统计学(07)第7章 参数估计
贾俊平《统计学》(第7版)考点归纳和课后习题详解(含考研真题)(第7章 参数估计)【圣才出品】

第7章参数估计7.1 考点归纳【知识框架】【考点提示】(1)置信区间的含义理解(选择题、简答题考点);(2)估计量的三个评价标准(判断题、填空题、简答题考点);(3)区间估计的步骤(简答题考点)、总体参数的区间估计选择恰当的统计量(计算题考点);(4)必要样本容量的影响因素、计算(简答题、计算题考点)。
【核心考点】考点一:参数估计的基本原理1.置信区间(1)置信水平为95%的置信区间的含义:用某种方法构造的所有区间中有95%的区间包含总体参数的真值。
(2)置信度愈高(即估计的可靠性愈高),则置信区间相应也愈宽(即估计准确性愈低)。
(3)置信区间的特点:置信区间受样本影响,具有随机性,总体参数的真值是固定的。
一个特定的置信区间“总是包含”或“绝对不包含”参数的真值,不存在“以多大的概率包含总体参数”的问题。
2.评价估计量的标准(1)无偏性:估计量抽样分布的期望值等于被估计的总体参数,即E(θ∧)=θ。
(2)有效性:估计量的方差尽可能小。
(3)一致性:随着样本量的增大,估计量的值越来越接近被估计总体的参数。
【提示】本考点常见考查方式:①直接考查置信水平为95%的置信区间的含义;②置信度、估计可靠性、置信区间的关系及应用;③置信区间的特点;④给出估计量的具体含义,判断体现了什么标准;⑤直接回答估计量的三个评价标准及具体含义(简答题)。
考点二:一个总体参数的区间估计表7-1 一个总体参数的区间估计【总结】一个总体参数的估计及所使用的分布见图7-1:图7-1 一个总体参数的估计及所使用的分布【真题精选】设总体X~N(μ,σ2),σ2已知,样本容量和置信水平固定,对不同的样本观测值,μ的置信区间的长度()。
[对外经济贸易大学2018研]A.变长B .变短C .保持不变D .不能确定 【答案】C【解析】在正态总体方差已知的条件下,μ的置信区间为/2x z ±ασ所以置信区间长度为/22Z α,当样本容量和置信水平固定时,置信区间长度保持不变。
第7章参数估计

31 100
假定A品牌袋装大米的重量服从正态分布,现随机抽取13袋大 米,测得其重量(单位:千克)分别为 ⎛ ⎞ 24, 24.2, 24.4, 24.6, 24.7, ⎝ 24.8, 25, 25.1, 25.1, 25.2, ⎠ 25.3, 25.4, 25.6. 分别计算该品牌袋装大米的重量的均值,及重量的标准差 的95%的置信区间。
4. 整理后,得到未知参数������的置信区间
参数估计的基本原理 点估计 区间估计 一个总体参数的区间估计 总体均值的区间估计 总体比例的区间估计 总体方差的区间估计 两个总体参数的区间估计 两个总体均值之差的区间估计 两个总体比例之差的区间估计 两个总体方差之比的区间估计 样本量������的确定 估计总体均值是样本量的确定 估计总体比例时是样本量的确定
一家食品生产企业以生产袋装食品为主,每天的产量大约 为8000袋左右。按规定每袋的重量应为100g。为了对产品质量进 行监测,企业质检部门经常要进行抽检,以分析每袋重量是否符 合要求。现从某天生产的一批食品中随机抽取25袋,测得每袋重 量如下所示: 112.5 102.6 100 116.6 136.8 101 107.5 123.5 95.4 102.8 103 95 102 97.8 101.5 102 108.8 101.6 108.6 98.4 100.5 115.6 102.2 105 93.3
正态总体,������未知,因此应用公式①,即 ������ 2 ������ 2 方差的置信区间为[ ������(2������−(1) , ������2(������−1) ], ������ − 1) ( ������ −1) ������/2 1−������/2 √︂ √︂ ������ 2 ������ 2 标准差的置信区间为[ ������(2������−(1) , ������2(������−1) ]。 ������−1) (������−1)
第7章参数估计

x 1 0
f P 1-p
x
xf f
1 p 0 (1 p) p (1 p)
p
2 (x x)2 f (1 p)2 p (0 p)2 (1 p)
f
p (1 p)
似然函数常简记为L或 L 1,2, ,k
未知参数的函数。
38
若有 ˆi (x1, x2,..., xn ) i 1, 2, k 使得
L x1, x2,..., xn;ˆ1, ˆ 2,
, ˆ k
max L (1 ,2 , ,k )
x1, x2,..., xn; 1, 2,
, k
则 ˆi (X1, X2,..., Xn) 为参数θi的极大似然估计量。
中选出一个使样本观察值出现的概率为最大的 ˆ 作
为θ的估计量。
称 ˆ 为θ 的极大似然估计量。
37
2.似然函数的数学表达式
设X1,X2,…Xn是取自总体X的一个样本,样本的联合密度 (连续型)或联合分布律 (离散型)为 :
f (x; 1,2 , , k )
定义似然函数为:
n
L L x1,..., xn; 1, 2, , k f xi; 1, 2, , k i 1 x1, x2 ,..., xn 给定的样本观察值
§7.1.4抽样误差
1.误差:调查结果与实际值之间的差异 抽样调查中的误差
登记性误差(非抽样误差) 误差代表性误差随系机统误误差差((抽非样抽误样差误)差)
2.抽样误差—由于抽样的随机性而产生的 样本指标对总体指标的代表性误差。抽样误 差可以计算并加以控制,但不可以避免。
统计学第五版课后练答案(7-8章)

第七章 参数估计7.1 (1)x σ==(2)2x z α∆= 1.96=1.54957.2 某快餐店想要估计每位顾客午餐的平均花费金额。
在为期3周的时间里选取49名顾客组成了一个简单随机样本。
(1)假定总体标准差为15元,求样本均值的抽样标准误差。
x σ==(2)在95%的置信水平下,求估计误差。
x x t σ∆=⋅,由于是大样本抽样,因此样本均值服从正态分布,因此概率度t=2z α 因此,x x t σ∆=⋅2x z ασ=⋅0.025x z σ=⋅=1.96×2.143=4.2 (3)如果样本均值为120元,求总体均值 的95%的置信区间。
置信区间为:2x z x z αα⎛-+ ⎝=()120 4.2,120 4.2-+=(115.8,124.2)7.322x z x z αα⎛-+ ⎝=104560±(87818.856,121301.144) 7.4 从总体中抽取一个n=100的简单随机样本,得到x =81,s=12。
要求:大样本,样本均值服从正态分布:2,x N n σμ⎛⎫ ⎪⎝⎭ 或2,s x N n μ⎛⎫⎪⎝⎭置信区间为:22x z x z αα⎛-+ ⎝=1.2 (1)构建μ的90%的置信区间。
2z α=0.05z =1.645,置信区间为:()81 1.645 1.2,81 1.645 1.2-⨯+⨯=(79.03,82.97)(2)构建μ的95%的置信区间。
2z α=0.025z =1.96,置信区间为:()81 1.96 1.2,81 1.96 1.2-⨯+⨯=(78.65,83.35)(3)构建μ的99%的置信区间。
2z α=0.005z =2.576,置信区间为:()81 2.576 1.2,81 2.576 1.2-⨯+⨯=(77.91,84.09)7.5 (1)2x z α±=25 1.96±=(24.114,25.886)(2)2x z α±119.6 2.326±=(113.184,126.016)(3)2x z α± 3.419 1.645±(3.136,3.702)7.6 (1)2x z α±=8900 1.96±=(8646.965,9153.035)(2)2x z α±8900 1.96±=(8734.35,9065.65)(3)2x z α±8900 1.645±=(8761.395,9038.605)(4)2x z α±8900 2.58±=(8681.95,9118.05)7.7 某大学为了解学生每天上网的时间,在全校7 500名学生中采取重复抽样方法随机抽取36人,调解:(1)样本均值x =3.32,样本标准差s=1.611α-=0.9,t=2z α=0.05z =1.645,x z α± 3.32 1.645±=(2.88,3.76)1α-=0.95,t=z α=0.025z =1.96,x z α± 3.32 1.96±(2.79,3.85)1α-=0.99,t=z α=0.005z =2.576,2x z α± 3.32 2.76±(2.63,4.01)7.82x t α±=10 2.365±7.9 某居民小区为研究职工上班从家里到单位的距离,抽取了由16个人组成的一个随机样本,他们到单位的距离(单位:km)分别是:10 3 14 86 9 12 117 5 1015 9 16 13 2假定总体服从正态分布,求职工上班从家里到单位平均距离的95%的置信区间。
第7章估计理论

D X EX EX 2 12
2 2 2
1 1 2 1 X i X i Xi X n n n
2
2
样本方差
∴样本均值和样本方差是总体数学期望与总体方差的矩估计量。可以证明, 前面讲过的样本各种数字特征是总体同名数字特征的矩估计量。
X EX
标准化后的变量
也是随机变量,常数为离均系数,若X的数字特征为 EX , , Cs则的
Cs Cs 的最小值为: 均值为0 ,方差为1,
0
a EX 2 2 Cs Cs
当Cs 0,
,此时
为标准化正体分布∴结论是对的
从以上所推导出离均系数分布密度可知,该分布密度仅与 Cs 有关,那么只要给p 可通过积分求得p 即
解:设样本
x1 , x 2 , x n
x
1
为极大值 ∵ x1
* 即 取值范围[ x1 , ) 是抽自以上总体的。故 为使似然函数达最大
即
L 1 n 达最大 在 取值范围内 显然 x1时可使L达最大
对于P-III型分布中的τ分布(即a0=0的P-III分布),可以用两个似然方
P-Ⅲ型分布是我国水利水电工程水文计算规范中推荐采用的分 布,我国水文工作者对其参数估计的方法作了大量研究,现行广泛采用 的是适线法。 一、适线法 适线法不是给出估计量的计算公式,而是由实测样本直接推求 参数的估计值。包括目估和计算机优化适线法。 (一)、适线法的基本原理 设随机变量X的超过制分布函数 P( X x) G ( x; u10 ,, ul0 ) 的函 数类型已知,其中的参数 u10 ,, ul0未知,待估计,又设x1,…,xn为X 的一个容量为n的样本,利用这个样本通过适线法估计参数 u10 ,, ul0 的值。 将x1,x2,…,xn由大到小排队:x 计算经验频率 Pm P X xm ,将点 ( Pm , xm )(m=1~n)(称为经验点据)
统计学第七章参数估计

单击添加文本具体内容
参数估计
假设检验
描述统计
推断统计
参数估计在统计方法中的地位
统计方法
统计推断的过程
总体
总体均值、比例、方差等
样本统计量 如:样本均值、比例、方差
样本
§7.1 参数估计的一般问题
单击此处添加文本具体内容,简明扼要地阐述你的观点
一、估计量和估计值
参数估计(Parameter Estimation) ,用样本估计量估计总体估计值。
一个总体参数的区间估计
总体参数
符号表示
样本统计量
均值
比例
方差
第一章节
总体均值的区间估计 (正态总体、2已知,或非正态总体、大样本)
总体均值的区间估计 (大样本)
假定条件 总体服从正态分布,且方差(2) 未知 如果不是正态分布,可由正态分布来近似 (n 30) 使用正态分布统计量 z 总体均值 在1- 置信水平下的置信区间为
(1)估计量:用来估计总体参数的样本统计量。如:样本算术平均数、样本中位数、样本标准差、样本方差等。 例如: 样本均值就是总体均值 的一个估计量 (2)参数用 表示,估计量用 表示 (3)估计值:估计参数时计算出来的统计量的具体值 如果样本均值 x =80,则80就是的估计值
矩估计法
最小二乘法
换句话说,做出校全体女大学生身高均数为163.0 -- 164.5cm的结论,说对的概率是95%,说错的概率是5%;做出校全体女大学生身高均数为162.7 – 164.7cm的结论,说对的概率是99%,说错的概率是1%。
3、置信区间与置信水平
(1 - ) 区间包含了 的区间未包含
a /2
A
B
的抽样分布
统计学第七章、第八章课后题答案

统计学复习笔记第七章 参数估计一、 思考题1. 解释估计量和估计值在参数估计中,用来估计总体参数的统计量称为估计量。
估计量也是随机变量。
如样本均值,样本比例、样本方差等。
根据一个具体的样本计算出来的估计量的数值称为估计值。
2. 简述评价估计量好坏的标准(1)无偏性:是指估计量抽样分布的期望值等于被估计的总体参数。
(2)有效性:是指估计量的方差尽可能小。
对同一总体参数的两个无偏估计量,有更小方差的估计量更有效。
(3)一致性:是指随着样本量的增大,点估计量的值越来越接近被估总体的参数。
3. 怎样理解置信区间在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。
置信区间的论述是由区间和置信度两部分组成。
有些新闻媒体报道一些调查结果只给出百分比和误差(即置信区间),并不说明置信度,也不给出被调查的人数,这是不负责的表现。
因为降低置信度可以使置信区间变窄(显得“精确”),有误导读者之嫌。
在公布调查结果时给出被调查人数是负责任的表现。
这样则可以由此推算出置信度(由后面给出的公式),反之亦然。
4. 解释95%的置信区间的含义是什么置信区间95%仅仅描述用来构造该区间上下界的统计量(是随机的)覆盖总体参数的概率。
也就是说,无穷次重复抽样所得到的所有区间中有95%(的区间)包含参数。
不要认为由某一样本数据得到总体参数的某一个95%置信区间,就以为该区间以0.95的概率覆盖总体参数。
5. 简述样本量与置信水平、总体方差、估计误差的关系。
1. 估计总体均值时样本量n 为2. 样本量n 与置信水平1-α、总体方差、估计误差E 之间的关系为 其中: 2222α2222)(E z n σα=n z E σα2=▪ 与置信水平成正比,在其他条件不变的情况下,置信水平越大,所需要的样本量越大;▪ 与总体方差成正比,总体的差异越大,所要求的样本量也越大;▪ 与与总体方差成正比,样本量与估计误差的平方成反比,即可以接受的估计误差的平方越大,所需的样本量越小。
07心理统计学-第七章 参数估计

犯错误的概率,常用α(或p)表示。则1-α为置信 度。(显著性水平越高表示的是α值越小,即犯错误的可
能性越低) α为预先设定的临界点,常用的如.05、.01、.001;p 为检验计算所得的实际(犯错误)概率。
第一节 点估计、区间估计与标准误
三、区间估计与标准误
3、区间估计的原理与标准误
转换成比率为
p
n
p, SE p
n
pq n
同理可得公式7-17。自习[例7-12、例7-13]
1、从某地区抽样调查400人,得到每月人均文化消费为 160元。已知该地区文化消费的总体标准差为40元。试 问该地区的每月人均文化消费额。(α=.05,总体呈正态
分布)
2、上题中总体方差未知,已知Sn-1=44元。 3、已知某中学一次数学考试成绩的分布为正态分布,总 体标准差为5。从总体中随机抽取16名学生,计算得平 均数为81、标准差为Sn=6。试问该次考试中全体考生成 绩平均数的95%置信区间。 4、上题中总体方差未知,样本容量改为17人。 5、假定智商服从正态分布。随机抽取10名我班学生测 得智商分别为98、102、105、105、109、111、117、 123、124、126(可计算得M=112,Sn≈9.4),试以95% 的置信区间估计我班全体的智商平均数。 返回
值表,求tα /2(df)。
5、计算置信区间CI。
σ2已知,区间为M-Zα /2 SE <μ< M+Zα /2 SE;
σ2未知,区间为M-tα /2(df)SE <μ< M+tα /2(df)SE。
6、对置信区间进行解释。
二、σ2已知,对μ的区间估计(Z分布,例7-1 & 2) 三、σ2未知,对μ的区间估计(t分布,例7-3 & 4)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作者:李艳芬,经济与管理学院
统计学
STATISTICS (第六版)
总体均值的区间估计
(大样本)
1. 假定条件
总体服从正态分布,且方差(2) 已知
如果不是正态分布,可由正态分布来近似 (n 30)
2. 使用正态分布统计量 z
z x ~ N (0,1) n
3. 总体均值 在1- 置信水平下的置信区间为
36个投保人年龄的数据
23
35
39
27
36
44
36
42
46
43
31
33
42
53
45
54
47
24
34
28
39
36
44
40
39
49
38
34
48
50
34
39
45
48
45
32
7 - 24
作者:李艳芬,经济与管理学院
统计学
STATISTICS (第六版)
总体均值的区间估计
(例题分析)
解:已知n=36, 1- = 90%,z/2=1.645。根据样本数
统计学
STATISTICS (第六版)
第 7 章 参数估计
7 -1
作者:李艳芬,经济与管理学院
统计学
STATISTICS (第六版)
第 7 章 参数估计
7.1 参数估计的一般问题 7.2 一个总体参数的区间估计 7.3 两个总体参数的区间估计 7.4 样本量的确定
7 -2
作者:李艳芬,经济与管理学院
7 - 33
解:已知 n=100,p=65% , 1- = 95%,
z/2=1.96
p z 2
p(1 p) n
65% 1.96 65%(1 65%) 100
65% 9.35%
55.65%,74.35%
该城市下岗职工中女性比例的置信 区间为55.65%~74.35%
作者:李艳芬,经济与管理学院
点估计与区间估计
7 -7
作者:李艳芬,经济与管理学院
统计学
STATISTICS (第六版)
点估计
(point estimate)
1. 用样本的估计量的某个取值直接作为总体参 数的估计值
▪ 例如:用样本均值直接作为总体均值的估计;用 两个样本均值之差直接作为总体均值之差的估计
2. 无法给出估计值接近总体参数程度的信息
区间估计
(interval estimate)
1. 在点估计的基础上,给出总体参数估计的一个区间 范围,该区间由样本统计量加减估计误差而得到
2. 根据样本统计量的抽样分布能够对样本统计量与总 体参数的接近程度给出一个概率度量
比如,某班级平均分数在75~85之间,置信水平是95%
置信区间
样本统计量 (点估计)
重复构造出的20个置信区间
作者:李艳芬,经济与管理学院
统计学
STATISTICS (第六版)
评价估计量的标准
7 - 14
作者:李艳芬,经济与管理学院
统计学
STATISTICS (第六版)
无偏性
(unbiasedness)
无偏性:估计量抽样分布的数学期望等于被 估计的总体参数
P(ˆ)
无偏
有偏
A
B
7 - 15
7 - 18
作者:李艳芬,经济与管理学院
统计学
STATISTICS (第六版)
一个总体参数的区间估计
总体参数 均值 比例 方差
7 - 19
符号表示 样本统计量
x
p
2
s2
作者:李艳芬,经济与管理学院
统计学
STATISTICS (第六版)
总体均值的区间估计
(正态总体、2已知,或非正态总体、大样本)
7 - 20
虽然在重复抽样条件下,点估计的均值可望等于
总体真值,但由于样本是随机的,抽出一个具体 的样本得到的估计值很可能不同于总体真值
7 -8
一个点估计量的可靠性是由它的抽样标准误差来 衡量的,这表明一个具体的点估计值无法给出估 计的可靠性的度量
作者:李艳芬,经济与管理学院
统计学
STATISTICS (第六版)
(consistency)
一致性:随着样本量的增大,估计量的 值越来越接近被估计的总体参数
P(ˆ)
较大的样本量
A
B
较小的样本量
7 - 17
ˆ
作者:李艳芬,经济与管理学院
统计学
STATISTICS
7.2
一个总体参数的区间估计
(第六版)
7.2.1 总体均值的区间估计 7.2.2 总体比例的区间估计 7.2.3 总体方差的区间估计
据计算得:x 39.5 ,s 7.77
总体均值在1- 置信水平下的置信区间为
x z 2
s 39.5 1.645 7.77
n
36
39.5 2.13
37.37,41.63
投保人平均年龄的置信区间为37.37岁~41.63岁
7 - 25
作者:李艳芬,经济与管理学院
统计学
STATISTICS (第六版)
ˆ
作者:李艳芬,经济与管理学院
统计学
STATISTICS (第六版)
有效性
(efficiency)
有效性:对同一总体参数的两个无偏点估计
量,有更小标准差的估计量更有效
P(ˆ)
ˆ1 的抽样分布
B
A
ˆ2 的抽样分布
7 - 16
ˆ
作者:李艳芬,经济与管理学院
统计学
STATISTICS (第六版)
一致性
统计学
STATISTICS (第六版)
置信水平
(confidence level)
1. 将构造置信区间的步骤重复很多次,置信 区间包含总体参数真值的次数所占的比例 称为置信水平
2. 表示为 (1 - 为是总体参数未在区间内的比例
3. 常用的置信水平值有 99%, 95%, 90%
相应的 为0.01,0.05,0.10
7 - 27
x t 2
s n
作者:李艳芬,经济与管理学院
统计学
STATISTICS (第六版)
t 分布
t 分布是类似正态分布的一种对称分布,它通常要比 正态分布平坦和分散。一个特定的分布依赖于称之 为自由度的参数。随着自由度的增大,分布也逐渐 趋于正态分布
标准正态分布
标准正态分布
t (df = 13)
105.36 3.92
101.44,109.28
该食品平均重量的置信区间为101.44g~109.28g
7 - 23
作者:李艳芬,经济与管理学院
统计学
STATISTICS (第六版)
总体均值的区间估计
(例题分析)
【例】一家保险公司收集到由36个投保人组成的随 机样本,得到每个投保人的年龄(单位:周岁)数据如 下表。试建立投保人年龄90%的置信区间
1510 1450 1480 1460
16灯泡使用寿命的数据
1520
1480
1480
1510
1490
1530
1460
1470
1500 1520 1510 1470
7 - 29
作者:李艳芬,经济与管理学院
统计学
STATISTICS (第六版)
总体均值的区间估计
(例题分析)
解:已知X~N(,2),n=16, 1- = 95%,t/2=2.131
25袋食品的重量
112.5 101.0 103.0 102.0 100.5
102.6 107.5
95.0 108.8 115.6
100.0 123.5 102.0 101.6 102.2
116.6
95.4
97.8 108.6 105.0
173-62.82 102.8 101.5
98.4
93.3
作者:李艳芬,经济与管理学院
含总体参数的真值
我们只能是希望这个区间是大量包含总体参数真值的
区间中的一个,但它也可能是少数几个不包含参数真 值的区间中的一个
总体参数以一定的概率落在这一区间的表述是错误的
7 - 12
作者:李艳芬,经济与管理学院
统计学
STATISTICS (第六版)
点估计值
置信区间
(95%的置信区间)
7 - 13
1. 估计量:用于估计总体参数的随机变量
如样本均值,样本比例, 样本方差等
例如: 样本均值就是总体均值 的一个估计量
2. 参数用 表示,估计量用ˆ 表示
3. 估计值:估计参数时计算出来的统计量的 具体值
如果样本均值 x =80,则80就是的估计值
7 -6
作者:李艳芬,经济与管理学院
统计学
STATISTICS (第六版)
7.1 参数估计的一般问题
7.1.1 估计量与估计值 7.1.2 点估计与区间估计 7.1.3 评价估计量的标准
7 -4
作者:李艳芬,经济与管理学院
统计学
STATISTICS (第六版)
估计量与估计值
7 -5
作者:李艳芬,经济与管理学院
统计学
估计量与估计值
STATISTICS (第六版)
(estimator & estimated value)
统计学
STATISTICS (第六版)
总体比例的区间估计
7 - 31
作者:李艳芬,经济与管理学院
统计学
STATISTICS (第六版)
总体比例的区间估计
1. 假定条件