第七章--统计学-参数估计

合集下载

统计学习题答案参数估计

统计学习题答案参数估计

第5章参数估计●1. 从一个标准差为5的总体中抽出一个容量为40的样本,样本均值为25。

(1)样本均值的抽样标准差等于多少?(2)在95%的置信水平下,允许误差是多少?解:已知总体标准差σ=5,样本容量n=40,为大样本,样本均值=25,(1)样本均值的抽样标准差===0。

7906(2)已知置信水平1-=95%,得=1。

96,于是,允许误差是E ==1.96×0.7906=1.5496。

●2.某快餐店想要估计每位顾客午餐的平均花费金额,在为期3周的时间里选取49名顾客组成了一个简单随机样本.(3)假定总体标准差为15元,求样本均值的抽样标准误差;(4)在95%的置信水平下,求允许误差;(5)如果样本均值为120元,求总体均值95%的置信区间。

解:(1)已假定总体标准差为=15元,则样本均值的抽样标准误差为===2.1429(2)已知置信水平1-=95%,得=1.96,于是,允许误差是E ==1.96×2.1429=4.2000。

(3)已知样本均值为=120元,置信水平1-=95%,得=1.96,这时总体均值的置信区间为=120±4。

2=可知,如果样本均值为120元,总体均值95%的置信区间为(115。

8,124.2)元。

●3.某大学为了解学生每天上网的时间,在全校7500名学生中采取不重复抽样方法随机抽取36人,调查他们每天上网的时间,得到下面的数据(单位:小时):3.3 3。

1 6。

2 5.8 2。

3 4。

1 5.4 4。

5 3。

24。

4 2。

0 5。

4 2。

6 6。

4 1.8 3.5 5.7 2。

32。

1 1.9 1.2 5.1 4.3 4。

2 3.6 0。

8 1。

54。

7 1。

4 1.2 2。

9 3。

5 2.4 0.5 3.6 2。

5求该校大学生平均上网时间的置信区间,置信水平分别为90%、95%和99%。

解:⑴计算样本均值:将上表数据复制到Excel表中,并整理成一列,点击最后数据下面空格,选择自动求平均值,回车,得到=3。

参数估计PPT课件

参数估计PPT课件

2021/7/23
3
§1.1 矩估计法
• 设(X1,X2,…,Xn)是来自总体X的一个样本,根据大 数定律,对任意ε>0,有
lim P {X |E(X)|}0
n
并且对于任何k,只要E(Xk)存在,同样有
ln i m P { |1 ni n 1X ik E (X k)|} 0 , k 1 ,2 ,...
最大似然法的基本思想
先看一个简单例子: 某位同学与一位猎人一起外出打 猎。一只野兔从前方窜过。 只听一声枪响,野兔应声倒下 。 如果要你推测,是谁打中的呢?
你会如何想呢?
2021/7/23
13
你就会想,只发一枪便打中,猎人命中的概率一 般大于这位同学命中的概率。看来这一枪是猎人 射中的。
这个例子所作的推断已经体现了最大似然法的基 本思想 :一次试验就出现的事件有较大的概率。
6
例: 设总体 X 服从泊松分布 () ,参数λ未知, (X1, X2,, Xn) 是来自总体的一个样本,求参数λ的矩 估计量.
解 总体X的期望为 E(X)
从而得到方程
1 n
n i1
Xi
所以λ的矩估计量为
ˆ 1 n
n i1
Xi
X
2021/7/23
7
例: 设总体 X 服从参数为λ的指数分布,其中参
2021/7/23
11
§1.2最大似然法 它是在总体类型已知条件下使用的一种参数估 计方法 。
它首先是由德国数学家高斯在 1821年提出的。 然而, 这个方 法常归功于英国统计学家费歇。
Gauss
费歇在1922年重新发现了这一 方法,并首先研究了这种方法 的一些性质。
2021/7/23

概率论 第七章 参数估计

概率论  第七章 参数估计

L( ) max L( )
称^为
的极大似然估计(MLE).
求极大似然估计(MLE)的一般步骤是:
(1) 由总体分布导出样本的联合概率分布 (或联合密度);
(2) 把样本联合概率分布(或联合密度)中自变 量看成已知常数,而把参数 看作自变量, 得到似然函数L( );
(3) 求似然函数L( ) 的最大值点(常常转化 为求ln L( )的最大值点) ,即 的MLE;
1. 将待估参数表示为总体矩的连续函数 2. 用样本矩替代总体矩,从而得到待估参
数的估计量。
四. 最大似然估计(极大似然法)
在总体分布类型已知条件下使用的一种 参数估计方法 .
首先由德国数学家高斯在1821年提出。 英国统计学家费歇1922年重新发现此
方法,并首先研究了此方法的一些性质 .
例:某位同学与一位猎人一起外出打猎.一只 野兔从前方窜过 . 一声枪响,野兔应声倒下 .
p值 P(Y=0) P(Y=1) P( Y=2) P(Y=3) 0.7 0.027 0.189 0.441 0.343 0.3 0.343 0.441 0.189 0.027
应如何估计p?
若:只知0<p<1, 实测记录是 Y=k
(0 ≤ k≤ n), 如何估计p 呢?
注意到
P(Y k) Cnk pk (1 p)nk = f (p)
第七章 参数估计
参数估计是利用从总体抽样得到的信息 估计总体的某些参数或参数的某些函数.
仅估 计一 个或 几个 参数.
估计新生儿的体重
估计废品率
估计降雨量
估计湖中鱼数


参数估计问题的一般提法:
设总体的分布函数为 F(x, ),其中为未 知参数 (可以是向量).从该总体抽样,得样本

张厚粲《现代心理与教育统计学》(第4版)章节题库-参数估计(圣才出品)

张厚粲《现代心理与教育统计学》(第4版)章节题库-参数估计(圣才出品)

第7章参数估计一、单项选择题1.()表明了从样本得到的结果相比于真正总体的变异量。

A.信度B.效度C.置信区间D.取样误差【答案】D【解析】A项,信度是指测量结果的稳定性程度。

B项,效度是指一个测验或量表实际能测出其所要测的心理特质的程度。

C项,置信区间,也称置信间距,是指在某一置信度时,总体参数所在的区域距离或区域长度。

D项,取样误差是指由于随机抽样的偶然因素使样本各单位的结构不足以代表总体各单位的结构,而引起抽样指标和全局指标的绝对离差。

抽样误差不是由调查失误所引起的,而是随机抽样所特有的误差。

2.样本平均数的可靠性和样本的大小()。

A.没有一定关系B.成反比C.没有关系D.成正比【答案】D【解析】样本平均数的标准差与总体标准差成正比,与样本容量的平方根成反比。

计算公式为:x SE Nσ=式中σ为总体标准差,N 为样本的大小。

在一定范围内,样本量越大,样本的标准误差越小,则该样本平均数估计总体平均数的可靠性越大。

因此样本平均数的可靠性与样本的大小成正比。

3.样本容量均影响分布曲线形态的是()。

A.正态分布和F 分布B.F 分布和t 分布C.正态分布和t 分布D.正态分布和χ2分布【答案】B【解析】t 分布是一种左右对称、峰态比较高狭,分布形状会随样本容量n-1的变化而变化的一族分布:①当样本容量趋于∞时,t 分布为正态分布,方差为1;②当n-1>30以上时,t 分布接近正态分布,方差大于1,随n-1的增大而方差渐趋于1;③当n-1<30时,t 分布与正态分布相差较大,随n-1减少,离散程度(方差)越大,分布图的中间变低但尾部变高。

χ2分布是一个正偏态分布,随每次所抽取的随机变量X 的个数(n 的大小)不同,其分布曲线的形状不同,n 或n-1越小,分布越偏斜。

df 很大时,接近正态分布,当df→∞时,χ2分布即为正态分布。

F 分布形态是一个正偏态分布,它的分布曲线随分子、分母的自由度不同而不同,随df 1与df 2的增加而渐趋正态分布。

统计学答案第七章

统计学答案第七章

1 估计量的含义是指()。

A.用来估计总体参数的统计量的名称B.用来估计总体参数的统计量的具体数值C.总体参数的名称D.总体参数的具体数值2 在参数估计中,要求通过样本的统计量来估计总体参数,评价统计量的标准之一是使它与总体参数的离差越小越好。

这种评价标准称为()。

A.无偏性B.有效性C.一致性D.充分性3 根据一个具体的样本求出的总体均值的95%的置信区间()。

A.以95%的概率包含总体均值B.有5%的可能性包含总体均值C.一定包含总体均值D.要么包含总体均值,要么不包含总体均值4 无偏估计是指()。

A.样本统计量的值恰好等于待估的总体参数B.所有可能样本估计值的数学期望等于待估总体参数C.样本估计值围绕待估总体参数使其误差最小D.样本量扩大到和总体单元相等时与总体参数一致5 总体均值的置信区间等于样本均值加减边际误差,其中的边际误差等于所要求置信水平的临界值乘以()。

A.样本均值的抽样标准差B.样本标准差C.样本方差D.总体标准差6 当样本量一定时,置信区间的宽度()。

A.随着置信系数的增大而减小B.随着置信系数的增大而增大C.与置信系数的大小无关D.与置信系数的平方成反比7 当置信水平一定时,置信区间的宽度()。

A.随着样本量的增大而减小B.随着样本量的增大而增大C.与样本量的大小无关D.与样本量的平方根成正比8 一个95%的置信区间是指()。

A.总体参数有95%的概率落在这一区间内B.总体参数有5%的概率未落在这一区间内C.在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数D.在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数9 95%的置信水平是指()。

A.总体参数落在一个特定的样本所构造的区间内的概率为95%B.在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为95%C.总体参数落在一个特定的样本所构造的区间内的概率为5%D.在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为5%10 一个估计量的有效性是指()。

参数估计

参数估计

(2)再用样本k阶矩代替相应的总体k阶矩
上一页
下一页
返回
设 总 体X ~ N ( , 2 ), , 2 未 知 , 设 例1: ( X 1 , X 2 ,..., X n )为 来 自 总 体 的 样 本 , 求 X 与 2的 矩 估 计 量 。
解:先建立待估参数与总体矩的关系
维随机变量,样本的联合概率密度为:
f ( x1 , x2 ,, xn ) f X 1 ( x1 ) f X 2 ( x2 ) f X n ( xn )
f ( x1 , ) f ( x2 , ) f ( xn , ) f ( xi , )
i 1
n
显然上式也为θ的函数,记作 L( ),即
L( ) f ( xi , )
i 1 n
我们称 L( ) 为似然函数。
小结:
似然函数
n p( x i ; ) i 1 L( ) n f ( x i ; ) i 1
由上可知,求极大似然估计值就是求使 L( ) 取最大的θ值。 下面我们用例子来说明求解极大似然估计值的步骤。


6

3
[ x dx x dx]
2 3 0 0



2
用样本k阶矩代替相应的总体k阶矩,得θ的矩估计量:
ˆ 2X
2)将数据代入,得θ的矩估计值为:
ˆ 2x 2 1 xi 8.9 8 i 1
8
计 算 器 的 使 用
例3:设总体X在区间[a,b]上服从均匀分布, a , b
实为 发生的概率。
根据极大似然原理,
概率大的事件在一次观测中更容易发生。
现在只做一次抽样, 事件 { X 1 x1 , X 2 x2 ,, X n xn } 故 认为其概率较大。 认为其概率较大。 也即我们应选择 使 L( ) 取最大值。 我们把使 L( ) 取最大值的 值称为 的极大 竟然发生了,

《概率论与数理统计》7


未知参数 , ,, 的函数.分别令
12
k
L(1,,k ) 0,(i 1,2,...,k)
或令
i
ln L(1,,k ) 0,(i 1,2,...,k)
i
由此方程组可解得参数 i 的极大似然估计值 ˆi.
例5 设X~b(1,p), X1, X2 , …,Xn是来自X的一个样本,
求参数 p 的最大似然估计量.
解 E( X ) ,E( X 2 ) D( X ) [E( X )]2 2 2
由矩估计法,
【注】
X
1
n
n i 1
X
2 i
2
2
ˆ X ,
ˆ
2
1 n
n i 1
(Xi
X )2
对任何总体,总体均值与方差的矩估计量都不变.
➢常见分布的参数矩估计量
(1)若总体X~b(1, p), 则未知参数 p 的矩估计量为
7-1
第七章
参数估计
统计 推断
的 基本 问题
7-2
参数估 计问题
(第七章)
点估计 区间估 计
假设检 验问题 (第八章)
什么是参数估计?
参数是刻画总体某方面概率特性的数量.
当此数量未知时,从总体抽出一个样本, 用某种方法对这个未知参数进行估计就 是参数估计.
例如,X ~N ( , 2),
若, 2未知, 通过构造样本的函数, 给出
k = k(A1, A2 , …, A k)
用i 作为i的估计量------矩估计量.
例1 设总体X服从[a,b]上的均匀分布,a,b未知,
X1, X2 , …,Xn为来自总体X的样本,试求a,b的 矩估计量.
解 E(X ) a b , D(X ) (b a)2

参数估计和假设检验

参数估计和假设检验参数估计和假设检验是统计学中常用的两种方法,用于根据样本数据对总体的特征进行推断和判断。

参数估计是通过样本数据估计总体参数值的方法,而假设检验则是基于样本数据对总体参数假设进行判断的方法。

下面将详细介绍这两种方法以及它们的应用。

1.参数估计参数是指总体特征的度量,比如总体均值、总体方差等。

在实际应用中,我们往往无法得到总体数据,只能通过抽样得到样本数据。

参数估计的目标是利用样本数据去估计总体参数的值。

最常用的参数估计方法是点估计和区间估计:-点估计是使用样本统计量来估计总体参数的值,常用的样本统计量有样本均值、样本方差等。

-区间估计是利用样本数据构建一个置信区间,用来估计总体参数的取值范围。

置信区间的计算方法通常是基于样本统计量的分布进行计算。

在进行参数估计时,需要注意以下几个要点:-选择适当的样本容量和抽样方法,确保样本具有代表性,并满足参数估计的要求。

-选择适当的样本统计量进行参数估计,并对其进行合理的解释与限制。

-利用抽样分布特性和统计理论,计算参数估计的标准误差和置信区间,对参数估计结果进行解释和判断。

2.假设检验假设检验是基于样本数据对总体参数假设进行判断的方法。

在实际问题中,我们常常需要根据样本数据来判断一些总体参数是否达到一些要求或存在其中一种关系。

假设检验的基本步骤:-建立原假设(H0)和备择假设(H1)。

原假设通常是对总体参数取值的一种假设,备择假设则是原假设的对立假设。

-选择适当的统计量用来检验假设,并计算样本统计量的检验统计量。

-根据样本数据计算得出的检验统计量,利用抽样分布特性和统计理论计算P值。

-根据P值与事先设置的显著性水平进行比较,如果P值小于显著性水平,则拒绝原假设;反之,接受原假设。

在进行假设检验时,需要注意以下几个要点:-显著性水平的选择:显著性水平(α)是进行假设检验过程中设置的一个临界值,它反映了能够容忍的错误发生的概率。

常用的显著性水平有0.05和0.01-选择适当的统计量与检验方法:根据问题的性质和数据类型选择适当的统计量和检验方法。

参数估计


根据“概率越大的事件越可能发生”的实际推断原理,应选3/4作为p的估计值。
若p的可供选择的估计值有许多,仍应选择发生概率最大的 就是极大似然估计的思想。
作为p的估计,这p
Exceltek Electronics (HK) Ltd Confidential
极大似然估计的原理(教材p180-181)
设总体X的概率密度函数族为f(x; ) (或概率分布函数族为P(X=x)=p(x ; ) ), 。
矩估计的缺陷:当总体分布类型已知时,未能充分利用总体分布提供的信息。
Exceltek Electronics (HK) Ltd Confidential
二、极大似然估计
引例:罐中有许多白球和黑球,已知两色球的比例为3:1,但不知哪种颜色的球多。 今有放回连抽两球均取出黑球,问:罐中黑球多还是白球多?
第七章 参数估计
引言 参数估计:当总体的某些参数未知(一般要求分布类型已知)时,从样本出发构造适当 的统计量,作为未知参数的估计量。当取得一组观察值后,以相应的统计量的观察 值作为未知参数的估计值,并讨论估计值对真值进行估计的可靠性。
参数估计方法是处理实际问题时最常用的方法。
预备概念:当总体X中含有未知参数 (可以是向量)时,可用 F(x; )来表示X的分布函数,当取不同的值,就会得到不同的分布函数。我们 称所有可能取值的集合为参数空间,记为。把{F(x; ), }称为X的分布 函数族。
的极大似然估计。
便是
D(X )
Exceltek Electronics (HK) Ltd Confidential
第三节 点估计量的评选标准 问题:1. 哪种估计是最好的估计?
2. 评价“好”的标准是什么? 建立评价标准的原则:估计量在某种意义下与待估参数的真值最接近。

参数估计与置信区间

参数估计与置信区间统计学中的参数估计与置信区间是一种重要的数据分析方法,用于对总体参数进行推断和估计。

通过对样本数据的分析,可以对总体参数的取值进行估计,并计算出参数的置信区间。

参数估计和置信区间不仅可以提供对总体特征的推断,还可以对研究结果进行解释和评估。

一、参数估计参数估计是一种通过样本数据推断总体特征的方法。

对于一个总体参数,如总体均值、总体比例等,我们希望通过样本数据对其进行估计。

参数估计的常用方法有点估计和区间估计。

1. 点估计点估计是通过样本数据得出总体参数的一个具体数值估计。

例如,样本均值是对总体均值的点估计,样本比例是对总体比例的点估计。

点估计可以用来估计总体参数的位置和形状。

2. 区间估计区间估计是对总体参数进行一个区间范围的估计。

常见的区间估计方法有置信区间和可信区间。

置信区间是在一定置信水平下,给出总体参数的一个范围估计;可信区间是在一定可信度下,给出参数的一个范围估计。

二、置信区间置信区间是参数估计中常用的一种方法,用于估计总体参数的范围。

在给定的置信水平下,置信区间提供了总体参数的一个估计范围。

1. 置信水平置信水平是指在参数估计中设定的一个概率水平,通常用1-α来表示。

常用的置信水平有95%、99%等。

举例来说,如果我们选择95%的置信水平,那么置信区间将具有95%的概率包含真实的总体参数。

2. 置信区间的计算置信区间的计算通常基于抽样分布和统计理论。

以总体均值的置信区间为例,假设我们有一个样本数据,其样本均值为x,样本标准差为s,样本容量为n。

在假定总体分布形态已知的情况下,可以使用正态分布或t分布来计算置信区间。

对于总体均值的置信区间,可以使用以下公式进行计算:x-t(α/2, n-1)·(s/√n),x+t(α/2, n-1)·(s/√n)其中,x是样本均值,s是样本标准差,n是样本容量,t(α/2, n-1)是t分布的临界值,α/2是α的一半。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档