焊接接头焊后热处理工艺优化
Q345B转向架焊接及焊后热处理工艺

Q 4 B为低合金高强钢 , 35 经计算碳当量为 04 % , .1
根 据经 验 , 当碳 当量 大 于 03 % 时 , 接 前应 采 取 相应 .6 焊
措 施 防止冷裂 纹 的产生 。 1 2 试 板 尺寸 .
焊接接头质量 , 提高其焊接接头性能 , 构架进行焊后消应 力热 处理 , 处 理 后 进 行 焊 接 接 头 力 学 性 能试 验 及 金 热
作者简介 : 张成 本 ,9 1年 出生 , 18 大学本 科 , 工程 师 。主 要从
事焊接技 术工作。
( )碳素 结 构 钢 ( 2 5 其 焊 接 性 优 良, 接 接 1 Q 3B) 焊 头 产 生裂 纹 的可 能性 很 小 , 在 厚 板 大 型 结 构 件 产 品 但
的焊缝 中, 有时因为焊接材料等因素也会产生裂纹。 ( )药芯 焊丝 C 体保 护 焊厚 板 结 构钢 出现横 2 O气
经验交流 , 缛搭
4 结 论
纹, 而是 焊 材氢 含量 较高 , 层 焊 造成 氢 在 焊 缝 中大 量 多
积 累和 较大 应力 引起 的类 似 铸 锻 钢 白点 或 低碳 钢 焊 缝 拉 伸 白点 的裂纹 。 ( )采 用超 低 氢 的药 芯 焊 丝 , 照 焊接 用 C : 3 按 O 气 体标 准 中 的优级 品要 求 采 购 C 体 , 在 现 场 实 际 O 气 是 生 产 中控制 产 品产生 裂纹 的最 有效 方法 。
时 间 th /
明 , 接接 头 经过 焊 后 消 应 力 热 处 理 后 强 度 及 塑 性 均 焊 达到母 材技 术指 标 。
表 4 力 学 拉 伸 试 验 结 果
∞ 如 ∞
图 1 试板随炉热处理工艺参数
焊后热处理基本知识

焊接接头焊后热处理基本知识培训一、焊后热处理的概念1.1后热处理(消氢处理):焊接完成后对冷裂纹敏感性较大的低合金钢和拘束度较大的焊件加热至200C〜350C保温缓冷的措施。
目的、作用:减小焊缝中氢的有害影响、降低焊接残余应力、避免焊缝接头中出现马氏体组织,从而防止氢致裂纹的产生。
后热温度:200 C〜350 C保温时间:即焊缝在200C〜350C温度区间的维持时间,与后热温度、焊缝厚度有关,一般不少于30min加热方法:火焰加热、电加热保温后的措施:用保温棉覆盖让其缓慢冷却至室温NB/T47015-2011关于后热的规定:4.5后热4. 5, 1对冷裂纹戦掖性较大的低合金钢和拘束度较大餌挥件应采取岳热措施“4.5,2石热应在悍后立即迸行4.5,3后菸程麼一融为20010-3501:,保濃时间与訂热温度*焊魅金fl(厚度有关,一般不少于4. 5. 4若弊IS立即进行热处理则可不进行后热斗4.6. 1碳素钢和低合金俐低f 4?0T?的热过程*高合金钢低T3I5V的热过程,均不作为焊后热处理对待。
1.2焊后热处理(PWHT :广义上:焊后热处理就是在工件焊完之后对焊接区域或焊接构件进行的热处理,内容包括消除应力退火、完全退火、固熔、正火、正火加回火、回火、低温消除应力等。
狭义上:焊后热处理仅指消除应力退火,即为了改善焊接区的性能和消除焊接残余应力等有害影响。
1.3压力容器及压力管道焊接中所说的焊后热处理是指焊后消除应力的热处理。
焊后消除应力热处理过程:将焊件缓慢均匀加热至一定温度后保温一定的时间,然后缓慢降温冷却至室温。
目的、作用:(1)降低或消除由于焊接而产生的残余焊接应力(2)降低焊缝、热影响区硬度。
(3)降低焊缝中的扩散氢含量。
⑷提高焊接接头的塑性。
(5)提咼焊接接头冲击韧性和断裂韧性。
(6)提高抗应力腐蚀能力。
⑺提咼组织稳定性。
热处理的方式:整体热处理、局部热处理1.4焊接应力的危害和降低焊接应力的措施焊接应力是在焊接过程中由于温度场的变化(热涨冷缩)及焊件间的约束而产生的滞留在焊件中的残余应力。
金属材料焊后热处理

消应力热处理是使焊好的工件在高温状态 下,其屈服强度下降,来达到松弛焊接应 力的目的。常用的方法有两种:一是整体 高温回火,即把焊件整体放入加热炉内, 缓慢加热到一定温度,然后保温一段时间, 最后在空气中或炉内冷却。用这种方法可 以消除80%-90%的焊接应力。另一种方法 是局部高温回火,即只对焊缝及其附近区 域进行加热,然后缓慢冷却,降低焊接应 力的峰值,使应力分布比较平缓,起到部 分消除焊接应力的目的。
1.燃煤加热
煤的资源丰富,燃煤反射炉在热处理加 热方法中有过一定的地位。煤的性质和 反射炉的结构,决定了煤不易完全燃烧, 因而煤炉热效率低,加热质量和劳动条 件差,煤烟污染环境。这些缺点,使得 燃煤加热法逐渐被其他加热方法所取代。
2.液体燃料加热
主要使用重柴油作燃料,适用于大型加 热炉加热,也用于外热式盐浴炉的加热, 一般在炉子加热室外墙一侧或两侧安装喷 嘴。液体燃料用于加热外热式盐浴炉时, 喷嘴则安装在坩埚外的炉壳上。液体燃料 在喷嘴中与空气混合,并在压缩空气的作 用下雾化,然后喷出喷嘴,在加热室中 (或在盐浴炉的坩埚外)燃烧,以加热工 件(或坩埚)。
焊后热处理工艺参数表
材质 参数
Q235B、 L245、20#、20G、20R、A105、 A106Gr.B、16Mn、Q345R、Q345B
300℃以下温度不限,可自由升温, 温度升至 升温速度 300℃以上后,按照5125℃/焊件壁厚计算,不
得超过220℃/h
热处理温度 625℃±25℃(600℃~650℃)
恒温时间 每毫米壁厚2.5分钟,最短时间不得小于1小时
恒温结束后冷却速度按6500℃/焊件壁厚计算,不 冷却速度 得大于260℃/h,温度降至300℃后保温自然冷
却。
管道焊后热处理工艺

吴江华力热处理设备厂管道焊后热处理工艺1、管道焊接后,根据刚材的淬硬性,焊件厚度和使用条件等综合考虑,按图纸要求或表3规定进行焊后热处理。
2、管道焊接接头的焊后热处理,一般应在焊接后及时进行,对于易产生焊接延迟裂纹的焊接接头,若焊后不能及时进行热处理,则在焊后冷却到300-350℃(或加热到该温度区间),保温4—6h缓冷,加热范围和焊后热处理相同。
3、焊后热处理采用履带或陶瓷加热器进行,温度检测根据不同要求,采用色笔和热电偶,保温材料采用硅酸铝针刺保温毯,保温宽度从焊缝中R 算起每侧不小于管子壁厚的5倍。
4、焊后热处理的加热范围;以焊缝中心为基准,每侧不应小于焊缝宽度的3倍,且不小于60mm。
5、焊后热处理的加热速率、恒温时间及降温速率,应符合下列规定。
(1) 加热速率。
升温至3O0℃后,加热速率不应超过220×25.4/δ℃/h(δ为壁厚,mm),且不大于220℃/h。
(2) 恒温时间,碳素钢每毫米壁厚为2—2.5mm;合金钢每毫米壁厚为3min,且不小于30min。
(3) 冷却(降温)速率降;恒温后,冷却速率不得超过275×25.4/δ℃/h且不大于275℃/h。
300℃以下自然冷却。
6、异种金属焊接接头的焊后热处理要求,按合金成分较低侧的金属确定,热处理温度不超过该钢材的下临界点AC1 。
7、焊后热处理后,焊缝及母材上焊接热影响区的硬度值:碳索钢不应超过母材的l20%,台合钢不应超过母材的l25%,当硬度超过规定时,应重新进行热处理,并仍须作硬度测定。
硬度检查的位置。
每条焊缝不少于l处,每处各测焊缝、热影响区、母材三点,当管外径大于57 mm时,检查热处理焊口数的10%以上,当管外径小于等于57mmS时,检查热处理焊口数的5%以上。
焊缝热处理 国标

焊缝热处理国标一、背景介绍焊缝热处理是指对焊接过程中产生的焊缝进行一系列热处理工艺,以达到提高焊接接头性能和焊缝组织结构的目的。
在我国,焊缝热处理的相关标准由国家标准委员会制定和颁布,这些标准被广泛应用于各个行业的焊接工艺中。
二、国家标准概述国家标准对焊缝热处理的要求主要包括以下几个方面:1. 热处理类型国家标准根据焊缝热处理的方法和工艺,将其分为几种类型,如回火处理、正火处理、退火处理等。
这些不同的类型适用于不同的焊接接头和材料,以满足其特定的性能要求。
2. 热处理参数国家标准规定了焊缝热处理过程中的各项参数,包括热处理温度、保温时间、冷却速度等。
这些参数对焊接接头的性能和组织结构具有重要影响,其合理选择和控制是确保焊接接头质量的关键。
3. 检测要求国家标准要求对焊缝热处理后的焊接接头进行必要的检测和评定。
这些检测手段包括金相组织观察、硬度试验、冲击试验等,以确保焊接接头满足规定的性能要求。
4. 标准依据国家标准制定时参考了国际相关标准和国内先进经验,充分考虑了不同行业和材料的特点。
同时,标准还设立了相应的解释说明和技术指导,以帮助焊接工程师正确理解和应用这些标准。
三、焊缝热处理工艺焊缝热处理工艺是指按照国家标准要求对焊接接头进行热处理的具体操作步骤。
根据焊缝热处理的类型和焊接接头的材料等因素,工程师需要选择合适的工艺。
1. 回火处理工艺回火处理是对焊接接头进行高温加热后进行缓慢冷却的过程。
这种工艺主要适用于低合金钢焊接接头,可以消除焊接过程中产生的残余应力,并提高焊接接头的强度和韧性。
回火处理工艺步骤: - 加热温度控制在合适的范围内; - 保温时间根据焊接接头的厚度和材料选定; - 冷却速度要适当控制,防止产生过大的温度梯度。
2. 正火处理工艺正火处理是指对焊接接头进行高温加热后,快速冷却至室温的工艺。
这种工艺主要适用于高碳钢焊接接头,可以通过正火处理改善焊接接头的硬度和强度。
正火处理工艺步骤: - 提高温度至正火处理温度; - 将焊接接头迅速浸入冷却介质中; - 控制冷却速度,以达到理想的硬度和结构。
p91焊接与热处理工艺(一)

p91焊接与热处理工艺(一)P91焊接与热处理工艺简介•P91钢是一种高合金钢,具有优异的耐高温、耐压力和抗蠕变性能。
•焊接和热处理工艺对P91钢的性能至关重要,需要特殊的操作和注意事项。
焊接工艺•P91钢的焊接需要采用预加热和后热处理的工艺,以降低焊接区的残余应力。
•预加热温度一般在200~250摄氏度,保持时间根据板材厚度确定。
•焊接过程中需要控制焊接速度和温度,避免产生裂纹和氮化物析出。
焊接材料选择•焊接材料需要选择与P91钢具有相似的化学成分和机械性能。
•建议使用P92、P23或P122焊丝进行焊接,以确保焊缝与母材的匹配性和可靠性。
焊接参数控制•焊接电流、电压和速度需要严格控制,以避免焊接区出现氮化物析出和裂纹。
•推荐采用小电流大电压的参数,避免焊接区过热和产生太多热输入。
热处理工艺•P91钢的热处理工艺主要包括回火和正火,目的是调整其组织和提高其性能。
•热处理时需要注意温度和保温时间的控制,以避免过度回火或过火导致性能下降。
回火热处理•回火温度一般在620~680摄氏度范围内,保持时间根据板材厚度确定。
•回火工艺可以消除焊接区的残余应力,提高整体的韧性和抗蠕变性能。
正火热处理•正火温度一般在980~1040摄氏度范围内,保持时间根据板材厚度确定。
•正火工艺可以提高P91钢的强度和耐蠕变性能,适合在高温和高压环境下使用。
注意事项1.在焊接和热处理过程中,需要严格遵守工艺规范和操作要求,确保质量和安全。
2.焊接人员需要具备专业的技能和经验,熟悉P91钢的特性和工艺要求。
3.在实际操作中,应定期检测焊接接头和热处理后的材料,确保其达到标准要求。
4.若发现焊接接头出现裂纹或热处理后材料性能下降,应及时采取对应的修补和调整措施。
总结: P91钢的焊接和热处理工艺对其性能和可靠性至关重要。
通过控制焊接参数和热处理条件,可以确保焊接接头和热处理后的材料具有良好的性能和可靠性。
同时,需要密切关注工艺规范和操作要求,以确保质量和安全。
不同热处理方式对P92钢焊接接头组织和力学性能的影响

。
熔焊工艺及应用专题 俘 掳
不 同热 处 理 方 式 对 P 9 2钢 焊 接 接 头 组 织 和 力 学 性 能 的 影 响
苏 州 热 工研 究 院有 限公 司( 2 1 5 0 0 4 ) 河北 沧海 重 工股份 有 限公 司( 0 6 1 3 0 0 )
胡海 峰 迟 鸣声 石云 哲
根据 D I MT S 6 8 { 焊接工 艺评 定规 程 》 等 相 关标 准 加
一
二次高温 回火 , 外 层 二次高温 回火 , 内层
时间 t / h
三 次 高 温 回火 , 外 层
图 1 正火 十 一 次 高 温 回 火热 处理 曲 线
三次高温 回火 , 内层
经历 正火 +高 温 回 火 处 理 的 抗 拉 强 度 平 均 值 为 7 5 7 MP a , 经历一 次高温 回火 的抗 拉强 度 平均 值 为 6 6 6 MP a , 经 历二 次高 温 回火 的抗 拉强 度 平均值 为 6 6 5 MP a , 经 历
试 验采 用 手 工 T I G焊打底、 S MA W 焊填 充 盖 面 的
国经 济建设 速 度 的加 快 , 电力 需 求 越 来 越 大 , P 9 2钢 管 的广泛 运用 必将 对 其 焊接 工 艺 提 出更 高 要求 。文 中在 I : ' 9 2钢焊 接接 头基 础 上研 究 不 同热 处 理方 式对 其
温 回火热处理使得接头 的组织 、 性能最为均匀 , 接头得 到较好 的综合性 能 ; 随着高 温 回火 热处理次 数 的增 加 , 接头 的塑性及韧性逐 步提升 , 但接头 的强度基本 没有变化 , 熔合线及焊缝组织 晶界 逐渐清晰。
关键词 : P 9 2钢
焊接热处理国家标准

焊接热处理国家标准焊接热处理是指在焊接过程中对焊接接头进行的一种热处理工艺。
它能够改善焊接接头的组织结构和性能,提高焊接接头的强度、韧性和耐腐蚀性能,减少焊接接头的应力和变形,延长焊接接头的使用寿命。
为了规范焊接热处理工艺,保证焊接接头的质量,国家出台了一系列的标准,下面我们就来详细了解一下焊接热处理国家标准。
首先,焊接热处理国家标准主要包括了焊接热处理工艺规范、焊接热处理设备和工具、焊接热处理质量检验标准等内容。
这些标准对于焊接热处理工艺的操作流程、设备选型、质量检验等方面都有详细的规定,可以作为焊接热处理工程的技术依据和操作指南。
其次,焊接热处理国家标准的制定是经过专家学者和行业技术人员的深入研究和讨论,结合了国内外相关行业的经验和技术水平,具有较高的权威性和可操作性。
这些标准不仅可以指导焊接热处理工程的实际操作,还可以为相关企业和单位提供技术支持和保障,促进焊接热处理技术的发展和应用。
此外,焊接热处理国家标准的实施对于提高焊接接头的质量和性能,保证焊接结构的安全可靠性具有重要意义。
通过严格执行这些标准,可以有效地预防焊接接头出现裂纹、变形、脆性断裂等质量问题,提高焊接接头的使用寿命,降低事故风险,保障生产安全。
总的来说,焊接热处理国家标准的制定和实施对于推动焊接热处理技术的发展,提高焊接接头的质量和性能,保障焊接结构的安全可靠性具有重要的意义。
我们应该充分认识到这一点,严格遵守相关标准,不断提升自身的专业技能和操作水平,为推动焊接热处理技术的发展做出自己的贡献。
同时,我们也应该积极参与相关标准的修订和完善工作,为我国焊接热处理技术的发展贡献自己的智慧和力量。
只有这样,我们才能更好地推动焊接热处理技术的发展,为我国的制造业和工程建设提供更加可靠的技术支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
焊接接头焊后热处理工艺优化
发表时间:
2019-09-10T11:05:44.377Z 来源:《科学与技术》2019年第08期 作者: 魏营 孙昭藩
[导读] 工艺优化后的焊接接头满足了铁道行业标准TB/T 1632.2-2014《钢轨焊接 第2部分:闪光焊接》中对晶粒度和硬度的要求。
(中国铁路济南局集团有限公司济南工务机械段,山东济南
250022)
摘
要 为了提高钢轨焊接接头探伤合格率,改善焊接接头内部质量,分析焊后热处理设备和热处理工艺对焊接接头晶粒度和焊接质量的影
响。结合晶粒度检验和硬度检验,分析发现晶粒粗大是导致焊后热处理质量问题的重要因素,焊后热处理工艺的调整可以优化焊接接头的
晶粒度。工艺优化后的焊接接头满足了铁道行业标准
TB/T 1632.2-2014《钢轨焊接 第2部分:闪光焊接》中对晶粒度和硬度的要求。
关键词:钢轨焊接;焊缝探伤;焊后热处理设备;晶粒度;硬度
引言
当前,高速铁路事业迅速发展,焊接接头稳定的内部质量是保证高速铁路运输质量安全、稳定的前提[1],焊接接头探伤结果是判断内
部质量的重要指标,而晶粒度粗大易导致探伤检验出现异常波形
[2],合理的焊后热处理工艺是保障焊接内在质量的关键[3],因此对焊接接
头热处理工艺提出了更高要求。
1
探伤异常焊接接头分析
焊接生产中发现少量焊缝轨底角出现异常波形,波形为双尖峰形貌[4],伤波特征明显,深度约10mm~15mm,距离边缘约
20mm~30mm
,波幅20%~60%。对异常波位置取样金相分析,如图1.1所示,探伤异常波形接头组织基本为珠光体和铁素体[5],三角区晶
粒度明显过大,经评判轨底角晶粒度
8级、三角区晶粒度级别5级,焊后热处理工艺未能达到对焊缝晶粒细化的作用,不能满足铁道行业标
准
TB/T 1632.2-2014《钢轨焊接 第2部分:闪光焊接》[6]中对晶粒度的要求。
通过对焊接接头热处理数据调查发现轨底角温度达不到规定温度从而焊缝内部的粗晶粒不能完全细化是导致探伤异常波的主要原因,
而热处理设备和热处理工艺是影响焊接接头晶粒度的主要因素
[7]。
2
热处理设备检测
焊接接头热处理工位采用双中频型热处理设备,根据不同轨型的工艺要求对焊接接头进行加热,轨顶面温度达到设定温度后,进行喷
风冷却,通过热处理消除焊缝的残余应力,细化焊接区域的晶粒组织,提高焊缝的韧性和硬度。全自动温控双中频技术,保证轨底脚的加
热温度,避免超声波探伤出轨底脚杂波
[8]。
检测中分别对热处理设备更换同厂家、同批次、同形状热处理线圈,更换后焊缝温度对称度提高,工作边与非工作边轨底角温差减
小,但是轨底角温度依旧偏低,使用测温枪测量的温度值停留在
800℃左右,探伤后仍旧出现异常波形问题。所以,旧的热处理线圈存在形
状变形,进而轻微影响焊缝的热处理温度对称度,但是热处理线圈并不是造成探伤异常波形的主要原因。
检测中对热处理设备中主要电器元件进行性能评估,分别检测晶闸管、电容、传感器等核心元件,未发现明显失效。因设备电器件老
化问题不可避免
[9],电器元件老化必然引起焊后热处理工艺的变化,焊后热处理工艺与设备状态不能匹配时,焊后热处理质量也会发生波
动。下一步应加强电器元件的检测和更换,但是电器元件完全失效前,合理的焊后热处理工艺仍是保证焊后热处理质量的关键。
3
热处理工艺分析
统计分析探伤异常波形接头热处理曲线(如表3.1所示),通过18个异常波形焊接接头分析发现热处理时间偏低,总时间最低108s,
最高
121s;热处理后轨底脚温度偏低,最低温度783℃,最高温度809℃。热处理设备保持不变的情况下,试验通过调整热处理功率来提高
热处理加热时间和焊缝轨底角温度。为保证焊缝其他位置热处理温度正常的同时提高焊缝轨底角温度,试验选择增加低频功率、降低高频
功率,增加低频功率可以减少低频阶段正火时间,降低低频后接头整体温度;降低高频功率,接头高频阶段正火时间增加,轨底角温度增
幅超过轨顶增幅,热处理后轨底角温度相应增加。
热处理工艺调整后(如表3.2所示),热处理时间保持在120s~130s,热处理结束前焊缝轨底角达到830℃以上。对调整热处理工艺后
的试头进行探伤检验,未发现异常波形。
4
结果检验
热处理工艺调整后,需要对不同轨种的焊接接头晶粒度和硬度进行检验。如图4.1、4.2所示,包钢U71MnG、包钢U75V组织都为铁素
体和珠光体,铁素体析出均匀,珠光体晶粒明显改善,且组织中未出现马氏体或其他影响接头力学性能的组织。经评判包钢
U71MnG固定
式闪光焊接接头焊缝轨底脚晶粒度
9级,三角区晶粒度8级;包钢U75V固定式闪光焊接接头焊缝轨底脚晶粒度9.5级,三角区晶粒度8级。符
合铁道行业标准中对晶粒度的要求。
根据铁道行业标准,对包钢U71MnG固定式闪光焊接接头、包钢U75V固定式闪光焊接接头的纵断面硬度进行检测。所有硬度均采用洛
氏硬度
C标尺进行检验,硬度值以HRC 表示。包钢U71MnG、包钢U75V洛氏硬度曲线如图4.3、4.4所示,包钢U71MnG硬度基本大于
0.9HP
,未有明显软化区,包钢U75V硬度曲线中虽然出现了软化区,但软化区宽度小于20mm,符合铁道行业标准中对硬度的要求。
5
结论
(
1)焊接接头轨底角温度达不到要求进而焊缝内部的粗晶粒不能细化是导致探伤异常波形的主要原因;
(
2)热处理设备影响焊接接头的热处理温度对称度并且存在电器元件老化,但是并不是造成探伤出现异常波形的主要原因;
(
3)降低低频功率、增加高频功率后,热处理时间保持在120s~130s,热处理结束前焊缝轨底角达到830℃以上;
(
4)热处理工艺调整后,包钢U71MnG、包钢U75V晶粒度、硬度符合铁标TB/T 1632.2—2014《钢轨焊接第2 部分:闪光焊接》要求。
参考文献
[1]
陈海田. 新标准U71Mn钢轨焊接工艺分析及调试[J]. 铁道技术监督, 2016, 44(6): 8-12.
[2]
宋宏图,丁韦,李力,等.高速线路用贝氏体钢轨焊后硬度的研究[J].焊接,2007(04):30-32.
[3]
苏世怀,陈跃忠,邓建辉,等.锰及其偏析对U71Mn 钢轨雾化全长淬火工艺的影响[J].钢铁钒钛,1987( 1) : 61-66.
[4]
陈海田. 钢轨焊接接头晶粒度探讨[J]. 中国高新技术企业, 2016(18): 106-107.
[5]
高成刚,陈军,丁韦,等.钢轨化学成分偏析及接头热处理对质量的影响[J].焊接技术, 2005,34( 3) : 7-8.
[6] TB/T 1632.2—2014
钢轨焊接第2 部分:闪光焊接[S].北京:中国铁道出版社,2014.
[7]
周红梅,戴虹,张子豪,等.起重机钢轨焊接接头断裂原因分析[J]. 物理测试,2012,30( 4) : 46-50.
[8]
倪峥嵘, 高文会. 采用通用焊接工艺参数焊接不同钢种钢轨的试验研究[J]. 铁路技术创新, 2016(2): 62-65.
[9]
俞喆,张银花,周清跃.U75V 钢轨移动闪光焊焊后热处理工艺研究[J].铁道建筑,2012(10):130-132.