分,但也容易产生变形和裂纹。
三、马氏体相变的应用马氏体相变广泛应用于制造高强度、高硬度的零部件。
例如汽车发动机凸轮轴、齿轮、摇臂等零部件,以及航空航天领域中的发动机叶片、转子等部件均采用了马氏体相变技术。
此外,马氏体相变还可以用于制造刀具、弹簧等产品。
总之,马氏体相变是一种重要的金属加工技术,在提高材料强度和硬度方面具有重要作用。
了解其基本特征和影响因素有助于更好地掌握该技术,并在实践中取得更好的效果。
马氏体转变

马氏体相变的
分子动力学模拟
200,000 Zr atoms 1024-node Intel Paragon XP/S-150
六. 不同材料中的马氏体转变 1. 有色合金 许多有色合金也存在马氏体转变。 马氏体外形基本上仍属条片状,金相形貌与铁基 马氏体有区别。 马氏体亚结构多为层错和孪晶,极少有位错型。
' '
薄板状马氏体
薄片状马氏体
三. 马氏体转变的热力学 1. 相变驱动力
G
T0为相同成分的马氏 体和奥氏体两相热力学 平衡温度,此时
ΔGγ→α′
ΔGγ→α’ = 0
ΔGγ→α’ 称为马氏体相 变驱动力。 Ms T0 Gα′ Gγ T
自由焓——温度曲线
2. 转变温度Ms和Mf 相变驱动力用来提供切变能 量、亚结构畸变能、膨胀应变 能、共格应变能、界面能等, 所以要有足够大相变驱动力。 Ms为马氏体转变起始温度, 是奥氏体和马氏体两相自由能 之差达到相变所需的最小驱动 力(临界驱动力)时的温度。 Mf为马氏体转变终了温度。 T
(3) 其它形貌马氏体 在高碳钢,高镍Fe-Ni-C合金中, 或在应力诱发作用下,会形成蝶 状马氏体。 呈V形柱状,成片出现。 两翼的惯习面为{225}γ,夹角 为136°,结合面为{100}γ。 位向关系为K-S关系。
蝶状马氏体 {100}γ
晶内亚结构为位错,无孪晶。
136°
蝶状马氏体示意图
(155)
(321) 和 (332) 之间
{111} {133} {8,8,11}β {344}β {344}β {100}β
2. 无机材料 1963年Wolten根据ZrO2中正方相t→单斜相m的转 变具有变温、无扩散及热滞的特征,将这种转变称 为马氏体转变,ZrO2中的t→m相变还表现出表面浮 凸及相变可逆的特点。 在无机和有机化合物、矿物质、陶瓷以及水泥的 一些晶态化合物中也有切变型转变。如压电材料 PbTiO3、BaTiO3、及K(Ta、Nb)O3等钙钛氧化物高 温顺电性立方相→低温铁电性正方相的转变;高温 超导体YBaCu2O7-x高温顺电相→超导立方相的转变 均为马氏体转变。
马氏体转变特点

马氏体转变特点马氏体转变是指钢铁材料在加热或冷却过程中发生的晶体结构变化。
马氏体转变具有以下几个特点。
1. 温度范围:马氏体转变温度范围较宽,通常在200℃到600℃之间。
这个范围内的温度变化会引起钢铁材料的晶体结构发生变化,从而影响材料的力学性能。
2. 马氏体相变:马氏体转变是指钢铁材料从奥氏体结构转变为马氏体结构的过程。
奥氏体是一种面心立方结构,具有较高的韧性和塑性,而马氏体是一种体心立方结构,具有较高的硬度和强度。
3. 形变机制:马氏体转变是通过固溶体的相变来实现的。
在加热过程中,钢铁材料中的固溶体会发生晶体结构的变化,形成马氏体。
在冷却过程中,马氏体会再次转变为固溶体,从而使材料恢复到原来的晶体结构。
4. 转变速率:马氏体转变的速率取决于转变温度和材料的成分。
通常情况下,转变速率较快,可以在几秒钟或几分钟内完成。
然而,在一些特殊情况下,如低温下或含有合金元素的材料中,马氏体转变速率会显著降低。
5. 影响因素:马氏体转变受多种因素的影响,包括材料的成分、冷却速率、加热温度等。
增加合金元素的含量或采用快速冷却方法可以加速马氏体转变的速率。
6. 影响性能:马氏体转变对钢铁材料的力学性能具有显著影响。
马氏体具有较高的硬度和强度,但韧性和塑性较低。
因此,在一些特定的应用场合中,需要控制马氏体转变的程度,以获得适当的力学性能。
7. 相变组织:马氏体转变后的钢铁材料会形成不同的相组织。
常见的相组织包括全马氏体组织、马氏体和残余奥氏体组织、马氏体和贝氏体组织等。
不同的相组织具有不同的力学性能。
马氏体转变是钢铁材料在加热或冷却过程中发生的晶体结构变化,具有温度范围广、转变速率快、影响因素多等特点。
了解和掌握马氏体转变的特点对于钢铁材料的制备和应用具有重要意义。
马氏体相变与形状记忆效应

5
二.形状记忆效应的晶体学机制
• 形状记忆合金有三个特征: – 合金能够发生热弹性马氏体相变; – 母相和马氏体的晶体结构通常均为有序的(所谓有序结构, 即溶质原子在 晶格点阵中有固定位置); – 母相的晶体结构具有较高的对称性,而马氏体的晶体结构具有较低的对 称性.
• 当母相是B2型有序结构时,马氏体的晶体结构可看成是以图4-5 a) 第一行所 示(下页)的密排面为底面沿z方向按一定方式的堆垛. – 为保证密排堆垛结构,堆垛时必须按照以下的规则:若第一层的原点在A, 则第二层的原点可放在B或C . 若第二层的原点在B,则第三层的原点可 放在A或C,以此类推. • 当堆垛的顺序是ABABAB…时是2H结构 . • 当堆垛的顺序是ABCABC…时是3R结构. • 当堆垛的顺序是ABCBCACABABCBCACAB…时是9R结构,如图45b)所示 .
12
因此,记忆合金能够回复的最大变形不能超出马氏体完全再取向后所能贡 献出的相变应变.
• 如果马氏体完全再取向后继续施加外力,马氏体将以滑移和孪生的形式继续 变形,这时发生的变形是不可回复的塑性变形.组织中出现位错、形变孪晶 等晶体缺陷,破坏合金的热弹性马氏体相变,损害形状记忆效应.
三.应力诱发马氏体相变与记忆合金的超弹性
17
• 双程记忆训练:通过各种工艺处理方法在合金内部产生特定的内应力场,使 合金具有双程记忆效应.
• 双程记忆训练方法主要有: (1)SIM法:在母相态对记忆合金元件施加变形. (2)SME法:在马氏体态对记忆合金元件施加变形. (3)SIM+SME法:在母相状态下进行变形,约束其应变,冷却到Mf点以 下;或在马氏体状态下进行变形,约束其应变,加热 到Af点以上.也可将这二者结合起来. (4)约束ห้องสมุดไป่ตู้热法:将试样变形,约束其变形并在合金析出第二相的温度进 的行适当的加热.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不畸变平面的产生
Southwest Petroleum University
如果X、Y、Z三个主应变矢量中有一个为零,则可以产生 一个不畸变平面。
如图,应变时X轴在a点抵 住不动,就可以是OaA和 OaA’两个扇形面的形状完 全相同。即OA在YOZ平面 内扫动,从OA扫动到OA’。 所以两个扇形全等,即整个 平面上原子排布完全相同。 OaA和OaA’就是新旧相之 间的一个无畸变平面。
Southwest Petroleum University
这个模型说明了新旧相存在K-S关系,但是,按此模型,惯 习面应为{111}γ,而实际上Fe-C合金马氏体的惯习面为
{557}γ、{225}γ、{259}γ,它也不能解释马氏体中孪晶、位
错等亚结构、表面浮凸现象、马氏体 组织形貌变化规律。此 模型第1、2切变所需能力达到320KJ/mol,这是相变驱动力 所不及的。
以在新旧相位向关系、惯习面指数、形状变化、亚结构等
晶体参数之间进行推算
不变平面应变
Southwest Petroleum University
不变平面应变:在应变过程中,惯习面始终保持一定 的平面,既不发生应变,也不进行转动 马氏体相变的
唯象学说认为
切变使晶体外 形发生改变, 即在试样表面 产生浮凸。
Southwest Petroleum University
胞(2r,2c)法向的两侧面规则
的分布弗兰克位错,每6个原 子间距排列一条。位错圈主要 是由螺型位错组成,在周边 形成刃位错,即K-D模型
位错圈相界面模型
Southwest Petroleum University
在K-D模型的基础上发展了K-C模型,其物理结构为:设在 (225)γ面上存在一个大的位错圈,位错圈内即为马氏体核 胚。位错圈扩展时,核胚就长大为晶核。K-D模型和K-C模 型都认为该核胚直径有数十纳米,其周围是位错列
Southwest Petroleum University
马氏体相变机制
汇报人:张海川 2018.4.8
马氏体相变机制
Southwest Petroleum University
主要内容
马氏体形核
马氏体切变长大的晶体学经典模型 马氏体相变的唯象学说 马氏体相变切变机制的评价
马氏体形核
Southwest Petroleum University
1949年,Cohen首先设想马氏体在位错处形核,并于
1956年提出K-D位错圈形核模型;
1958年,由位错圈的能量出发,发展为K-C模型; 1972年,进一步精炼为R-C模型。 这些模型假定在母相中预先存在核胚,由位错组成。 20世纪50年代提出层错形核和极轴机制, 60年代提出应变核胚模型, 20世纪60-70年代还提出软模、局部软模、激活缺陷 分布的非均匀形核模型,
不畸变平面的产生
Southwest Petroleum University
相同面指数的无畸变平面的对称位置,如图所示
图表明,如果将应变获得的
椭球体绕X轴整体刚性转动
一个角度,使A’移动到A, 则可以将无畸变面转动回到 原始方位,就获得了即无畸 变、又不转动的平面
马氏体切变长大的 晶体学经典模型
Southwest Petroleum University
相变晶体学是相变机制 的核心内容。它提供 相变时晶体结构变化 的过程,揭示相变产 物的物理本质。一个 世纪以来,马氏体相 变晶体学进行了大量 的研究工作,但未形 成统一成熟的理论, 大多为模型或假说。
20世纪对马氏体相变晶 体学研究经历了三个 阶段:1)1924年Bain 提出了应变模型;2) 从1930年开始,提出 了一系列切变模型, 如K-S模型、西山模型 、G-T模型等;3)20 世纪50年代初,提出 了唯象学说
使底面内角由60°调整到70°32′。此模型缺点同K-S
模型,也与实际不符。
马氏体相变G-T模型
Southwest Petroleum University
马氏体相变G-T模型也是一个具有代表性的模型,
1949年测得Fe-22Ni-0.8C合金的单相奥氏体转变
为马氏体时惯习面为{259}γ,垂直于惯习面的平面
Bain应变不是不变平面应变
Southwest Petroleum University
Bain首先指出了奥氏体fcc→bct马氏体时,两种晶格之间的 对应关系为:将奥氏体中具有的体心四方晶胞视为体心正方 晶胞。
Bain应变不是不变平面应变
Southwest Petroleum University
马氏体形核实验观察
Southwest Petroleum University
这些实验现象揭示了马氏体相变不是均匀形核,马氏体形核 一般在晶粒内部发生。
Fe-1.2C合金
12Cr13
马氏体形核实验观察
Southwest Petroleum University
Fe-30.8Ni合金
Fe-30.8Ni合金
K-S切变模型和西山模型
切变分为三步进行:
Southwest Petroleum University
1)第一切变
2)第二切变
3)必要的线性调整
K-S切变模型和西山模型
Southwest Petroleum University
将原子的迁移情况投影在底面的菱形上,可以看到切变的全 过程
K-S切变模型和西山模型
应变核胚模型
Southwest Petroleum University
该模型认为在母相高应变场中可以形成马氏体核胚。在母相 的应变场中形成马氏体核胚时,核胚的长大使缺陷的弹性自
由焓△GD下降,因此形核过程使体系总的自由焓△GT下降。位
错应力场与马氏体应变场在一定条件下可能产生有利的交互 作用,是bain应变的一个分量被中和,从而减少形核总能量。 位错应变能促进马氏体形核学说的特点:
将形核过程中非均匀切变的晶体学特征和Bain应变及形核
的总应变能三者结合在一起,它说明马氏体形核可以再任意 位错的应变场中出现,而应变能密度在位错中心或接近位错 系列处达到最大,这样又回的了K-C模型,任然与实际不符。
层错形核模型
Southwest Petroleum University
面心立方母相转变为六方马氏体时,形成层错亚结
核有很大作用。
马氏体形核实验观察
Southwest Petroleum University
无扩散相变:当原子在某些条件下难以扩散时, 母相通过自组织,以无扩散方式进行晶格改组的 相变。 在母相中产生随机性的结构涨落和能量涨落,非 线性的正反馈作用把微小的随机性涨落迅速放大, 使得原结构失稳,构建一种新结构,即马氏体晶 体结构。 马氏体相变的起点是结构上的涨落,以层错、位错 等晶体缺陷为起点出现结构上的涨落,在能量涨落 配合下形成马氏体。
Southwest Petroleum University
G-T模型指出,假定沿着惯习面的切变满足倾动角 要求而不满足晶体结构的要求时,可以沿着马氏 体一定的晶面进行第二次切变,以满足两面的要 求,沿着惯习面的第一次切变为主切变,是均匀 切变,而第二次切变是非均匀切变。
马氏体相变的唯象学说
Southwest Petroleum University
从图可见,若沿其长轴方向压缩17%,而在垂直于长轴方 向上均匀膨胀12%,这样的均匀畸变使压缩轴于马氏体的c 轴重合,而垂直于此轴的两个<110>A变成了<100>M。这样 的晶格均匀畸变,实现了奥氏体晶格到马氏体晶格的转变, 碳原子在奥氏体中处于八面体中心位置,转变为马氏体后,
碳原子直接转移到c轴的中心位置,此称为点阵应变模型。
应用马氏体相变晶体学唯象学说研究马氏体相变中马氏体 与母相之间的晶体学关系,即点阵类型、点阵常数、取向 关系、惯习面等。唯象学说不描绘原子在马氏体相变中位 移的具体路径,也不涉及形核及长大的机理,而是研究相 变初始态和终了态之间通过原子的简单位移实现晶格重构 的可能性。在研究方法上,应用矩阵数学描绘晶体结构及 切变过程,计算的基本出发点是假定马氏体相变为一个不 变平面应变。初始态、终了态和过程应变模型设计后就可
K-S切变模型和西山模型
Southwest Petroleum University
1934年,西山通过对Fe-30Ni合金马氏体单晶体的研 究,测得又一种位向关系,即西山关系。 提出一个类似的切变模型,西山模型的切变过程与KS模型的第一切变相同,即切变角为19°28′ ,但不能 进行第二次切变,而是进行晶格参数调整,如使[112]γ轴收缩7.5%,[111]γ收缩1.9%,[1-10]γ膨胀13.3%,
核心在于在不大的驱动力下呈现非均匀形核
马氏体形核学说和模型
Southwest Petroleum University
理论检验
假说的逻辑完备性 逻辑简单性 解释和预见能力
实践检验
实践检验分为直接检验和间接检验
About Electricity 位错圈相界面模型
假想马氏体核胚预先存在母相 中,为扁球状,它与母相的交 界面是位错圈,即一系列位错 圈围绕而成的扁球状核胚。以 {225}γ作为脊面的扁平状位错
马氏体形核实验观察
Southwest Petroleum University
试验研究表明,马氏体形核位置不是任意的,形核位置与母 相中存在的缺陷有关。这些缺陷可能是位错、层错等晶粒内 部的,也可能是晶粒界或相界面。 试验发现: (1)β黄铜中形成马氏体后,当重新冷却时,经可逆转变马 氏体形成的位置与原来的重合。 (2)成份相同的100μm以下的Fe-Ni合金小颗粒,尺寸越小, 转变开始温度越低;尺寸小于100μm时,马氏体转变开始温 度差别很大。 (3)大块的Cu-2.5Fe合金中,富铁沉淀相在室温以下就可 以发生马氏体相变,小颗粒冷却到Mf以下也未出现马氏体。