2011年数学中考题汇编投影与视图

合集下载

中考数学专题复习:投影与视图

中考数学专题复习:投影与视图

投影与试图典题探究例2 如图是由八个相同小正方体组合而成的几何体,则其左视图是( )A. B . C . D .例3 下面四个几何体中,俯视图不是圆的几何体的个数是( )A .1B .2C .3D .4例4 如图是由几个相同的小立方块组成的三视图,小立方块的个数是( )A .3个B .4个C .5个D .6个练习一 立体图形、视图和展开图A 组1.下列四个几何体中,三视图(主视图、左视图、俯视图)相同的几何体是( )2.一个几何体的三视图如右图所示,这个几何体是()A.圆锥 B.圆柱 C.三棱锥D.三棱柱3.已知一个几何体的三视图如图所示,则该几何体是()A棱柱 B圆柱 C圆锥 D球4.如图是一个几何体的三视图,则这个几何体的形状是()(A)圆柱(B)圆锥(C)圆台(D)长方体5.下列图形中,不是三棱柱的表面展开图的是()6.圆锥侧面展开图可能是下列图中的()7.右图需再添上一个面,折叠后才能围成一个正方体,下面是四位同学补画的情况(图中阴影部分),其中正确的是()8.将左图中的正方体纸盒沿所示的粗线剪开,其平面展开图的示意图为9.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,则在该正方体中,和“崇”相对的面上写的汉字是()A.低B.碳C.生D.活10.有一正方体,六个面上分别写有数字1、2、3、4、5、6,有三个人从不同的角度观察的结果如图所示。

如果记6的对面的数字为a,2的对面的数字为b,那么ba 的值为()A.3 B.7 C.8 D.1111.如图①放置的一个水管三叉接头,若其正视图如图②,则其俯视图是()12.左下图为主视图方向的几何体,它的俯视图是()13.如图1是一个几何体的实物图,则其主视图是DCBA14.如图所示,李老师办公桌上放着一个圆柱形茶叶盒和一个正方体的墨水盒,小芳从上面看,看到的图形是()B组15.右图是一个由4个相同的正方体组成的立体图形,它的三视图为()16.如图是由五个小正方体搭成的几何体,它的左视图是()17.如图所示的几何体的俯视图是().A B DC18.如图摆放的正六棱柱的俯视图是()19.沿圆柱体上底面直径截去一部分的物体如图所示,它的俯视图是( )20.下图所示几何体的主视图是()21.一个几何体的三视图如图所示,那么这个几何体是()22.下面四个图形中,是三棱柱的平面展开图的是()23.某物体的展开图如图所示,它的左视图为()练习二中心投影与平行投影A组1.下列四幅图形中,表示两棵树在同一时刻阳光下的影子的图形可能是 ( )2.视点指的是()A.眼睛的大小 B.眼睛看到的位置C.眼睛的位置 D.眼睛没有看到的位置3.晚上,小华出去散步,在经过一盏路灯时,他发现自己的身影是()A.变长 B.变短C.先变短后变长 D.先变长后变短4.于视线的范围,下列叙述不正确的是()A.走上坡路比走平路的视线范围小B.走上坡路比走平路的视线范围大C.在船头比在船尾向前看到的范围大D.在轿车外比在轿车里看到的范围大5.如图所示,快下降到地面的某伞兵在灯光下的影子为AB.试确定灯源P的位置,并画出竖立在地面上木桩的影子EF.(保留作图痕迹,不要求写作法)6.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是()答案例2 考点:简单组合体的三视图.分析:找到从左面看所得到的图形即可.解答:解:从左面可看到从左往右三列小正方形的个数为:2,3,1.故选B.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图,解答时学生易将三种视图混淆而错误的选其它选项.例4 考点:由三视图判断几何体.分析:根据三视图的知识,可判断该几何体有两列两行,底面有3个正方形,第二层有1个.解答:解:综合三视图可看出,底面有3个小立方体,第二层应该有1个小立方体,因此小立方体的个数应该是3+1=4个.故选B.点评:本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的个数.练习一立体图形、视图和展开图A组1.【答案】D ;2.【答案】D;3.【答案】B ;4.【答案】B ;5.【答案】D;6.【答案】D7.【答案】B;8.【答案】C;9.【答案】A ;10.【答案】B;11.【答案】A;12.【答案】D13.【答案】C ;14.【答案】AB组15.【答案】B;16.【答案】A;17.【答案】B ;18.【答案】D ;19.【答案】D20.【答案】A ;21.【答案】A;22.【答案】A ;23.【答案】B练习二中心投影与平行投影A组1.【答案】A ;2.【答案】C;3.【答案】C;4.【答案】B ;5.【答案】先连接伞兵的头和脚与对应的影子的直线,两直线的交点即为点P,过点P作过木桩顶端的直线与地面的交点即为F.6.【答案】A。

初中数学投影与视图全集汇编含解析

初中数学投影与视图全集汇编含解析

初中数学投影与视图全集汇编含解析一、选择题1.下列几何体是由4个正方体搭成的,其中主视图和俯视图相同的是()A.B.C.D.【答案】B【解析】【分析】分别画出从几何体的上面和正面看所得到的视图,再比较即可.【详解】A、主视图,俯视图为,故此选项错误;B、主视图为,俯视图为,故此选项正确;C、主视图为,俯视图为,故此选项错误;D、主视图为,俯视图为,故此选项错误;故选:B.【点睛】此题主要考查了简单几何体的三视图,关键是掌握所看的位置.2.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是( )A.圆柱B.圆锥C.棱锥D.球【答案】A【解析】【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱.【详解】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故选A .【点睛】此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.3.下列几何体中,主视图与俯视图不相同的是( )A .B .C .D .【答案】B【解析】分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.详解:四棱锥的主视图与俯视图不同.故选B .点睛:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表示在三视图中.4.图2是图1中长方体的三视图,若用S 表示面积,23S x x =+主,2S x x =+左,则S =俯( )A .243x x ++B .232x x ++C .221x x ++D .224x x +【答案】A【解析】【分析】 直接利用已知视图的边长结合其面积得出另一边长,即可得出俯视图的边长进而得出答案.【详解】解:∵S 主23(3)=+=+x x x x ,S 左2(1)=+=+x x x x ,∴主视图的长3x =+,左视图的长1x =+,则俯视图的两边长分别为:3x +、1x +,S 俯2(3)(1)43=++=++x x x x ,故选:A .【点睛】此题主要考查了已知三视图求边长,正确得出俯视图的边长是解题关键.5.如图是某几何体的三视图及相关数据,则下面判断正确的是( )A .a >cB .b >cC .a 2+4b 2=c 2D .a 2+b 2=c 2【答案】D【解析】【分析】 由三视图可知该几何体是圆锥,圆锥的高是a ,母线长是c ,底面圆的半径是b ,刚好组成一个以c 为斜边的直角三角形,由勾股定理,可得解.【详解】由题意可知该几何体是圆锥,根据勾股定理得,a 2+b 2=c 2故选:D .【点睛】本题考查三视图和勾股定理,关键是由三视图判断出几何体是圆锥.6.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是( )A .从前面看到的形状图的面积为5B .从左面看到的形状图的面积为3C .从上面看到的形状图的面积为3D .三种视图的面积都是4【答案】B【解析】 A. 从正面看第一层是三个小正方形,第二层中间一个小正方形,主视图的面积是4,故AB. 从左边看第一层是两个小正方形,第二层左边一个小正方形,左视图的面积是3,故B 正确;C. 从上边看第一层有一个小正方形,第二层有三个小正方形,俯视图的面积是4,故C错误;D.左视图的面积是3,故D错误;故选B.点睛:本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图.7.如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是( )A.B.C.D.【答案】D【解析】【分析】找到从左面看到的图形即可.【详解】从左面上看是D项的图形.故选D.【点睛】本题考查三视图的知识,左视图是从物体左面看到的视图.8.如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A.B.C.D.【答案】C【分析】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得.【详解】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,所以其主视图为:故选C .【点睛】考查了三视图的知识,主视图是从物体的正面看得到的视图.9.如图是某几何体的三视图及相关数据,则该几何体的表面积是( )A .(822π+B .11πC .(922π+D .12π【答案】D【解析】【分析】 先根据几何体的三视图可得:该几何体由圆锥和圆柱组成,圆锥的底面直径=圆柱的底面直径=2,圆锥的母线长为3,圆柱的高=4,然后根据圆锥的侧面积等于它展开后的扇形的面积,即S =12LR ,扇形的弧长为底面圆的周长,扇形的半径为圆锥的母线长;圆柱侧面积等于展开后矩形的面积,矩形的长为圆柱的高,宽为底面圆的周长;而该几何体的表面积=圆锥的侧面积+圆柱的侧面积+圆柱的底面积.【详解】根据几何体的三视图可得:该几何体由圆锥和圆柱组成,圆锥的底面直径=2,圆锥的母线长为3,∴圆锥的侧面积=12•2π•1•3=3π, 圆柱的侧面积=2π•1•4=8π, 圆柱的底面积=π•12=π,∴该几何体的表面积=3π+8π+π=12π.【点睛】本题考查了圆锥的侧面积的计算方法:圆锥的侧面积等于它展开后的扇形的面积,扇形的弧长为底面圆的周长,扇形的半径为圆锥的母线长;也考查了看三视图和求圆柱的侧面积的能力.10.图是由四个完全相同的正方体组成的几何体,这个几何体的左视图是 ( )A.B.C.D.【答案】C【解析】【分析】根据物体的左视图是从左边看到的图形判断即可.【详解】解:从左边看是竖着叠放的2个正方形,故选C.【点睛】本题主要考查了简单组合体的三视图,属于基础题型,掌握简单几何体的三视图是解题的关键.11.某个几何体的三视图如图所示,该几何体是( )A.B.C.D.【解析】【分析】根据几何体的三视图判断即可.【详解】由三视图可知:该几何体为圆锥.故选D.【点睛】考查了由三视图判断几何体的知识,解题的关键是具有较强的空间想象能力,难度不大.12.如图是某兴趣社制作的模型,则它的俯视图是()A.B.C.D.【答案】B【解析】【分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:由两个长方形组成的矩形,且矩形的之间有纵向的线段隔开.故选B.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解答此题时要有一定的生活经验.13.如图所示的某零件左视图是()A.B.C.D.【答案】B【解析】【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看是一个矩形,其中间含一个圆,如图所示:故选:B.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看到的线画实线.14.如图的几何体由6个相同的小正方体搭成,它的主视图是()A.B.C.D.【答案】A【解析】【分析】根据从正面看得到的视图是主视图,可得答案.【详解】从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方形,故A符合题意,故选A.【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.15.如图所示几何体的左视图是()A.B.C.D.【答案】B【解析】【分析】根据左视图是从左边看得到的图形,可得答案.【详解】从左边看是:故选B.【点睛】本题考查了简单几何体的三视图,左视图是从物体的左面看得到的视图.16.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有()A.8 B.7 C.6 D.5【答案】B【解析】【分析】易得这个几何体共有2层,由俯视图可得第一层小正方体的个数,由主视图可得第二层小正方体的最多个数,相加即可.【详解】解:由俯视图易得最底层有4个小正方体,第二层最多有3个小正方体,那么搭成这个几+=个.何体的小正方体最多为437故选:B【点睛】考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.17.如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A.俯视图B.主视图C.俯视图和左视图D.主视图和俯视图【答案】A【解析】画出三视图,由此可知俯视图既是轴对称图形又是中心对称图形,故选A.18.下列水平放置的几何体中,俯视图是矩形的为()A.B. C.D.【答案】B【解析】【分析】俯视图是从物体上面看,所得到的图形.【详解】A.圆柱俯视图是圆,故此选项错误;B.长方体俯视图是矩形,故此选项正确;C.三棱柱俯视图是三角形,故此选项错误;D.圆锥俯视图是圆,故此选项错误;故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.19.如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.【答案】A【解析】【分析】主视图:从物体正面观察所得到的图形,由此观察即可得出答案.【详解】从物体正面观察可得,左边第一列有2个小正方体,第二列有1个小正方体.故答案为:A.【点睛】本题考查三视图的知识,主视图是从物体的正面看得到的视图.20.如图是某个几何体的三视图,该几何体是()A.长方体B.圆锥C.圆柱D.三棱柱【答案】D【解析】【分析】根据三视图看到的图形的形状和大小,确定几何体的底面,侧面,从而得出这个几何体的名称.【详解】俯视图是三角形的,因此这个几何体的上面、下面是三角形的,主视图和左视图是长方形的,且左视图的长方形的宽较窄,因此判断这个几何体是三棱柱,故选:D.【点睛】考查简单几何体的三视图,画三视图注意“长对正,宽相等,高平齐”的原则,三视图实际上就是从三个方向的正投影所得到的图形.。

初中数学投影与视图难题汇编及答案解析

初中数学投影与视图难题汇编及答案解析

初中数学投影与视图难题汇编及答案解析一、选择题1.如图是某个几何体的三视图,该几何体是()A.长方体B.圆锥C.圆柱D.三棱柱【答案】D【解析】【分析】根据三视图看到的图形的形状和大小,确定几何体的底面,侧面,从而得出这个几何体的名称.【详解】俯视图是三角形的,因此这个几何体的上面、下面是三角形的,主视图和左视图是长方形的,且左视图的长方形的宽较窄,因此判断这个几何体是三棱柱,故选:D.【点睛】考查简单几何体的三视图,画三视图注意“长对正,宽相等,高平齐”的原则,三视图实际上就是从三个方向的正投影所得到的图形.2.如果一个空间几何体的主视图和左视图都是边长为4的正三角形,俯视图是圆且中间有一点,那么这个几何体的表面积是()A.8πB.12πC.3D.8【答案】B【解析】【分析】【详解】解:由图片中的三视图可以看出这个几何体应该是圆锥,且其底面圆半径为1,母线长为2,因此它的表面积=π×2×4+π×22=12π.故选B.考点:1.由三视图判断几何体;2.圆锥的计算.3.如图是某几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.长方体D.正方体【答案】A【解析】【分析】根据几何体的三视图,对各个选项进行分析,用排除法得到答案.【详解】根据俯视图是三角形,长方体和正方体以及三棱锥不符合要求,B、C、D错误,根据几何体的三视图,三棱柱符合要求,故选A.【点睛】本题考查的是几何体的三视图,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键.4.某几何体的三视图如图所示,则该几何体的体积为()A.3 B.3C.2D.2【答案】C【解析】【分析】依据三视图中的数据,即可得到该三棱柱的底面积以及高,进而得出该几何体的体积.【详解】解:由图可得,该三棱柱的底面积为1222,高为3,∴该几何体的体积为23=2,故选:C.【点睛】本题主要考查了由三视图判断几何体,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.5.六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A.B.C.D.【答案】B【解析】分析:俯视图有3列,从左到右正方形个数分别是2,1,2,并且第一行有三个正方形.详解:俯视图从左到右分别是2,1,2个正方形,并且第一行有三个正方形.故选B.点睛:本题考查了简单组合体的三视图,培养学生的思考能力和对几何体三种视图的空间想象能力.6.如图,由6个小正方体搭建而成的几何体的俯视图是()A.B.C.D.【答案】C【解析】【分析】根据三视图的概念,俯视图是从物体的上面向下看到的,因此可知其像是一个十字架.【详解】解:根据三视图的概念,俯视图是【点睛】考点:三视图.7.一个几何体的三视图如图所示,则这个几何体的表面积是( )A .25cmB .28cmC .29cmD .210cm【答案】D【解析】【分析】 由题意推知几何体为长方体,长、宽、高分别为1cm 、1cm 、2cm ,根据长方体的表面积公式即可求其表面积.【详解】由题意推知几何体是长方体,长、宽、高分别1cm 、1cm 、2cm ,所以其面积为:()()2211121210cm⨯⨯+⨯+⨯=,故选D .【点睛】本题考查了由三视图还原几何体、长方体的表面积,熟练掌握常见几何体的三视图是解题的关键.8.如图是某几何体的三视图及相关数据,则下面判断正确的是( )A .a >cB .b >cC .a 2+4b 2=c 2D .a 2+b 2=c 2【答案】D【解析】【分析】 由三视图可知该几何体是圆锥,圆锥的高是a ,母线长是c ,底面圆的半径是b ,刚好组成一个以c 为斜边的直角三角形,由勾股定理,可得解.由题意可知该几何体是圆锥,根据勾股定理得,a2+b2=c2故选:D.【点睛】本题考查三视图和勾股定理,关键是由三视图判断出几何体是圆锥.9.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12π【答案】D【解析】【分析】根据三视图知该几何体是一个半径为2、高为4的圆柱体的纵向一半,据此求解可得.【详解】该几何体的表面积为2×12•π•22+4×4+12×2π•2×4=12π+16,故选D.【点睛】本题主要考查由三视图判断几何体,解题的关键是根据三视图得出几何体的形状及圆柱体的有关计算.10.图1是数学家皮亚特•海恩(Piet Hein)发明的索玛立方块,它由四个及四个以内大小相同的立方体以面相连接构成的不规则形状组件组成.图2不可能是下面哪个组件的视图()A.B.C.D.【答案】C【解析】依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可.【详解】A、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;B、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形;C、主视图左往右2列正方形的个数均依次为1,1,不符合所给图形;D、主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形.故选C.【点睛】考查由视图判断几何体;用到的知识点为:主视图,左视图分别是从正面看及从左面看得到的图形.11.某个几何体的三视图如图所示,该几何体是( )A.B.C.D.【答案】D【解析】【分析】根据几何体的三视图判断即可.【详解】由三视图可知:该几何体为圆锥.故选D.【点睛】考查了由三视图判断几何体的知识,解题的关键是具有较强的空间想象能力,难度不大.12.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A.B.C.D.【答案】D【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是一个圆形,圆形内部是一个虚线的正方形.故选:D.【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.13.如图是一个大正方体切去一个小正方体形成的几何体,它的左视图是( )A.B.C.D.【答案】B【解析】【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中【详解】从几何体的左边看可得到一个正方形,正方形的右上角处有一个小正方形,故选B.【点睛】本题考查了三视图的知识,掌握主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图是解题的关键.14.如图所示的几何体,它的左视图是()A.B.C.D.【答案】D【解析】分析:根据从左边看得到的图形是左视图,可得答案.详解:从左边看是等长的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选D.点睛:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.15.发展工业是强国之梦的重要举措,如图所示零件的左视图是()A.B.C.D.【答案】D【解析】【分析】根据从左边看得到的图形是左视图,可得答案.【详解】如图所示零件的左视图是.故选D.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看到的线画实线.16.如图,某工厂加工一批无底帐篷,设计者给出了帐篷的三视图(图中尺寸单位:m ).根据三视图可以得出每顶帐篷的表面积为( )A .6πm 2B .9πm 2C .12πm 2D .18πm 2【答案】B【解析】【分析】 根据三视图得到每顶帐篷由圆锥的侧面和圆柱的侧面组成,且圆锥的母线长为2m ,底面圆的半径为1.5m ,圆柱的高为2m ,由于圆锥的侧面展开图为一扇形,圆柱的侧面展开图为矩形,则根据扇形面积公式和矩形面积公式分别计算,然后求它们的和【详解】根据三视图得到每顶帐篷由圆锥的侧面和圆柱的侧面组成,且圆锥的母线长为2m ,底面圆的半径为1.5m ,圆柱的高为2m ,所以圆锥的侧面积=12π 1.522n n n =3π2m 圆柱的侧面积=2π 1.52n n =6π2m 所以每顶帐篷的表面积=3π+6π=9π2m故正确答案为B【点睛】此题考查了圆锥的计算:圆锥的侧面展开图是一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,也考查了三视图17.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为( )A .60πB .70πC .90πD .160π【答案】B【解析】 试题分析:由几何体的三视图得,几何体是高为10,外径为8.内径为6的圆筒,∴该几何体的体积为()22431070ππ-⋅=.故选B.考点:由三视图求体积.18.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm【答案】C【解析】【分析】 根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm ,高是3cm .所以该几何体的侧面积为2π×1×3=6π(cm 2).故选C .【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.19.由6个相同的立方体搭成的几何体如图所示,则它的从正面看到的图形是( )A .B .C .D .【答案】C【解析】【分析】 观察立体图形的各个面,与选项中的图形相比较即可得到答案.【详解】观察立体图形的各个面,与选项中的图形相比较即可得到答案,由图像能够看到的图形是,故C选项为正确答案.【点睛】此题考查了从不同方向观察物体和几何体,有良好的空间想象力和抽象思维能力是解决本题的关键.20.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是()A.B.C.D.【答案】A【解析】解:将矩形木框立起与地面垂直放置时,形成B选项的影子;将矩形木框与地面平行放置时,形成C选项影子;将木框倾斜放置形成D选项影子;根据同一时刻物高与影长成比例,又因矩形对边相等,因此投影不可能是A选项中的梯形,因为梯形两底不相等.故选A.。

中考数学-投影与视图(解析版)

中考数学-投影与视图(解析版)

专题29投影与视图知识点一:与投影有关的基本概念1.投影:用光线照射物体,在某个平面上得到的影子叫做物体的投影。

2.平行投影:由平行光线形成的投影是平行投影。

3.中心投影:由同一点发出的光线形成的投影叫做中心投影。

4.正投影:投影线垂直于投影面产生的投影叫做正投影。

知识点二:与视图有关的基本概念1.视图:从某一方向观察一个物体时,所看到的平面图形叫做物体的一个视图。

视图可以看作物体在某一方向光线下的正投影。

2.主视图、俯视图、左视图(1)对一个物体在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图;(2)在水平面内得到的由上向下观察物体的视图,叫做俯视图;(3)在侧面内得到的由左向右观察物体的视图,叫做左视图。

主视图与俯视图的长对正;主视图与左视图的高平齐;左视图与俯视图的宽相等。

知识点三:视图知识的应用1.通过三视图制作立体模型的实践活动,体验平面图形向立体图形转化的过程,体会三视图表示立体图形的作用,进一步感受立体图形与平面图形之间的联系。

2.由三视图判断几何体形状主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.本章内容要求学生经历实践探索,了解投影、投影面、平行投影和中心投影的概念。

通过下面知识导图加深对本章内容的了解。

【例题1】一位小朋友拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上的影子不可能是()A B C D【答案】B.【解析】本题主要考查对平行投影的理解和掌握,能熟练地观察图形得出正确结论是解此题的关键.根据看等边三角形木框的方向即可得出答案.竖直向下看可得到线段,沿与平面平行的方向看可得到C,延与平面不平行的方向看可得到D,不论如何看都得不到一点.【例题2】(2020广元)如图所示的几何体是由5个相同的小正方体组成,其主视图为()A. B. C. D.【答案】D【解析】根据从正面看得到的图形是主视图,可得答案.从正面看第一层是一个小正方形,第二层是三个小正方形,∴主视图为:【点拨】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.【例题3】(2020湖南岳阳)如图,由4个相同正方体组成的几何体,它的左视图是()A. B.C. D.【答案】A【解析】根据左视图是从左面看得到的图形,结合所给图形以及选项进行求解即可.观察图形,从左边看得到两个叠在一起的正方形,如下图所示:【点拨】本题考查了简单几何体的三视图,解题的关键是掌握左视图的观察位置.【例题4】(2020苏州)如图,一个几何体由5个相同的小正方体搭成,该几何体的俯视图是()A. B. C. D.【答案】C【解析】根据组合体的俯视图是从上向下看的图形,即可得到答案.组合体从上往下看是横着放的三个正方形.【点拨】本题主要考查组合体的三视图,熟练掌握三视图的概念,是解题的关键.《投影与视图》单元精品检测试卷本套试卷满分120分,答题时间90分钟一、选择题(每小题3分,共30分)1.(2020成都)如图所示的几何体是由4个大小相同的小立方块搭成,其左视图是()A. B. C. D.【答案】D【解析】根据左视图的定义“从主视图的左边往右边看得到的视图就是左视图”进一步分析即可得到答案.【详解】从主视图的左边往右边看得到的视图为:【点拨】本题考查了左视图的识别,熟练掌握相关方法是解题关键.2.(2020山东济宁)已知某几何体的三视图(单位:cm)如图所示,则该几何体的侧面积等于()A.12πcm2B.15πcm2C.24πcm2D.30πcm2【答案】B【解析】由三视图可知这个几何体是圆锥,高是4cm,底面半径是5=(cm),∴侧面积=π×3×5=15π(cm2),故选B.3.(2020山东菏泽)一个几何体由大小相同的小立方块搭成,它的俯视图如图所示,其中小正方形中的数字表示在该位置小立方块的个数,则该几何体的主视图为()A. B. C. D.【答案】A【解析】从正面看,注意“长对正,宽相等、高平齐”,根据所放置的小立方体的个数判断出主视图图形即可.从正面看所得到的图形为A选项中的图形.【点拨】考查几何体的三视图的知识,从正面看的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.掌握以上知识是解题的关键.4.(2020哈尔滨)五个大小相同的正方体塔成的几何体如图所示,其左视图是()A. B. C. D.【答案】C【解析】根据从左边看得到的图形是左视图,可得答案.从左边看第一层有两个小正方形,第二层右边有一个小正方形,【点拨】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.5.(2020河南)如下摆放的几何体中,主视图与左视图有可能不同的是()A. B.C. D.【答案】D【解析】分别确定每个几何体的主视图和左视图即可作出判断.A.圆柱的主视图和左视图都是长方形,故此选项不符合题意;B.圆锥的主视图和左视图都是三角形,故此选项不符合题意;C.球的主视图和左视图都是圆,故此选项不符合题意;D.长方体的主视图是长方形,左视图可能是正方形,故此选项符合题意,【点拨】本题考查了简单几何体的三视图,熟练掌握确定三视图的方法是解答的关键.6.(2020甘肃武威)下列几何体中,其俯视图与主视图完全相同的是()A. B. C. D.【答案】C【解析】俯视图是指从上面往下看,主视图是指从前面往后面看,根据定义逐一分析即可求解.选项A:俯视图是圆,主视图是三角形,故选项A错误;选项B:俯视图是圆,主视图是长方形,故选项B错误;选项C:俯视图是正方形,主视图是正方形,故选项C正确;选项D:俯视图是三角形,主视图是长方形,故选项D错误.【点拨】本题考查了视图,主视图是指从前面往后面看,俯视图是指从上面往下看,左视图是指从左边往右边看,熟练三视图的概念即可求解.7.(2020福建)如图所示的六角螺母,其俯视图是()A. B. C. D.【答案】B【解析】根据图示确定几何体的三视图即可得到答案.由几何体可知,该几何体的三视图依次为.主视图为:左视图为:俯视图为:【点拨】此题考查简单几何体的三视图,掌握三视图的视图方位及画法是解题的关键.8.(2020新疆兵团)如图所示,该几何体的俯视图是()A. B. C. D.【答案】C【解析】根据俯视图是从上边看的到的视图,可得答案.从上边可以看到4列,每列都是一个小正方形,故C符合题意;【点拨】本题考查了简单组合体的三视图,从上边看的到的视图是俯视图.掌握俯视图的含义是解题的关键.9.(2020贵州黔东南)桌上摆着一个由若干个相同的小正方体组成的几何体,其主视图和左视图如图所示,则组成这个几何体的小正方体的个数最多有()A.12个B.8个C.14个D.13个【答案】D【解析】易得此几何体有三行,三列,判断出各行各列最多有几个正方体组成即可.底层正方体最多有9个正方体,第二层最多有4个正方体,所以组成这个几何体的小正方体的个数最多有13个.【点拨】本题考查了由三视图判断几何体的知识,解决本题的关键是利用“主视图疯狂盖,左视图拆违章”找到所需正方体的个数.10.(2020贵州黔西南)如图,由6个相同的小正方体组合成一个立体图形,它的俯视图为()A. B. C. D.【答案】D【解析】找到从上面看所得到的图形即可.解:从上面看可得四个并排的正方形,如图所示:【点拨】本题考查了三视图的知识,.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.二、填空题(每空3分,共30分)11.三棱柱的三视图如图所示,已知△EFG中,EF=8cm,EG=12cm,∠EFG=45°.则AB的长为cm.【答案】4.【解析】根据三视图的对应情况可得出,△EFG中FG上的高即为AB的长,进而求出即可.过点E作EQ⊥FG于点Q,由题意可得出:EQ=AB,∵EF=8cm,∠EFG=45°,∴EQ=AB=×8=4(cm)12.如图所示,一个空间几何体的主视图和左视图都是边长为l的正三角形,俯视图是一个圆及圆心,那么这个几何体的侧面积是.【答案】见解析。

中考数学专题复习之视图与投影 练习题及答案

中考数学专题复习之视图与投影 练习题及答案

视图与投影A级基础题1.下列结论正确的是()①物体在阳光照射下,影子的方向是相同的;②物体在任何光线照射下,影子的方向都是相同的;③物体在路灯照射下,影子的方向与路灯的位置有关;④物体在光线照射下,影子的长短仅与物体的长短有关.A.1个B.2个C.3个D.4个2.(2012年四川资阳)如图X6-2-1是一个正方体被截去一角后得到的几何体,它的俯视图是()图X6-2-13.(2012年江苏宿迁)如图X6-2-2是一个用相同的小立方体搭成的几何体的三视图,则组成这个几何体的小立方体的个数是()图X6-2-2A.2个B.3个C.4个D.5个4.(2012年福建厦门)如图X6-2-3是一个立体图形的三视图,则这个立体图形是()图X6-2-3A.圆锥B.球C.圆柱D.三棱锥5.(2012年云南)如图X6-2-4是由6个相同的小正方体搭成的一个几何体,则它的俯视图是()图X6-2-46.李刚同学拿一个矩形木框在阳光下摆弄,矩形木框在地面上形成的投影不可能的是()7.(2011年浙江温州)如图X6-2-5所示的物体是由两个紧靠在一起的圆柱体组成,它的主视图是()图X6-2-58.(2010年浙江杭州)若一个所有棱长相等的三棱柱,它的主视图和俯视图分别是正方形和正三角形,则左视图是()A.矩形B.正方形C.菱形D.正三角形9.一个几何体的三视图如图X6-2-6,那么这个几何体是()图X6-2-6图X6-2-710.(2012年衢州)长方体的主视图、俯视图如图X6-2-7所示,则其左视图面积为() A.3 B.4 C.12 D.1611.(2012年四川自贡)画出如图X6-2-8所示立体图的三视图.图X6-2-812.分别画出图X6-2-9中几何体的主视图、左视图和俯视图.图X6-2-9B级中等题13.关于盲区的说法正确的有()①我们把视线看不到的地方称为盲区;②我们上山与下山时视野盲区是相同的;③我们坐车向前行驶,有时会发现一些高大的建筑物会被比它矮的建筑物挡住;④人们常说“站得高,看得远”,说明在高处视野盲区要小,视野范围大.A.1个B.2个C.3个D.4个14.若干桶方便面摆放在桌子上,如图X6-2-10所示是它的三视图,则这一堆方便面共有()图X6-2-10 A.6桶B.7桶C.8桶D.9桶15.(2012年黑龙江大庆)用八个同样大小的小立方体粘成一个大立方体如图X6-2-11,得到的几何体的三视图如图X6-2-12.若小明从八个小立方体中取走若干个,剩余的小立方体保持原位置不动,并使得到的新几何体的三视图仍是图X6-2-12,则他取走的小立方体最多可以是________个.图X6-2-11图X6-2-12C级拔尖题16.(2011年山东东营)如图X6-2-13,观察由棱长为1的小立方体摆成的图形,寻找规律:如图(1)中:共有1个小立方体,其中1个看得见,0个看不见;如图(2)中:共有8个小立方体,其中7个看得见,1个看不见;如图(3)中:共有27个小立方体,其中19个看得见,8个看不见;…,则第(6)个图中,看得见的小立方体有________个.图X6-2-13 17.如图X6-2-14,一段街道的两边沿所在直线分别为AB,PQ,并且AB∥PQ,建筑物的一端DE所在的直线MN⊥AB于点M,交PQ于点N,小亮从胜利街的A处,沿着AB方向前进,小明一直站在点P的位置等待小亮.(1)请你画出小亮恰好能看见小明的视线,以及此时小亮所在的位置(用点C标出);(2)已知MN=30 m,MD=12 m,PN=36 m,求(1)中的点C到胜利街口的距离.图X6-2-14 视图与投影1.B 2.A 3.C 4.A 5.A 6.B7.A8.A9.A10.A11.解:如图D70.图D70 12.解:如图D71.图D71 13.C14.B15.2个16.9117.解:(1)如图D72,CP为视线,点C为所求的位置.图D72 (2)∵AB∥PQ,MN⊥AB于点M,∴∠CMD=∠PND=90°.又∵∠CDM=∠PDN,∴△CDM∽△PDN.∴CM∶PN=MD∶ND .∵MN=30 m,MD=12 m,∴ND=18 m.∴CM∶36=12∶18.∴CM=24(m).∴点C到胜利街口的距离CM为24 m.。

中考数学热点题型专练:投影与视图

中考数学热点题型专练:投影与视图

精品基础教育教学资料,仅供参考,需要可下载使用!中考数学热点题型专练:热点18 投影与视图【命题趋势】投影与视图这部分内容是一个小的考点,必考内容之一,一般为一个选择题,分值3—4分,一般解答题很少考到。

可能很多同学会忽视这部分内容,感觉投影与视图又简单,考的又少,所以在复习时往往会忽略这部分内容,这是严重错误的想法,就因为它考的不多,又简单,所以我们才应该认真对待这部分内容,拿好拿稳这几分。

【满分技巧】一、整体把握知识结构二.重点知识1.两种投影的概念与性质2.三种视图:有关视图,一般有两种类型的问题:A.由物质到视图,这种类型的问题比较简单;B.由视图想象物体的样子,这个对空间想象能力要求很高,一般比较难;这两种类型的问题,一般考查方式都是以小正方体的堆积为载体,进行考查.【限时检测】(建议用时:30分钟)一、选择题1.下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是()A.B.C.D.【答案】B【解析】A、左视图第一层两个小正方形,俯视图第一层一个小正方形,故A不符合题意;B、左视图和俯视图相同,故B符合题意;C、左视图第一层两个小正方形,俯视图第一层一个小正方形,故C不符合题意;D、左视图是一列两个小正方形,俯视图一层三个小正方形,故D不符合题意;故选:B.2.如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点B出发,沿表面爬到AC的中点D处,则最短路线长为()A.3B.C.3D.3【答案】D【解析】如图将圆锥侧面展开,得到扇形ABB′,则线段BF为所求的最短路程.设∠BAB′=n°.∠=4π,∠n=120即∠BAB′=120°.∠E为弧BB′中点,∠∠AFB=90°,∠BAF=60°,∠BF=AB•sin∠BAF=6×=3,∠最短路线长为3.故选:D.3.一个几何体的三视图如图所示,则这个几何体的表面积是()A.5cm2B.8cm2C.9cm2D.10cm2【答案】D【解析】由题意推知几何体是长方体,长、宽、高分别1cm、1cm、2cm,所以其面积为:2×(1×1+1×2+1×2)=10(cm2).故选:D.4.如图是由10个同样大小的小正方体摆成的几何体.将小正方体∠移走后,则关于新几何体的三视图描述正确的是()A.俯视图不变,左视图不变B.主视图改变,左视图改变C.俯视图不变,主视图不变D.主视图改变,俯视图改变【答案】A【解析】将正方体∠移走后,新几何体的三视图与原几何体的三视图相比,俯视图和左视图没有发生改变;故选:A.5.如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.主视图、左视图、俯视图【答案】A【解析】本题考查了三视图的判断,三视图没有发生变化的是主视图和左视图,发生变化的是俯视图,故选A.6.如图,是由两个正方体组成的几何体,则该几何体的俯视图为【答案】D【解析】解析本题考查三视图,俯视图为从上往下看,所以小正方形应在大正方形的右上角,故选D7.如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是()A.B.C.D.【答案】B【解析】从左面看易得第一层有2个正方形,第二层左边有1个正方形,如图所示:故选:B.8.如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()A.B.C.D.【答案】B【解析】从左面看可得到从左到右分别是3,1个正方形.故选:B.9.下列几何体中,主视图是三角形的是()A. B. C. D.【答案】C【解析】A、正方体的主视图是正方形,故此选项错误;B、圆柱的主视图是长方形,故此选项错误;C、圆锥的主视图是三角形,故此选项正确;D、六棱柱的主视图是长方形,中间还有两条竖线,故此选项错误;故选:C.10.已知一个组合体是由几个相同的正方体叠合在一起组成,该组合体的主视图与俯视图如图所示,则该组合体中正方体的个数最多是()A.10B.9C.8D.7【答案】B【解析】从俯视图可得最底层有5个小正方体,由主视图可得上面一层是2个,3个或4个小正方体,则组成这个几何体的小正方体的个数是7个或8个或9个,组成这个几何体的小正方体的个数最多是9个.故选:B.11.如图是一个水平放置的全封闭物体,则它的俯视图是()A.B.C.D.【答案】A【解析】从上面观察可得到:.故选:C.12.如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.【答案】A【解析】从正面看易得第一层有2个正方形,第二层左边有一个正方形,如图所示:故选:A.13.下列几何体中,俯视图不是圆的是()A.四面体B.圆锥C.球D.圆柱【答案】A【解析】A、俯视图是三角形,故此选项正确;B、俯视图是圆,故此选项错误;C、俯视图是圆,故此选项错误;D、俯视图是圆,故此选项错误;故选:A.14.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A.B.C.D.【答案】A【解析】分析根据俯视图即从物体的上面观察得得到的视图,进而得出答案A故选:A.15.)如图为正方体的一种平面展开图,各面都标有数字,则数字为﹣2的面与其对面上的数字之积是()A.﹣12B.0C.﹣8D.﹣10【答案】A【解析】分析根据正方体的平面展开图的特征知,其相对面的两个正方形之间一定相隔一个正方形,所以数字为﹣2的面的对面上的数字是6,其积为﹣12.故选:A16.如图∠是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图∠.关于平移前后几何体的三视图,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同【答案】A【解析】图∠的三视图为:图∠的三视图为:故选:A.17.如图所示的几何体是由几个大小相同的小正方体搭成的,其俯视图是()A.B.C.D.【答案】C【解析】从上面看,得到的视图是:,故选:C.18.如图,圆柱底面圆半径为2,高为2,则圆柱的左视图是()A.平行四边形B.正方形C.矩形D.圆【答案】C【解析】圆柱底面圆半径为2,高为2,∴底面直径为4,∴圆柱的左视图是一个长为4,宽为2的长方形,故选:C.19.某同学家买了一个外形非常接近球的西瓜,该同学将西瓜均匀切成了8块,并将其中一块(经抽象后)按如图所示的方式放在自已正前方的水果盘中,则这块西瓜的三视图是()A.B.C.D.【答案】B【解析】分析主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;认真观察实物图,按照三视图的要求画图即可,注意看得到的棱长用实线表示,看不到的棱长用虚线的表示.观察图形可知,这块西瓜的三视图是.故选:B.20.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【答案】B【解析】左视图有3列,每列小正方形数目分别为2,1,1.故选:B.21.如图是一个几何体的三视图,则这个几何体是()A.三棱锥B.圆锥C.三棱柱D.圆柱【答案】B【解析】分析主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.由于主视图和左视图为三角形可得此几何体为锥体,由俯视图为圆形可得为圆锥.故选:B.二、填空题22.一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有种.【答案】10【解析】设俯视图有9个位置分别为:由主视图和左视图知:∠第1个位置一定是4,第6个位置一定是3;∠一定有2个2,其余有5个1;∠最后一行至少有一个2,当中一列至少有一个2;根据2的排列不同,这个几何体的搭法共有10种:如下图所示:故答案为:10.23.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)【答案】∠∠【解析】本题考查对三视图的认识.∠长方体的主视图,俯视图,左视图均为矩形;∠圆柱的主视图,左视图均为矩形,俯视图为圆;∠圆锥的主视图和左视图为三角形,俯视图为圆.故答案为∠∠24.已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为 . 【答案】(18+2)cm 2【解析】该几何体是一个三棱柱,底面等边三角形边长为2cm ,高为cm ,三棱柱的高为3,所以,其表面积为3×2×3+2×=18+2(cm 2).故答案为(18+2)cm 2第11题图③圆锥②圆柱①长方体25.如图是一个多面体的表面展开图,如果面F在前面,从左面看是面B,那么从上面看是面.(填字母)【答案】E【解析】由题意知,底面是C,左侧面是B,前面是F,后面是A,右侧面是D,上面是E,故答案为:E.。

2011中考数学真题解析69 三视图(含答案)

考点:简单几何体的三视图。
分析:拿掉若干个小立方块后保证几何体不倒掉,且三个视图仍都为2×2的正方形,所以最底下一层必须有四个小立方块,这样能保证俯视图仍为2×2的正方形,为保证正视图与左视图也为2×2的正方形,所以上面一层必须保留交错的两个立方块,即可知最多能拿掉小立方块的个数.
解答:解:根据题意,拿掉若干个小立方块后,三个视图仍都为2×2的正方形,所以最多能拿掉小立方块的个数为2个.
A. B.
C. D.
考点:简单组合体的三视图。
专题:几何图形问题。
分析:根据俯视图是从上面看到的图形判定则可.
解答:解:从上面看,是中间一个正方形,两边两个矩形.
故选A.
点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.
21.一个几何体的三视图如下:其中主视图和左视图都是腰长为4,底边为2的等腰三角形,则这个几何体侧面展开图的面积为( )
故选A.
点评:此题主要考查了利用三视图求长方体的表面积,得出长方体各部分的边长是解决问题的关键.
16.(2011天津,7,3分)如图是一支架(一种小零件),支架的两个台阶的高度和宽度都是同一长度,则它的三视图是( )
A、 B、 C、 D、
考点:简单组合体的三视图。
专题:作图题。
分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.
解答:A
点评:解决此类问题要具备空间想象能力,根据主视图与俯试图的形状来想象出几何体的组合方式,确定该物体的行数、列数和层数,确定出每层可能的最多小正方体的个数后即可判断.
15.(2011四川凉山,11,4分)一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的表面积为()
A. B. C. D.

中考数学考点33视图与投影(解析版)

视图与投影【命题趋势】中考视图与投影仍是考查重点内容.尤其视图与投影与实际生活有关系的应用问题。

在中考的难度不大.分数约占3-6分左右。

【中考考查重点】一、投影二、三视图的判断三、立体图形的展开与折叠考点:投影1.投影:在光线的照射下.空间中的物体落在平面内的影子能够反映出该物体的形状和大小.这种现象叫做投影现象.影子所在的平面称为投影面.2.平行投影、中心投影、正投影(1)中心投影:在点光源下形成的物体的投影叫做中心投影.点光源叫做投影中心.【注意】灯光下的影子为中心投影.影子在物体背对光的一侧.等高的物体垂直于地面放置时.在灯光下.离点光源近的物体的影子短.离点光源远的物体的影子长.(2)平行投影:投射线相互平行的投影称为平行投影.【注意】阳光下的影子为平行投影.在平行投影下.同一时刻两物体的影子在同一方向上.并且物高与影长成正比.(3)正投影:投射线与投影面垂直时的平行投影.叫做正投影.1.(2021•淮南模拟)下列现象中.属于中心投影的是()A.白天旗杆的影子B.阳光下广告牌的影子C.舞台上演员的影子D.中午小明跑步的影子【答案】C【解答】解:A、白天旗杆的影子为平行投影.所以A选项不合题意;B、阳光下广告牌的影子为平行投影.所以B选项不合题意;C、舞台上演员的影子为中心投影.所以C选项符合题意;D、中午小明跑步的影子为平行投影.所以D选项不合题意.故选:C.2.(2020•南岸区模拟)如图.在直角坐标系中.点P(2.2)是一个光源.木杆AB两端的坐标分别为(0.1).(3.1).则木杆AB在x轴上的投影长为()A.3B.5C.6D.7【答案】C【解答】解:延长P A、PB分别交x轴于A′、B′.作PE⊥x轴于E.交AB于D.如图.∵P(2.2).A(0.1).B(3.1).∴PD=1.PE=2.AB=3.∵AB∥A′B′.∴△P AB∽△P A′B′.∴=.即=.∴A′B′=6.故选:C.3.(2020•青白江区模拟)如图.夜晚路灯下有一排同样高的旗杆.离路灯越近.旗杆的影子()A.越长B.越短C.一样长D.随时间变化而变化【答案】B【解答】解:由图易得AB<CD.那么离路灯越近.它的影子越短.故选:B.考点:视图1.视图:由于可以用视线代替投影线.所以物体的正投影通常也称为物体的视图.2.三视图:1)主视图:从正面看得到的视图叫做主视图.2)左视图:从左面看得到的视图叫做左视图.3)俯视图:从上面看得到的视图叫做俯视图.【注意】在三种视图中.主视图反映物体的长和高.左视图反映了物体的宽和高.俯视图反映了物体的长和宽.3.三视图的画法1)画三视图要注意三要素:主视图与俯视图长度相等;主视图与左视图高度相等;左视图与俯视图宽度相等.简记为“主俯长对正.主左高平齐.左俯宽相等”.2)注意实线与虚线的区别:能看到的线用实线.看不到的线用虚线.4.(2021秋•淮安期末)某物体的三视图如图所示.那么该物体形状可能是()A.圆柱B.球C.正方体D.长方体【答案】A【解答】解:根据三视图的知识.正视图以及左视图都为矩形.俯视图是一个圆.易判断该几何体是圆柱.故选:A.5.(2021秋•高州市校级期末)如图所示的几何体的左视图是()A.B.C.D.【答案】C【解答】解:根据左视图的定义可知.这个几何体的左视图是一个正方形.正方形的内部的右上角是一个小正方形.故选:C.6.(2022•本溪模拟)如图所示的移动台阶.它的左视图是()A.B.C.D.【答案】D【解答】解:从左面看.是一个矩形.矩形内部有两条横向的虚线.故选:D考点:几何体的展开与折叠1.常见几何体的展开图几何体立体图形表面展开图侧面展开图圆柱圆锥.正方体的展开图正方体有11种展开图.分为四类:第一类.中间四连方.两侧各有一个.共6种.如下图:第二类.中间三连方.两侧各有一、二个.共3种.如下图:第三类.中间二连方.两侧各有二个.只有1种.如图10;第四类.两排各有三个.也只有1种.如图11.7.(2021•宁波模拟)某几何体的三视图如图所示.则它的表面展开图是()A.B.C.D.【答案】D【解答】解:这个几何体是正三棱柱.表面展开图如下:.故选:D.8.下列图形中.不是正方体的展开图形的是()A.B.C.D.【答案】C【解答】解:正方体共有11种表面展开图.A、B、D能围成正方体;C不能.折叠后有两个面重合.不能折成正方体.故选:C.9.在图中剪去1个小正方形.使得到的图形经过折叠能够围成一个正方体.则要剪去的正方形对应的数字是()A.1B.2C.3D.4【答案】B【解答】解:由正方体的平面展开图得.要剪去的正方形对应的数字是2.、故选:B1.北京冬奥会的吉祥物是一只叫冰墩墩的熊猫.这次冰墩墩的3D设计.就是将熊猫拟人化.含义就是告诉全世界的人.中国是一个社会和谐.人们生活富裕的国家.如图是正方体的展开图.每个面内都写有汉字.折叠成立体图形后“冬”的对面是()A.奥B.会C.吉D.祥【答案】D【解答】解:∵正方体的平面展开图中.相对面的特点是之间一定相隔一个正方形.∴折叠成立体图形后“冬”的对面是“祥”.故选:D.2.(2020•安顺)下列四幅图中.能表示两棵树在同一时刻太阳光下的影子的图是()A.B.C.D.【答案】C【解答】解:A、两棵小树的影子的方向相反.不可能为同一时刻阳光下影子.所以A 选项错误;B、两棵小树的影子的方向相反.不可能为同一时刻阳光下影子.所以B选项错误;C、在同一时刻阳光下.树高与影子成正比.所以C选项正确.D、图中树高与影子成反比.而在同一时刻阳光下.树高与影子成正比.所以D选项错误;故选:C.3.(2017•贺州)小明拿一个等边三角形木框在太阳下玩耍.发现等边三角形木框在地面上的投影不可能是()A.B.C.D.【答案】B【解答】解:当等边三角形木框与阳光平行时.投影是A;当等边三角形木框与阳光有一定角度时.投影是C或D;投影不可能是B.故选:B.4.(2022•商城县一模)下列几何体的三视图中.俯视图与主视图一定一致的是()A.B.C.D.【答案】B【解答】解:长方体的俯视图与主视图都是矩形.但两个矩形的宽不一定相同.因此A 不符合题意;球的俯视图与主视图都是圆.因此B符合题意;圆锥的主视图是等腰三角形、俯视图都是带圆心的圆.因此选项C不符合题意;圆柱的主视图是矩形.俯视图是圆.因此D不符合题意;故选:B.5.(2022•黔东南州模拟)如图正三棱柱的左视图是()A.B.C.D.【答案】C【解答】解:从左边看.是一个矩形.故选:C.6.(2021•岳麓区校级二模)某几何体的三视图如图.则该几何体是()A.三棱柱B.长方体C.圆柱D.圆锥【答案】A【解答】解:∵几何体的主视图和左视图都是宽度相等的长方形.∴该几何体是一个柱体.又∵俯视图是一个三角形.∴该几何体是一个三棱柱.故选:A.7.(2021•吉林模拟)如图.小树AB在路灯O的照射下形成投影BC.若树高AB=2m.树影BC=3m.树与路灯的水平距离BP=4m.则路灯的高度OP为m.【答案】【解答】解:∵AB∥OP.∴△ABC∽△OPC.∴=.即=.∴OP=(m).故答案为.1.(2020•广西)下列几何体中.左视图为三角形的是()A.B.C.D.【答案】C【解答】解:A、从左边看是一个圆.故本选项不合题意;B、从左边看是一个正方形.故本选项不合题意;C、从左边看是一个三角形.故本选项符合题意;D、从左边看是一个矩形.故本选项不合题意;故选:C.2.(2021•攀枝花)如图是一个几何体的三视图.则这个几何体是()A.圆锥B.圆柱C.三棱柱D.三棱锥【答案】A【解答】解:由于俯视图为圆形可得为球、圆柱.圆锥.主视图和左视图为三角形可得此几何体为圆锥.故选:A.3.(2021•阿坝州)如图所示的几何体的左视图是()A.B.C.D.【答案】D【解答】解:从左面看.能看到上下两个小正方形.故选:D.4.(2021•兰州)如图.该几何体的主视图是()A.B.C.D.【答案】C【解答】解:从正面看.可得如下图形:故选:C.5.(2021•河南)如图是由8个相同的小正方体组成的几何体.其主视图是()A.B.C.D.【答案】A【解答】解:该几何体的主视图有三层.从上而下第一层主视图为一个正方形.第二层主视图为两个正方形.第三层主视图为三个正方形.且左边是对齐的.故选:A.6.(2021•随州)如图是由4个相同的小正方体构成的一个组合体.该组合体的三视图中完全相同的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.三个视图均相同【答案】A【解答】解:如图所示:故该组合体的三视图中完全相同的是主视图和左视图.故选:A.7.(2021•泰安)如图是由若干个同样大小的小正方体所搭几何体的俯视图.小正方形中的数字表示在该位置小正方体的个数.则这个几何体的左视图是()A.B.C.D.【答案】B【解答】解:从左边看从左到右第一列是两个小正方形.第二列有4个小正方形.第三列有3个小正方形.故选:B.1.(2021•紫金县校级二模)如图所示的几何体的左视图为()A.B.C.D.【答案】C【解答】解:从物体左面看.是一个正方形.正方形内部有一条纵向的虚线.故选:C.2.(2022•大渡口区模拟)下列四个几何体中.从正面看是三角形的是()A.B.C.D.【答案】B【解答】解:A.主视图为长方形.不符合题意;B.主视图为三角形.符合题意;C.主视图为长方形.不符合题意;D.主视图为长方形.不符合题意.故选:B.3.如图.一个几何体上半部为正四棱锥.下半部为立方体.且有一个面涂有颜色.下列图形中.是该几何体的表面展开图的是()A.B.C.D.【答案】C【解答】解:A.只有三个三角形.不是该几何体的表面展开图.故本选项不合题意;B.涂有颜色的面不能与三角形的面相邻.故本选项不合题意;C.是该几何体的表面展开图.故本选项符合题意;D.涂有颜色的面不能与三角形的面相邻.故本选项不合题意;故选:C.4.(2021•腾冲市模拟)如图是一个几何体的三视图.则这个几何体的侧面积是()A.48πB.57πC.24πD.33π【答案】C【解答】解:易得此几何体为圆锥.底面直径为6.母线长为8.所以圆锥的侧面积=πrl=8×3π=24π.故选:C5.(2019•望花区三模)如图.物体在灯泡发出的光照射下形成的影子是投影.(填“平行”或“中心”).【答案】中心【解答】解:由于光源是由一点发出的.因此是中心投影.故答案为:中心.6.(2020•槐荫区模拟)如图.已知路灯离地面的高度AB为4.8m.身高为1.6m的小明站在D处的影长为2m.那么此时小明离电线杆AB的距离BD为m.【答案】4【解答】解:∵DE∥AB.∴△CDE∽△CBA.∴=.即=.∴CB=6.∴BD=BC﹣CD=6﹣2=4(m).故答案为4.。

中考数学 投影与视图(含中考真题解析)

投影与视图☞解读考点☞2年中考1.(北海)一个几何体的三视图如图所示,则这个几何体是()A.圆柱 B.圆锥 C.球 D.以上都不正确【答案】A.【解析】试题分析:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得为圆柱体.故选A.考点:由三视图判断几何体.2.(南宁)如图是由四个大小相同的正方体组成的几何体,那么它的主视图是()A. B. C. D.【答案】B.考点:简单组合体的三视图.3.(柳州)如图是小李书桌上放的一本书,则这本书的俯视图是()A. B. C. D.【答案】A.【解析】试题分析:根据俯视图的概念可知,几何体的俯视图是A图形,故选A.考点:简单几何体的三视图.4.(桂林)下列四个物体的俯视图与右边给出视图一致的是()A.B.C.D.【答案】C.【解析】试题分析:几何体的俯视图为,故选C.考点:由三视图判断几何体.5.(梧州)如图是一个圆锥,下列平面图形既不是它的三视图,也不是它的侧面展开图的是()A.B.C.D.【答案】D.考点:1.几何体的展开图;2.简单几何体的三视图.6.(扬州)如图所示的物体的左视图为()A. B. C. D.【答案】A.【解析】试题分析:从左面看易得第一层有1个矩形,第二层最左边有一个正方形.故选A.考点:简单组合体的三视图.7.(攀枝花)如图所示的几何体为圆台,其俯视图正确的是()A.B.C.D.【答案】C.考点:简单几何体的三视图.8.(达州)一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到几何体的形状图是()A. B. C. D.【答案】D.【解析】试题分析:根据所给出的图形和数字可得:主视图有3列,每列小正方形数目分别为3,2,3,则符合题意的是D;故选D.考点:1.由三视图判断几何体;2.作图-三视图.9.(德阳)某商品的外包装盒的三视图如图所示,则这个包装盒的体积是()A.200πcm3 B.500πcm3 C.1000πcm3 D.2000πcm3【答案】B.考点:由三视图判断几何体.10.(南充)如图是某工厂要设计生产的正六棱柱形密封罐的立体图形,它的主视图是()A.B. C.D.【答案】A.【解析】试题分析:根据主视图的定义,可得它的主视图为:,故选A.考点:简单几何体的三视图.11.(襄阳)由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体的个数是()A.4 B.5 C.6 D.9【答案】A.考点:由三视图判断几何体.12.(齐齐哈尔)如图,由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是()A.5或6或7 B.6或7 C.6或7或8 D.7或8或9【答案】C.【解析】试题分析:根据几何体的左视图,可得这个几何体共有3层,从俯视图可以可以看出最底层的个数是4个,(1)当第一层有1个小正方体,第二层有1个小正方体时,组成这个几何体的小正方体的个数是:1+1+4=6(个);(2)当第一层有1个小正方体,第二层有2个小正方体时,或当第一层有2个小正方体,第二层有1个小正方体时,组成这个几何体的小正方体的个数是:1+2+4=7(个);(3)当第一层有2个小正方体,第二层有2个小正方体时,组成这个几何体的小正方体的个数是:2+2+4=8(个).综上,可得组成这个几何体的小正方体的个数是6或7或8.故选C.考点:由三视图判断几何体.13.(连云港)如图是一个几何体的三视图,其中主视图与左视图都是边长为4的等边三角形,则这个几何体的侧面展开图的面积为.【答案】8π.考点:1.由三视图判断几何体;2.几何体的展开图.14.(随州)如图是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积是cm3.【答案】24.【解析】试题分析:该几何体的主视图以及左视图都是相同的矩形,俯视图也为一个矩形,可确定这个几何体是一个长方体,依题意可求出该几何体的体积为3×2×4=24cm3.故答案为:24.考点:由三视图判断几何体.15.(牡丹江)由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是个.【答案】7.【解析】试题分析:根据题意得:,则搭成该几何体的小正方体最多是1+1+1+2+2=7(个).故答案为:7.考点:由三视图判断几何体.16.(西宁)写出一个在三视图中俯视图与主视图完全相同的几何体.【答案】球或正方体(答案不唯一).考点:1.简单几何体的三视图;2.开放型.17.(青岛)如图,在一次数学活动课上,张明用17个边长为1的小正方形搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个小立方体,王亮所搭几何体的表面积为.【答案】19,48.【解析】试题分析∵亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体,∴该长方体需要小立方体4×23=36个,∵张明用17个边长为1的小正方形搭成了一个几何体,∴王亮至少还需36﹣17=19个小立方体,表面积为:2×(9+7+8)=48,故答案为:19,48.考点:由三视图判断几何体.三、解答题18.(镇江)某兴趣小组开展课外活动.如图,A,B两地相距12米,小明从点A出发沿AB 方向匀速前进,2秒后到达点D,此时他(CD)在某一灯光下的影长为AD,继续按原速行走2秒到达点F,此时他在同一灯光下的影子仍落在其身后,并测得这个影长为1.2米,然后他将速度提高到原来的1.5倍,再行走2秒到达点H,此时他(GH)在同一灯光下的影长为BH(点C,E,G在一条直线上).(1)请在图中画出光源O点的位置,并画出他位于点F时在这个灯光下的影长FM(不写画法);(2)求小明原来的速度.【答案】(1)作图见试题解析;(2)1.5m/s.试题解析:(1)如图,(2)设小明原来的速度为xm/s,则CE=2xm,AM=AF﹣MF=(4x﹣1.2)m,EG=2×1.5x=3xm,BM=AB﹣AM=12﹣(4x﹣1.2)=13.2﹣4x,∵点C,E,G在一条直线上,CG∥AB,∴△OCE∽△OAM,△OEG∽△OMB,∴CE OEAM OM=,EG OEBM OM=,∴CE EGAM BM=,即234 1.213.24x xx x=--,解得x=1.5,经检验x=1.5为方程的解,∴小明原来的速度为1.5m/s.答:小明原来的速度为1.5m/s.考点:1.相似三角形的应用;2.中心投影.19.(兰州)如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米,依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.【答案】(1)平行;(2)7.考点:1.相似三角形的应用;2.平行投影.20.(宁德)图(1)是一个蒙古包的照片,这个蒙古包可以近似看成是圆锥和圆柱组成的几何体,如图(2)所示.(1)请画出这个几何体的俯视图;(2)图(3)是这个几何体的正面示意图,已知蒙古包的顶部离地面的高度EO1=6米,圆柱部分的高OO1=4米,底面圆的直径BC=8米,求∠EAO的度数(结果精确到0.1°).【答案】(1)答案见试题解析;(2)26.6°.(2)连接EO1,如图所示,∵EO1=6米,OO1=4米,∴EO=EO1﹣OO1=6﹣4=2米,∵AD=BC=8米,∴OA=OD=4米,在Rt△AOE中,tan∠EAO=2142EOOA==,则∠EAO≈26.6°.考点:1.圆锥的计算;2.圆柱的计算;3.作图-三视图.1.(绍兴)由5个相同的立方体搭成的几何体如图所示,则它的主视图是()A. B. C. D.【答案】B.考点:简单组合体的三视图.2.(吉林)用4个完全相同的小正方体组成如图所示的立方体图形,它的俯视图是()A.B.C.D.【答案】A【解析】试题分析:从上面看可得到一个有2个小正方形组成的长方形.故选A.考点:三视图3.(衡阳)左图所示的图形是由七个完全相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是()【答案】B.【解析】试卷分析:针对三视图的概念,把右图的三视图画出来对号入座即可知B选项不是这个立体图形的三视图.故选B.考点:简单几何体的三视图.4.(十堰)在下面的四个几何体中,左视图与主视图不相同的几何体是()A .B .C .D .正方体 长方体 球 圆锥【答案】B .考点:简单几何体的三视图.5.(宁夏)如图是一个几何体的三视图,则这个几何体的侧面积是( )A 2cmB .2cmC .26cm πD .23cm π 【答案】A . 【解析】试题分析:俯视图为圆的只有圆锥,圆柱,球,根据主视图和左视图都是三角形可得到此几何体为圆锥,那么侧面积=底面周长×母线长÷2.因此,∵半径为1cm ,高为3cm ,∴根据勾cm .∴侧面积=()2112r l 21cm 22ππ⋅⋅=⨯⨯.故选A .考点:1.由三视图判断几何体;2.圆锥的计算国3.勾股定理.6.(湖州) 如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是【答案】3.【解析】试题分析:从上面看三个正方形组成的矩形,矩形的面积为1×3=3.考点:简单组合体的三视图。

湖北省2011年中考数学 专题4图形的变换精品试题分类解析汇编

某某2011年中考数学试题分类解析汇编专题4:图形的变换一、选择题1.(某某某某3分)右图是某物体的直观图,它的俯视图是【答案】A 。

【考点】简单组合体的三视图。

【分析】找到从上面看得到的图形即可:圆柱的俯视图是圆,长方体的俯视图是长方形,所以该组合几何体的俯视图应是长方形内有一个圆.故选A 。

2.(某某某某3分)有如下图形:①函数1y x =+的图形;②函数1y x =的图像;③一段弧;④平行四边 形,其中一定是轴对称图形的有【答案】B 。

【考点】轴对称图形,一次函数的图象,反比例函数的图象,圆的认识,平行四边形的性质。

【分析】根据轴对称图形的概念,分析各图形的特征求解:①函数1y x =+的图象是一条直线,是轴对称图形;②函数1y x=的图象是双曲线,是轴对称图形;③圆弧是轴对称图形;④平行四边形不是轴对称图形,是中心对称图形。

故选B 。

3.(某某某某3分)如右下图所示的几何体的俯视图是【答案】C 。

【考点】简单组合体的三视图。

【分析】找到从上面看所得到的图形即可:从上面看易得一个矩形,且中间有两道实线,边上有两道虚线。

故选C。

4.(某某某某3分)下面几何体的主视图是【答案】C。

【考点】简单组合体的三视图。

从正面看易得第一层有3个正方形,第二层最左边有一个正方形。

故选C。

【分析】找到从正面看所得到的图形即可:5.(某某荆州3分)下列四个图案中,轴对称图形的个数是【答案】C。

【考点】轴对称图形。

【分析】根据轴对称图形的定义得出,图形沿一条直线对着,分成的两部分完全重合及是轴对称图形,分别判断得出即可:根据图象,以及轴对称图形的定义可得,第1,2,4个图形是轴对称图形,第3个是中心对称图形。

故选C。

6.(某某荆州3分)图①是一瓷砖的图案,用这种瓷砖铺设地面,图②铺成了一个2×2的近似正方形,其中完整菱形共有5个;若铺成3×3的近似正方形图案③,其中完整的菱形有13个;铺成4×4的近似正方形图案④,其中完整的菱形有25个;如此下去,可铺的近似正方形图案.当得到完整的菱形共181个时,n的值为成一个n nA.7B.8C.9D.10【答案】D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第37章 投影与视图 一、选择题 1. (2011浙江金华,2,3分)如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是( )

A.6 B.5 C.4 D.3 【答案】B 2. (2011湖北鄂州,12,3分)一个几何体的三视图如下:其中主视图都是腰长为4、底边为2的等腰三角形,则这个几何体的侧面展开图的面积为( ) A.2 B.12 C. 4 D.8

【答案】C 3. (2011安徽芜湖,3,4分)如图所示,下列几何体中主视图、左视图、俯视图都相同的 是( ).

【答案】C 4. (2011福建福州,3,4分)在下列几何体中,主视图、左视图与俯视图都是相同的圆,该几何体是 ( )

【答案】A

第12题图 4 2 2 4 左视图 右视图 俯视图

A B D C 5. (2011江苏扬州,5,3分)如图是由几块小立方块所搭成的几何体的俯视图,小正方体中的数字表示该位置小立方块的个数,则该几何体的主视图是 ( )

【答案】A 6. (2011山东德州2,3分)一个几何体的主视图、左视图、俯视图完全相同,它一定是 (A)圆柱 (B)圆锥 (C)球体 (D)长方体 【答案】C 7. (2011山东济宁,8,3分)如图,是有几个相同的小正方体搭成的几何体的三种视图, 则搭成这个几何体的小正方体的个数是( ) A. 3个 B. 4个 C. 5个 D. 6个

【答案】B 8. (2011山东日照,5,3分)如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为( )

【答案】C 9. (2011山东泰安,6 ,3分)下列几何体:

(第8题) 其中,左视图是平等四边形的有( ) A.4个 B.3个 C. 2个 D.1个` 【答案】B 10.(2011山东威海,10,3分)如图是由一些大小相同的小立方体组成的几何体的主视图和左视图, 则组成这个几何体的小立方体的个数不可能是( )

A.3个 B.4个 C. 5个 D.6个 【答案】D 11. (2011山东烟台,2,4分)从不同方向看一只茶壶,你认为是俯视效果图的是( )

【答案】A 12. (2011浙江杭州,8,3)如图是一个正六棱柱的主视图和左视图,则图中的a=( ) A.23 B.3 C.2 D.1

【答案】B 13. (2011宁波市,6,3分)如图所示的物体的府视图是

A B C D (第4题图)

【答案】D 14. (2011浙江衢州,1,3分)如下图,下列几何体的俯视图是右面所示图形的是( )

【答案】A 15. (2011浙江绍兴,4,4分)由5个相同的正方体搭成的几何体如图所示,则它的左视图是( ) A. B. C. D.

主视方向 【答案】D 16. (2011浙江台州,2,4分)下列四个几何体中,主视图是三角形的是( )

【答案】B 17. (2011浙江温州,3,4分)如图所示的物体由两个紧靠在一起的圆柱体组成,它的主视图是( )

【答案】A

主视方向 A. B. C. D. (第4题)

A. B. C. D. 18. (2011浙江义乌,4,3分)如图,下列水平放置的几何体中,主视图不是..长方形的是( )

【答案】B 19. (2011浙江省嘉兴,5,4分)两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是( ) (A)两个外离的圆 (B)两个外切的圆 (C)两个相交的圆 (D)两个内切的圆

【答案】D 20.(2011浙江丽水,2,3分)如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是( )

A.6 B.5 C.4 D.3 【答案】B 21. (2011江西,3,3分)将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是( ).

【答案】C 22. (2011甘肃兰州,6,4分)如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的主视图是

水平面主视方向(第5题)

A. B. C. D. A. B. C. D. 【答案】D 23. (2011湖南常德,10,3分)如图3,是由四个相同的小正方形组成的立体图形,它的左视图是( )

【答案】A 24. (2011江苏连云港,8,3分)如图,是由8个相同的小立方块搭成的几何体,它的三个视图都是2×2的正方形,若拿掉若干个小立方块后(几何体不倒掉...),其三个视图仍

都为2×2的正方形,则最多能拿掉小立方块的个数为( ) A.1 B.2 C.3 D.4

【答案】B 25. (2011江苏宿迁,3,3分)下列所给的几何体中,主视图是三角形的是(▲)

【答案】B 26. (2011江苏泰州,4,3分)右图是一个几何体的三视图,则这个几何体是

图3 主视方向 A B C D

2 1 1 1

正面 A. B. C. D. 俯视图左视图

主视图

A.圆锥 B.圆柱 C.长方体 D. 球体 【答案】A 27. (2011山东济宁,10,3分)如图,是某几何体的三视图及相关数据,则下面判断正确的是 A.ac B.bc

C.2224abc D.222abc

【答案】D 28. (2011山东聊城,2,3分)如图,空心圆柱的左视图是( )

【答案】C 29. (2011四川成都,2,3分)如图所示的几何体的俯视图是 D

【答案】D

a c 2b 第10题 30. (2011四川广安,9,3分)由n个相同的小正方体堆成的几何体,其视图如下所示,则n的最大值是( ) A.18 B.19 C.20 D.21

【答案】A 31. (2011四川内江,8,3分)由一些大小相同的小正方体搭成的几何体的俯视图如右图所示,其正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是

12213

A B C D 【答案】B 32. (2011四川宜宾,6,3分)如图所示的几何体的正视图是( )

【答案】D 33. (2011重庆綦江,3,4分)如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是( )

A. B. C. D. 【答案】:C

A. B. C. D.

(第6题图)

主视图 俯视图 34. (2011江西南昌,3,3分)将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是( ).

A. B. C. D. 图甲 图乙 第3题图 【答案】C 35. (2011江苏淮安,4,3分)如图所示的几何体的主视图是( )

A. B. C. D.

【答案】B 36. (2011江苏南通,6,3分)下列水平放置的几何体中,俯视图是矩形的是

【答案】B 37. (2011四川绵阳8,3)由四个相同的小正方体搭建了一个积木,它的三视图如右图所示,则这个积木可能是 【答案】B 38. (2011四川乐山4,3分)如图(2),在正方体ABCD-A1B1C1D1中,E、F、G分别是 AB、BB1、BC的中点,沿EG、EF、FG将这个正方体切去一个角后,得到的几何体的俯视图是

【答案】 B 39. (2011四川凉山州,11,4分)一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的表面积为( )

A.66 B.48 C.48236 D.57

【答案】A 40. (2011安徽芜湖,3,4分)如图所示,下列几何体中主视图、左视图、俯视图都相同的 是

【答案】C

A B CD 41. (2011湖北武汉市,8,3分)右图是某物体的直观图,它的俯视图是 A. B. C. D. 【答案】A 42. (2011湖北黄石,5,3分)如图(1)所示的几何体的俯视图是

【答案】B 43. (2011湖南衡阳,3,3分)如图所示的几何体的主视图是( )

A. B. C. D. 【答案】B 44. (2011贵州贵阳,4,3分)一个几何体的三视图如图所示,则这个几何体是

主视图 左视图 俯视图 (第4题图) (A)圆柱 (B)三棱锥 (C)球 (D)圆锥 【答案】D 45. (2011广东肇庆,3,3分)如图是一个几何体的实物图,则其主视图是

图 DCB

A 【答案】C 46. (2011湖北襄阳,8,3分)有一些相同的小立方块搭成的几何体的三视图如图2所示,则搭成该几何体的小立方块有

A.3块 B.4块 C.6块 D.9块 【答案】B 47. (2011湖南永州,10,3分)如图所示的几何体的左视图是( )

【答案】B. 48. (2011江苏盐城,3,3分)下面四个几何体中,俯视图为四边形的是

【答案】D 49. (2011山东东营,3,3分)一个几何体的三视图如图所示,那么这个几何体是( )

【答案】C 50. (2011江苏镇江,3,2分)已知某几何体的三个视图(如图),此几何体是( )

A B C D A. B. C. D (第10题)

图2 主视图 左视图 俯视图

相关文档
最新文档