【精编文档】高中数学第二章基本初等函数I2.1指数函数学案新人教版必修1.doc
电子教案:人教A版高中数学必修1第二章 基本初等函数(1)2.1 指数函数教案

4.2.1 指数函数及其图像与性质【教学目标】1.知识与技能目标:使学生理解指数函数的定义、图象及性质,培养学生正确使用几何画板工具。
2.过程与方法目标:在实验活动过程中引领学生主动探索指数函数性质,启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会学习数学规律的方法。
3.情感态度与价值观:让学生感受数学问题探索的乐趣,体验成功的喜悦,体会辨证的思维及数学图形的和谐美。
【教学重、难点】教学重点:理解指数函数的定义、图象及性质。
教学难点:指数函数性质的归纳与运用。
【教学方法】我校汽修专业的学生数学基础比较薄弱,学生对数学普遍不感兴趣。
本节课概念性比较强,而且突出数学图形的运用,这恰是学生学习的弱项,但是思想比较活跃的他们对新事物具有强烈的好奇心,动手能力、观察能力比较强。
因此本节课主要采用数学实验教学活动的方法,通过结合计算机软件工具,让学生在实验活动过程中来去体验、感悟知识,让学习成为一种愉悦的主动认知过程,切实做到将数学课堂还给学生。
【教学过程】1.流程(1)教学流程:(2)学生认知流程:2.教学过程设计三、深入探究、引导发现(2)动眼观察,产生猜想:展示学生制作的6个函数图像(图1,分开独立的6个图像;图2,将它们放在同一坐标系下),让他们观察这6个指数函数图像有何共同的特征:图1图2思考:能将他们分分类吗?这个图象特征与底数a是否存在关系?引导学生大胆猜测:指数函数的图象按底数分成两类。
教师:让学生自由发挥,说说他们观察到的有共性的图像特征。
学生:容易发现:①都过点(0,1);②图像都在x轴上方;③有的图像呈上升趋势;有的图像呈下降趋势。
教师:引导学生去观察图像呈上升或下降这一图像特征与它们的底数存在的关系。
学生:发现呈上升趋势的3个图象,底数都大于1;呈下降趋势的3个图象,底数都大于0小于1;从而对“指数函数图像形按底数分成两类”形成初步的认识。
教师:引导学生一起观察发现:底数大于1的三个函数,虽然它们的弯曲程度不同,但是都呈上升的趋势;底数大于0小于1的三个函数也类似,形成“指数函数的图象按底数分成两类,即底数大于1的指数函数图像呈上升趋势,底数大于0且小于1的指数函数图像呈下降的趋势”这一猜想。
高中数学 第二章 基本初等函数(1) 2.1.2 指数函数及其性质(2)学案(含解析)新人教A版必修1

第二课时 指数函数及其性质的应用(习题课)1.指数函数的定义是什么? 略2.指数函数的定义域和值域分别是什么? 略3.指数函数y =a x(a >0,a ≠1)图象的位置与底数a 之间有什么关系? 略4.指数函数的单调性与底数之间有什么关系? 略[例1] (1)设y 1=40.9,y 2=80.48,y 3=⎝ ⎛⎭⎪⎫2-1.5,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 3>y 2D .y 1>y 2>y 3(2)比较下列各题中两个值的大小:①⎝ ⎛⎭⎪⎫57-1.8,⎝ ⎛⎭⎪⎫57-2.5;②⎝ ⎛⎭⎪⎫23-0.5,⎝ ⎛⎭⎪⎫34-0.5; ③0.20.3,0.30.2.[解] (1)选C y 1=40.9=21.8,y 2=80.48=21.44,y 3=⎝ ⎛⎭⎪⎫12-1.5=21.5,∵y =2x是增函数,1.8>1.5>1.44,∴y 1>y 3>y 2,故选C.(2)①因为0<57<1,所以函数y =⎝ ⎛⎭⎪⎫57x在其定义域R 上单调递减,又因为-1.8>-2.5,所以⎝ ⎛⎭⎪⎫57-1.8<⎝ ⎛⎭⎪⎫57-2.5.②在同一平面直角坐标系中画出指数函数y =⎝ ⎛⎭⎪⎫23x 与y =⎝ ⎛⎭⎪⎫34x的图象,如图所示.当x =-0.5时,由图象观察可得⎝ ⎛⎭⎪⎫23-0.5>⎝ ⎛⎭⎪⎫34-0.5.③因为0<0.2<0.3<1,所以指数函数y =0.2x与y =0.3x在定义域R上均是减函数,且在区间(0,+∞)上函数y =0.2x的图象在函数y =0.3x的图象的下方,所以0.20.2<0.30.2.又根据指数函数y =0.2x 的性质可得0.20.3<0.20.2, 所以0.20.3<0.30.2. [类题通法]三类指数式的大小比较问题(1)底数相同、指数不同:利用指数函数的单调性解决.(2)底数不同、指数相同:利用指数函数的图象解决.在同一平面直角坐标系中画出各个函数的图象,依据底数a 对指数函数图象的影响,按照逆时针方向观察,底数在逐渐增大,然后观察指数所取值对应的函数值即可.(3)底数不同、指数也不同:采用介值法(中间量法).取中间量1,其中一个大于1,另一个小于1;或者以其中一个指数式的底数为底数,以另一个指数式的指数为指数.比如,要比较a c 与b d 的大小,可取a d 为中间量,a c 与a d 利用函数的单调性比较大小,b d 与a d利用函数的图象比较大小.[活学活用]比较下列各题中两个值的大小: (1)3-1.8,3-2.5;(2)7-0.5,8-0.5;(3)6-0.8,70.7.解:(1)因为3>1,所以函数y =3x在定义域R 上单调递增,又因为-1.8>-2.5,所以3-1.8>3-2.5.(2)依据指数函数中底数a 对函数图象的影响,画出函数y =7x与y =8x的图象(图略),可得7-0.5>8-0.5.(3)因为1<6<7,所以指数函数y =6x与函数y =7x在定义域R 上是增函数,且6-0.8<1,70.7>1,所以6-0.8<70.7.[例2] (1)(2)已知0.2x<25,求实数x 的取值范围. [解] (1)因为3>1,所以指数函数f (x )=3x在R 上是增函数. 由3x≥30.5,可得x ≥0.5, 即x 的取值范围为[0.5,+∞). (2)因为0<0.2<1,所以指数函数f (x )=0.2x在R 上是减函数.又因为25=⎝ ⎛⎭⎪⎫15-2=0.2-2,所以0.2x<0.2-2,则x >-2,即x 的取值范围为(-2,+∞). [类题通法]解指数不等式应注意的问题(1)形如a x>a b的不等式,借助于函数y =a x的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论;(2)形如a x>b 的不等式,注意将b 转化为以a 为底数的指数幂的形式,再借助于函数y =a x的单调性求解.[活学活用] 已知a-5x>ax +7(a >0,且a ≠1),求x 的取值范围.解:①当a >1时,∵a -5x>ax +7,∴-5x >x +7,解得x <-76.②当0<a <1时,∵a-5x>ax +7,∴-5x <x +7,解得x >-76.综上所述,当a >1时,x ∈⎝⎛⎭⎪⎫-∞,-76; 当0<a <1时,x ∈⎝ ⎛⎭⎪⎫-76,+∞.[例3] 已知函数f (x )=2x+2ax +b,且f (1)=2,f (2)=4.(1)求a ,b 的值;(2)判断f (x )的奇偶性并证明;(3)判断并证明函数f (x )在[0,+∞)上的单调性,并求f (x )的值域.[解] (1)∵⎩⎪⎨⎪⎧f=52,f =174,∴根据题意得⎩⎪⎨⎪⎧f=2+2a +b=52,f=22+22a +b=174,解得⎩⎪⎨⎪⎧a =-1,b =0.故a ,b 的值分别为-1,0.(2)由(1)知f (x )=2x +2-x,f (x )的定义域为R ,关于原点对称. 因为f (-x )=2-x+2x=f (x ),所以f (x )为偶函数.[类题通法]解决指数函数性质的综合问题应关注两点(1)指数函数的单调性与底数有关,因此讨论指数函数的单调性时,一定要明确底数与1的大小关系.与指数函数有关的函数的单调性也往往与底数有关,其解决方法一般是利用函数单调性的定义.(2)指数函数本身不具有奇偶性,但是与指数函数有关的函数可以具有奇偶性,其解决方法一般是利用函数奇偶性的定义和性质.[活学活用] 已知函数f (x )=⎝⎛⎭⎪⎫12x -1+12·x 3.(1)求f (x )的定义域; (2)判断f (x )的奇偶性; (3)求证:f (x )>0.解:(1)由2x-1≠0,得x ≠0.∴函数f (x )的定义域为(-∞,0)∪(0,+∞). (2)由于函数f (x )的定义域关于原点对称, 且f (-x )=⎝⎛⎭⎪⎫12-x -1+12·(-x )3=-⎝ ⎛⎭⎪⎫2x1-2x +12·x 3=⎝⎛⎭⎪⎫12x -1+12·x 3=f (x ),∴f (x )为偶函数.(3)证明:当x >0时,12x -1>0,x 3>0,∴f (x )>0.又∵f (x )为偶函数,∴x <0时,f (x )>0. 综上所述,对于定义域内的任意x 都有f (x )>0.6.警惕底数a 对指数函数单调性的影响[典例] 若指数函数f (x )=a x(a >0,a ≠1)在区间[1,2]上的最大值是最小值的2倍,则实数a 的值为________.[解析] 当0<a <1时,f (x )=a x为减函数,最小值为a 2,最大值为a ,故a =2a 2,解得a =12.当a >1时,f (x )=a x 为增函数,最小值为a ,最大值为a 2.故a 2=2a ,解得a =2. 综上,a =12或a =2.[答案] 12或2[易错防范]1.解决上题易忽视对a 的讨论,错认为a 2=2a ,从而导致得出a =2的错误答案. 2.求函数f (x )=a x(a >0,a ≠1)在闭区间[s ,t ]上的最值,应先根据底数的大小对指数函数进行分类.当底数大于1时,指数函数为[s ,t ]上的增函数,最小值为a s,最大值为a t .当底数大于0小于1时,指数函数为[s ,t ]上的减函数,最大值为a s ,最小值为a t .[活学活用]f (x )=a x (a >0,且a ≠1)在[1,2]上的最大值与最小值之和为6,则a =________.解析:由于f (x )=a x(a >0,且a ≠1)在[1,2]上是单调函数,故其最大值与最小值之和为a 2+a =6,解得a =-3(舍去),或a =2,所以a =2.答案:2[随堂即时演练]1.若2x +1<1,则x 的取值范围是( )A .(-1,1)B .(-1,+∞)C .(0,1)∪(1,+∞)D .(-∞,-1)解析:选D 不等式2x +1<1=20,∵y =2x是增函数,∴x +1<0,即x <-1.2.已知三个数a =60.7,b =0.70.8,c =0.80.7,则这三个数的大小关系是( ) A .a >b >c B .b >c >a C .c >b >aD .a >c >b解析:选D a =60.7>60=1,c =0.80.7>0.70.7>0.70.8=b ,且c =0.80.7<0.80=1,所以a >c >b . 3.不等式2x<22-3x的解集是________.解析:由2x <22-3x得x <2-3x ,即x <12,解集为⎩⎨⎧ x ⎪⎪⎪⎭⎬⎫x <12.答案:⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <124.方程⎝ ⎛⎭⎪⎫14x=-x +2的解的个数为____________________________________.解析:在同一坐标系中画出函数y =⎝ ⎛⎭⎪⎫14x和y =-x +2的图象,观察可知有两个交点,即方程有2个解.答案:25.设函数f (x )=e xa +ae x (e 为无理数,且e≈2.718 28…)是R 上的偶函数且a >0.(1)求a 的值;(2)判断f (x )在(0,+∞)上的单调性. 解:(1)∵f (x )是R 上的偶函数, ∴f (-1)=f (1), ∴e-1a+ae -1=e a +a e, 即1a e -a e =ea-a e.∴1e ⎝ ⎛⎭⎪⎫1a -a =e ⎝ ⎛⎭⎪⎫1a -a , ∴1a-a =0,∴a 2=1.又∵a >0,∴a =1.(2)f (x )=e x+e -x,取任意x 1,x 2>0,且x 1<x 2,f (x 2)-f (x 1)=e x 2+e -x 2-e x 1-e -x 1=e x 2-e x 1+1e x 2-1e x 1=e x 2-e x 1+e x 1-e x 2e x 1e x 2=(e x 2-e x 1)⎝⎛⎭⎪⎫1-1e x 1e x 2. ∵x 1,x 2>0,x 1<x 2,∴e x 2>e x 1且e x 1e x 2>1, ∴(e x 2-e x 1)⎝⎛⎭⎪⎫1-1e x 1e x 2>0,即f (x 2)>f (x 1), ∴f (x )在(0,+∞)上为增函数.[课时达标检测]一、选择题1.函数y =⎩⎪⎨⎪⎧x 2,x <0,2x-1,x ≥0的图象大致是( )解析:选B 当x <0时,函数的图象是抛物线的一部分,当x ≥0时,只需把y =2x的图象在y 轴右侧部分向下平移1个单位即可,故大致图象为B.2.已知⎝ ⎛⎭⎪⎫1πa >⎝ ⎛⎭⎪⎫1πb,则a ,b 的大小关系是( )A .1>a >b >0B .a <bC .a >bD .1>b >a >0解析:选B ∵0<1π<1,∴y =⎝ ⎛⎭⎪⎫1πx在R 上单调递减,又∵⎝ ⎛⎭⎪⎫1πa >⎝ ⎛⎭⎪⎫1πb,∴a <b .3.若函数f (x )=⎩⎪⎨⎪⎧a x,x >1,⎝ ⎛⎭⎪⎫4-a 2x +2,x ≤1是R 上的增函数,则实数a 的取值范围为( )A .(1,+∞)B .(1,8)C .(4,8)D .[4,8)解析:选D 由题意得⎩⎪⎨⎪⎧a >1,4-a 2>0,a ≥⎝ ⎛⎭⎪⎫4-a 2·1+2,解得4≤a <8.4.若定义运算a ⊙b =⎩⎪⎨⎪⎧a ,a <b ,b ,a ≥b ,则函数f (x )=3x ⊙3-x的值域是( )A .(0,1]B .[1,+∞)C .(0,+∞)D .(-∞,+∞)解析:选A 法一:当x >0时,3x>3-x,f (x )=3-x,f (x )∈(0,1);当x =0时,f (x )=3x =3-x =1;当x <0时,3x <3-x ,f (x )=3x,f (x )∈(0,1). 综上,f (x )的值域是(0,1].法二:作出f (x )=3x⊙3-x的图象,如图.可知值域为(0,1].5.已知实数a ,b 满足等式⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b,给出下列五个关系式:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b .其中,不可能成立的有( )A .1个B .2个C .3个D .4个解析:选B 作y =⎝ ⎛⎭⎪⎫12x 与y =⎝ ⎛⎭⎪⎫13x 的图象.当a =b =0时,⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b=1;当a <b <0时,可以使⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b ;当a >b >0时,也可以使⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b.故①②⑤都可能成立,不可能成立的关系式是③④.二、填空题6.已知(a 2+a +2)x >(a 2+a +2)1-x,则x 的取值范围是________.解析:∵a 2+a +2=⎝ ⎛⎭⎪⎫a +122+74>1,∴y =(a 2+a +2)x为R 上的增函数. ∴x >1-x ,即x >12.答案:⎝ ⎛⎭⎪⎫12,+∞ 7.已知函数f (x )=⎝ ⎛⎭⎪⎫12|x -1|,则f (x )的单调递增区间是________. 解析:法一:由指数函数的性质可知f (x )=⎝ ⎛⎭⎪⎫12x在定义域上为减函数,故要求f (x )的单调递增区间,只需求y =|x -1|的单调递减区间.又因为y =|x -1|的单调递减区间为(-∞,1], 所以f (x )的单调递增区间为(-∞,1]. 法二:f (x )=⎝ ⎛⎭⎪⎫12|x -1|=⎩⎪⎨⎪⎧12x -1,x ≥1,2x -1,x <1.可画出f (x )的图象求其单调递增区间.答案:(-∞,1]8.若方程⎝ ⎛⎭⎪⎫14x +⎝ ⎛⎭⎪⎫12x -1+a =0有正数解,则实数a 的取值范围是________.解析:令⎝ ⎛⎭⎪⎫12x=t ,∵方程有正根,∴t ∈(0,1). 方程转化为t 2+2t +a =0, ∴a =1-(t +1)2.∵t ∈(0,1),∴a ∈(-3,0). 答案:(-3,0)三、解答题9.若函数f (x )=a x-1(a >0,且a ≠1)的定义域和值域都是[0,2],求实数a 的值. 解:当a >1时,f (x )在[0,2]上递增,∴⎩⎪⎨⎪⎧ f =0,f=2,即⎩⎪⎨⎪⎧ a 0-1=0,a 2-1=2,∴a =± 3. 又∵a >1,∴a = 3.当0<a <1时,f (x )在[0,2]上递减,∴⎩⎪⎨⎪⎧f =2,f=0,即⎩⎪⎨⎪⎧a 0-1=2,a 2-1=0,解得a ∈∅,综上所述,a = 3.10.讨论函数f (x )=⎝ ⎛⎭⎪⎫13x x 22-的单调性.解:∵函数f (x )的定义域是R.令u =x 2-2x ,则f (u )=⎝ ⎛⎭⎪⎫13u∵u =x 2-2x =(x -1)2-1在(-∞,1]上是减函数,又∵f (u )=⎝ ⎛⎭⎪⎫13u在其定义域内是减函数,∴函数f (x )在(-∞,1]上是增函数;又u =x 2-2x =(x -1)2-1在[1,+∞)上是增函数,∵f (u )=⎝ ⎛⎭⎪⎫13u在其定义域内是减函数,∴函数f (x )在[1,+∞)上是减函数.11.已知函数f (x )=满足f (c 2)=98.(1)求实数c 的值; (2)解不等式f (x )>28+1. 解:(1)由题意知0<c <1,∴c 2<c . 由f (c 2)=98,得c 3+1=98,∴c =12.11 (2)由(1)得f (x )=⎩⎪⎨⎪⎧ 12x +1,0<x <12,2-4x +1,12≤x <1,当0<x <12时,令f (x )>28+1,即12x +1>28+1, 解得x >24, ∴24<x <12; 当12≤x <1时,令f (x )>28+1,即2-4x +1>28+1,解得x <58,∴12≤x <58. ∴f (x )>28+1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 24<x <58.12.已知函数f (x )=b ·a x (其中a ,b 为常量,且a >0,a ≠1)的图象经过点A (1,6),B (3,24).(1)求f (x );(2)若不等式⎝ ⎛⎭⎪⎫1a x +⎝ ⎛⎭⎪⎫1b x -m ≥0在x ∈(-∞,1]时恒成立,求实数m 的取值范围. 解:(1)把A (1,6),B (3,24)代入f (x )=b ·a x ,得⎩⎪⎨⎪⎧6=ab ,24=b ·a 3.结合a >0且a ≠1,解得⎩⎪⎨⎪⎧ a =2,b =3. ∴f (x )=3·2x .(2)要使⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x ≥m 在(-∞,1]上恒成立, 只需保证函数y =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x 在(-∞,1]上的最小值不小于m 即可. ∵函数y =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x 在(-∞,1]上为减函数, ∴当x =1时,y =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x 有最小值56. ∴只需m ≤56即可. ∴m 的取值范围为⎝ ⎛⎦⎥⎤-∞,56.。
人教版高中数学必修1第二章基本初等函数(I)-《2.1.1指数与指数幂的运算》教案(4)

2.1.1 指数与指数幂的运算(第三课时)
教学目标:
1.掌握根式与分数指数幂的互化;
2.熟练运用有理指数幂运算性质进行化简、求值;
3.培养学生的数学应用意识。
教学重点:有理指数幂运算性质运用。
教学难点:化简、求值的技巧 教学方法:启发引导式 教学过程 (I )复习回顾
1.分数指数幂的概念,以及有理指数幂的运算性质
2.用分数指数幂表示下列各式(a>0,x>0) 52a
4
x
1
6
x
x
3)a (
(II )讲授新课
分析:(1)题可以仿照单项式乘除法进行,首先是系数相乘除,然后是同底数幂相乘除,并且要注意符号。
(2)题先按积的乘方计算,后按幂的乘方计算,等熟练后可简化计算步骤。
对于计算的结果不强求统一用什么形式来表示,没有特别要求,就用分数指数幂的形式表示。
如果有特殊要求,可根据要求给出结果,但:
① 结果不能同时含有根式和分数指数;②不能同时含有分母和负指数; 分析:(1)题把根式化成分数指数幂的形式,再计算。
(2)题先把根式化成分数指数幂的最简形式,然后计算。
例3.求值:
分析:(1)题需把各项被开方数变为完全平方形式,然后再利用根式运算性质; 要求:例3学生先练习,后讲评,讲评时需向学生强调求值过程中的变形技巧。
(III )课堂练习 要求:学生板演练习,做完后老师讲评。
(IV )课时小结
通过本节学习,要求大家能够熟练运用有理数幂运算性质进行化简、求值,并掌握一定的解题技巧,如凑完全平方、寻求同底幂等方法。
(V )课后作业 第二教材有关题目。
2020高中数学 第二章 基本初等函数(Ⅰ)2.1.2 指数函数及其性质(1)导学案新人教A版必修1

2.1.2指数函数及其性质(1)【导学目标】1.使学生了解指数函数模型的实际背景,认识数学与其他学科的联系;2.理解指数函数的概念,能画出具体指数函数的图象,并理解指数函数的性质;3.在学习的过程中体会研究指数函数及其性质的过程和方法.【自主学习】 新知梳理:一般地,函数xa y =( __ ___ )叫做指数函数,其中函数的定义域是 _ __ . 对点练习:1. 函数x y 53⋅=是指数函数吗? 对点练习:2. 函数1)31()(-=x x f 的定义域是 2.指数函数的图象与性质(以2x y =与12xy ⎛⎫= ⎪⎝⎭为例) (1)列表、描点、作图象(2)两个图象的关系函数x y 2=与12xy ⎛⎫= ⎪⎝⎭的图象都经过定点 ,它们的图象关于 对称.通过图象的上升和下降可以看出,函数 是定义域上的增函数;函数 是定义域上的减函数. 对点练习:3. .函数x y -=2的图像是( )AB C D对点练习:4.函数x a x f )1()(-=在R 上为增函数,则a 的取值范围是【合作探究】典例精析例题1:函数x a a a x f )33()(2+-=是指数函数,则有()A.1=a 或2=aB. 1=aC.2=aD.0>a 且1≠a变式训练1:下列函数中,指数函数的个数是( )①x y 32⋅= ②13+=x y③ x y 3= ④3x y =A.0B.1C.2D.3例2:比较下列各题中两个值的大小:(1)5.27.1,37.1; (2)1.08.0-,2.08.0-;(3)3.07.1,1.39.0.变式练习2:已知a =0.80.7,b =0.80.9,c =1.20.8,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >b >aD .c >a >b例3.求下列指数函数的定义域和值域:(1)142x y -=; (2)y =变式练习3:(1)函数f (x )=1-2x +1x +3的定义域为() A .(-3,0]B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1](2)函数f (x )=⎝ ⎛⎭⎪⎫13x -1,x ∈[-1,2]的值域为________.【课堂小结】。
高中数学第二章2.1指数函数2.1.2指数函数及其性质(二)学案(含解析)新人教A版必修1

2.1.2 指数函数及其性质(二)学习目标 1.掌握指数函数与其他函数复合所得的函数单调区间的求法及单调性的判断.2.能借助指数函数的性质比较大小.3.会解简单的指数方程、不等式.知识点一 不同底指数函数图象的相对位置思考 y =2x与y =3x都是增函数,都过点(0,1),在同一坐标系内如何确定它们两个的相对位置?答案 经描点观察,在y 轴右侧,2x<3x,即y =3x图象在y =2x上方,经(0,1)点交叉,位置在y 轴左侧反转,y =2x在y =3x图象上方.梳理 一般地,在同一坐标系中有多个指数函数图象时,图象的相对位置与底数大小有如下关系:(1)在y 轴右侧,图象从上到下相应的底数由大变小;在y 轴左侧,图象从下到上相应的底数由大变小.即无论在y 轴的左侧还是右侧,底数按逆时针方向变大.这一性质可通过令x =1时,y =a 去理解,如图.(2)指数函数y =a x与y =⎝ ⎛⎭⎪⎫1a x (a >0且a ≠1)的图象关于y 轴对称.知识点二 比较幂的大小思考 若x 1<x 2,则1x a 与2xa (a >0且a ≠1)的大小关系如何? 答案 当a >1时,y =a x在R 上为增函数,所以12,x xa a < 当0<a <1时,y =a x在R 上为减函数,所以12.x xa a > 梳理 一般地,比较幂大小的方法有:(1)对于同底数不同指数的两个幂的大小,利用指数函数的单调性来判断;(2)对于底数不同指数相同的两个幂的大小,利用指数函数的图象的变化规律来判断; (3)对于底数不同指数也不同的两个幂的大小,则通过中间值来判断. 知识点三 解指数方程、不等式 简单指数不等式的解法(1)形如af (x )>ag (x )的不等式,可借助y =a x的单调性求解;(2)形如a f (x )>b 的不等式,可将b 化为以a 为底数的指数幂的形式,再借助y =a x的单调性求解;(3)形如a x >b x 的不等式,可借助两函数y =a x ,y =b x的图象求解. 知识点四 与指数函数复合的函数单调性 思考 112xy ⎛⎫=⎪⎝⎭的定义域与y =1x 的定义域是什么关系?112xy ⎛⎫= ⎪⎝⎭的单调性与y =1x 的单调性有什么关系?答案 由于y =a x(a >0且a ≠1)的定义域为R ,故112xy ⎛⎫=⎪⎝⎭的定义域与y =1x 的定义域相同,故研究112xy ⎛⎫=⎪⎝⎭的单调性,只需在y =1x 的定义域内研究.若设0<x 1<x 2,则1x 1>1x 2,121111,22x x ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭不等号方向的改变与y =⎝ ⎛⎭⎪⎫12x ,y =1x 的单调性均有关.梳理 一般地,有形如y =a f (x )(a >0,且a ≠1)函数的性质(1)函数y =af (x )与函数y =f (x )有相同的定义域.(2)当a >1时,函数y =a f (x )与y =f (x )具有相同的单调性;当0<a <1时,函数y =af (x )与函数y =f (x )的单调性相反.1.y =21-x是R 上的增函数.( × )2.若0.1a>0.1b,则a >b .( × )3.a ,b 均大于0且不等于1,若a x=b x,则x =0.( × )4.由于y =a x(a >0且a ≠1)既非奇函数,也非偶函数,所以指数函数与其他函数也组不成具有奇偶性的函数.( × )类型一 解指数方程 例1 解下列方程.(1)81×32x=⎝ ⎛⎭⎪⎫19x +2;(2)22x +2+3×2x-1=0.考点 指数方程的解法题点 指数方程的解法解 (1)∵81×32x=⎝ ⎛⎭⎪⎫19x +2,∴32x +4=3-2(x +2),∴2x +4=-2(x +2), ∴x =-2. (2)∵22x +2+3×2x-1=0,∴4×(2x )2+3×2x-1=0.令t =2x(t >0),则方程可化为4t 2+3t -1=0, 解得t =14或t =-1(舍去).∴2x=14,解得x =-2.反思与感悟 (1)af (x )=b 型通常化为同底来解.(2)解指数方程时常用换元法,用换元法时要特别注意“元”的范围.转化为解二次方程,用二次方程求解时,要注意二次方程根的取舍. 跟踪训练1 解下列方程. (1)33x -2=81;(2)5x=325; (3)52x-6×5x+5=0. 考点 指数方程的解法 题点 指数方程的解法 解 (1)∵81=34,∴33x -2=34,∴3x -2=4,解得x =2.(2)∵5x=325,23255,x ∴=∴x 2=23,解得x =43. (3)令t =5x,则t >0,原方程可化为t 2-6t +5=0, 解得t =5或t =1,即5x=5或5x=1, ∴x =1或x =0.类型二 指数函数单调性的应用 命题角度1 比较大小例2 比较下列各题中两个值的大小.(1)1.7-2.5,1.7-3;(2)1.70.3,1.50.3;(3)1.70.3,0.83.1. 考点 指数幂的大小比较 题点 比较指数幂大小解 (1)∵1.7>1,∴y =1.7x在(-∞,+∞)上是增函数. ∵-2.5>-3,∴1.7-2.5>1.7-3.(2)方法一 ∵1.7>1.5,∴在(0,+∞)上,y =1.7x的图象位于y =1.5x的图象的上方. 而0.3>0,∴1.70.3>1.50.3.方法二 ∵1.50.3>0,且1.70.31.50.3=⎝ ⎛⎭⎪⎫1.71.50.3,又1.71.5>1,0.3>0,∴⎝ ⎛⎭⎪⎫1.71.50.3>1,∴1.70.3>1.50.3. (3)∵1.70.3>1.70=1,0.83.1<0.80=1, ∴1.70.3>0.83.1.反思与感悟 当两个数不能利用同一函数的单调性作比较时,可考虑引入中间量,常用的中间量有0和±1.跟踪训练2 比较下列各题中的两个值的大小. (1)0.8-0.1,1.250.2;(2)⎝ ⎛⎭⎪⎫1π-π,1; (3)0.2-3,(-3)0.2. 考点 指数幂的大小比较 题点 比较指数幂大小解 (1)∵0<0.8<1,∴y =0.8x在R 上是减函数. ∵-0.2<-0.1,∴0.8-0.2>0.8-0.1,即0.8-0.1<1.250.2.(2)∵0<1π<1,∴函数y =⎝ ⎛⎭⎪⎫1πx 在R 上是减函数.又∵-π<0,∴⎝ ⎛⎭⎪⎫1π-π>⎝ ⎛⎭⎪⎫1π0=1,即⎝ ⎛⎭⎪⎫1π-π>1.(3)0.2-3=⎝ ⎛⎭⎪⎫210-3=⎝ ⎛⎭⎪⎫15-3=53,210.2105(3)(3)3,-=-=1135333,5125 3.∴<==>1330.2535,(3).-∴<>-即0.2命题角度2 解指数不等式 例3 解关于x 的不等式:a 2x +1≤ax -5(a >0,且a ≠1).考点 指数不等式的解法 题点 指数不等式的解法 解 ①当0<a <1时,∵a2x +1≤ax -5,∴2x +1≥x -5,解得x ≥-6. ②当a >1时,∵a2x +1≤ax -5,∴2x +1≤x -5,解得x ≤-6.综上所述,当0<a <1时,不等式的解集为{x |x ≥-6};当a >1时,不等式的解集为{x |x ≤-6}.反思与感悟 解指数不等式的基本方法是先化为同底指数式,再利用指数函数单调性化为常规的不等式来解,注意底数对不等号方向的影响. 跟踪训练3 已知(a 2+a +2)x >(a 2+a +2)1-x,则x 的取值范围是________.考点 指数不等式的解法 题点 指数不等式的解法答案 ⎝ ⎛⎭⎪⎫12,+∞ 解析 ∵a 2+a +2=⎝ ⎛⎭⎪⎫a +122+74>1,∴(a 2+a +2)x >(a 2+a +2)1-x⇔x >1-x ⇔x >12.∴x ∈⎝ ⎛⎭⎪⎫12,+∞. 类型三 求与指数函数复合的函数的单调区间 例4 (1)求函数261712x x y ⎛⎫⎪⎝⎭-+=的单调区间;(2)求函数y =⎝ ⎛⎭⎪⎫122x -8·⎝ ⎛⎭⎪⎫12x+17的单调区间.考点 指数函数的单调性 题点 指数型复合函数的单调区间解 (1)函数261712x x y ⎛⎫ ⎪⎝⎭-+=的定义域为R .在(-∞,3]上,y =x 2-6x +17是减函数, ∴261712x x y ⎛⎫ ⎪⎝⎭-+=在(-∞,3]上是增函数.在[3,+∞)上,y =x 2-6x +17是增函数, ∴261712x x y ⎛⎫ ⎪⎝⎭-+=在[3,+∞)上是减函数.∴261712x x y ⎛⎫ ⎪⎝⎭-+=的增区间是(-∞,3],减区间是[3,+∞).(2)函数y =⎝ ⎛⎭⎪⎫122x -8·⎝ ⎛⎭⎪⎫12x+17的定义域为R .设t =⎝ ⎛⎭⎪⎫12x >0,又y =t 2-8t +17在(0,4]上单调递减,在[4,+∞)上单调递增,令⎝ ⎛⎭⎪⎫12x≤4,得x ≥-2, ∴当-2≤x 1<x 2时,12114,22x x⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭≥即4≥t 1>t 2,∴t 21-8t 1+17<t 22-8t 2+17.∴y =⎝ ⎛⎭⎪⎫122x -8·⎝ ⎛⎭⎪⎫12x+17的单调增区间是[-2,+∞).同理可得减区间是(-∞,-2].反思与感悟 复合函数单调性问题归根结底是由x 1<x 2到f (x 1)与f (x 2)的大小,再到g (f (x 1))与g (f (x 2))的大小关系问题. 跟踪训练4 求下列函数的单调区间.223(1);x x y a +-=(2)y =10.2x -1.考点 指数函数的单调性 题点 指数型复合函数的单调区间 解 (1)设y =a u ,u =x 2+2x -3,由u =x 2+2x -3=(x +1)2-4,得u 在(-∞,-1]上为减函数,在[-1,+∞)上为增函数. 当a >1时,y 关于u 为增函数; 当0<a <1时,y 关于u 为减函数,∴当a >1时,原函数的增区间为[-1,+∞),减区间为(-∞,-1]; 当0<a <1时,原函数的增区间为(-∞,-1],减区间为[-1,+∞). (2)已知函数的定义域为{x |x ≠0}. 设y =1u -1,u =0.2x ,易知u =0.2x为减函数. 而根据y =1u -1的图象可知在区间(-∞,1)和(1,+∞)上,y 是关于u 的减函数, ∴原函数的增区间为(-∞,0)和(0,+∞).1.下列大小关系正确的是( ) A .0.43<30.4<π0B .0.43<π0<30.4C .30.4<0.43<π0D .π0<30.4<0.43考点 指数幂的大小比较 题点 比较指数幂大小 答案 B解析 0.43<0.40=π0=30<30.4. 2.方程42x -1=16的解是( )A .x =-32B .x =32C .x =1D .x =2考点 指数方程的解法 题点 指数方程的解法 答案 B 解析 ∵42x -1=42,∴2x -1=2,x =32.3.函数211()2x f x -⎛⎫= ⎪⎝⎭的单调递增区间为( )A .(-∞,0]B .[0,+∞)C .(-1,+∞)D .(-∞,-1)考点 指数函数的单调性 题点 指数型复合函数的单调区间 答案 A解析 ∵211()2x f x -⎛⎫= ⎪⎝⎭,0<12<1,∴f (x )的单调递增区间为u (x )=x 2-1的单调递减区间,即(-∞,0].4.设0<a <1,则关于x 的不等式22232223x x x x a a -++->的解集为________.考点 指数不等式的解法 题点 指数不等式的解法 答案 (1,+∞)解析 ∵0<a <1,∴y =a x在R 上是减函数, 又∵22232223x x x x aa -++->,∴2x 2-3x +2<2x 2+2x -3,解得x >1. 5.f (x )=2x+2-x的奇偶性是________. 考点 与指数函数相关的函数的奇偶性 题点 与指数函数相关的函数的奇偶性 答案 偶函数解析 f (x )的定义域为R .f (-x )=2-x +2-(-x )=2x +2-x =f (x ),∴f (x )为偶函数.1.比较两个指数式值的大小的主要方法(1)比较形如a m与a n的大小,可运用指数函数y =a x的单调性.(2)比较形如a m与b n的大小,一般找一个“中间值c ”,若a m<c 且c <b n,则a m<b n;若a m>c 且c >b n ,则a m >b n .2.解简单指数不等式问题的注意点(1)形如a x>a y的不等式,可借助y =a x的单调性求解.如果a 的值不确定,需分0<a <1和a >1两种情况进行讨论.(2)形如a x>b 的不等式,注意将b 化为以a 为底的指数幂的形式,再借助y =a x的单调性求解. (3)形如a x>b x 的不等式,可借助图象求解. 3.(1)研究y =a f (x )型单调区间时,要注意a >1还是0<a <1.当a >1时,y =af (x )与f (x )单调性相同. 当0<a <1时,y =af (x )与f (x )单调性相反.(2)研究y =f (a x)型单调区间时,要注意a x属于f (u )的增区间还是减区间.一、选择题1.设x <0,且1<b x <a x,则( ) A .0<b <a <1 B .0<a <b <1 C .1<b <aD .1<a <b考点 指数不等式的解法 题点 指数不等式的解法 答案 B解析 ∵1<b x<a x,x <0,∴0<a <1,0<b <1. 当x =-1时,1b <1a,即b >a ,∴0<a <b <1.2.函数y =a x在[0,1]上的最大值与最小值的和为3,则函数y =2ax -1在[0,1]上的最大值是( ) A .6B .1C .3D.32考点 指数函数的最值题点 根据指数函数的最值求底数 答案 C解析 函数y =a x在[0,1]上是单调的,最大值与最小值都在端点处取到,故有a 0+a 1=3,解得a =2,因此函数y =2ax -1=4x -1在[0,1]上是单调递增函数,当x =1时,y max =3. 3.已知a =5-12,函数f (x )=a x,若实数m ,n 满足f (m )>f (n ),则m ,n 的关系为( ) A .m +n <0 B .m +n >0 C .m >nD .m <n考点 指数不等式的解法 题点 指数不等式的解法 答案 D 解析 ∵0<5-12<1,∴f (x )=a x=⎝ ⎛⎭⎪⎫5-12x 在R 上单调递减, 又∵f (m )>f (n ),∴m <n ,故选D. 4.若函数f (x )=a |2x -4|(a >0,且a ≠1),满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2]考点 指数函数的单调性 题点 指数型复合函数的单调区间 答案 B解析 由f (1)=19得a 2=19,所以a =13(a =-13舍去),即f (x )=⎝ ⎛⎭⎪⎫13|2x -4|.由于y =|2x -4|在(-∞,2]上递减,在[2,+∞)上递增, 所以f (x )在(-∞,2]上递增,在[2,+∞)上递减. 故选B.5.设y 1=40.9,y 2=80.48,y 3=⎝ ⎛⎭⎪⎫12-1.5,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 2考点 指数幂的大小比较 题点 比较指数幂大小 答案 D 解析 40.9=21.8,80.48=21.44,⎝ ⎛⎭⎪⎫12-1.5=21.5, 根据y =2x 在R 上是增函数, 得21.8>21.5>21.44,即y 1>y 3>y 2,故选D.6.设f (x )=|3x-1|,c <b <a 且f (c )>f (a )>f (b ),则下列关系式中一定成立的是( ) A .3c≤3bB .3c >3bC .3c+3a>2D .3c+3a<2考点 指数函数性质的综合应用 题点 指数函数的综合问题 答案 D解析 f (x )=|3x-1|的图象如下.由c <b <a 且f (c )>f (a )>f (b )可知c ,b ,a 不在同一个单调区间上. 故有c <0,a >0.∴f (c )=1-3c,f (a )=3a-1.∴f (c )>f (a ),即1-3c >3a -1,3c +3a <2.7.已知函数f (x )=x (e x +a e -x )(x ∈R ),若f (x )是偶函数,记a =m ,若f (x )是奇函数,记a =n ,则m +2n 的值为( )A .0B .1C .2D .-1考点 与指数函数相关的函数的奇偶性题点 与指数函数相关的函数的奇偶性答案 B解析 当f (x )是偶函数时,f (x )=f (-x ),即x (e x +a e -x )=-x (e -x +a e x ),即(1+a )(e x +e -x )x =0,因为上式对任意实数x 都成立,所以a =-1,即m =-1.当f (x )是奇函数时,f (x )=-f (-x ),即x (e x +a e -x )=x (e -x +a e x ),即(1-a )(e x -e -x)x =0,因为上式对任意实数x 都成立,所以a =1,即n =1,所以m +2n =1.8.若存在正实数x 使2x (x -a )<1,则a 的取值范围是( )A .(-∞,+∞)B .(-2,+∞)C .(0,+∞)D .(-1,+∞) 考点 指数函数的单调性题点 根据指数函数的单调性求参数的取值范围答案 D解析 由2x (x -a )<1,得a >x -12x (x >0), 令f (x )=x -12x ,即a >f (x )有解,则a >f (x )min ,又f (x )在(0,+∞)上是增函数, ∴f (x )>f (0)=-1,∴a >-1.故选D.二、填空题 9.函数f (x )=⎝ ⎛⎭⎪⎫13245x x --的单调递减区间是________. 考点 指数函数的单调性题点 指数型复合函数的单调区间答案 (2,+∞)解析 函数由f (t )=⎝ ⎛⎭⎪⎫13t ,t (x )=x 2-4x -5复合而成,其中f (t )=⎝ ⎛⎭⎪⎫13t 是减函数,t (x )=x 2-4x -5在(-∞,2)上是减函数,在(2,+∞)上是增函数.由复合函数的单调性可知,函数的单调递减区间为(2,+∞).10.某驾驶员喝酒后血液中的酒精含量f (x )(mg/mL)随时间x (h)变化的规律近似满足解析式f (x )=⎩⎪⎨⎪⎧ 5x -2,0≤x ≤1,35·⎝ ⎛⎭⎪⎫13x ,x >1.规定驾驶员血液中的酒精含量不得超过0.02mg/mL ,据此可知,此驾驶员至少要过______h 后才能开车.(精确到1h)考点 指数函数的实际应用题点 指数函数的实际应用答案 4解析 当0≤x ≤1时,125≤5x -2≤15,此时不宜开车;由35·⎝ ⎛⎭⎪⎫13x ≤0.02,可得x ≥3.10.故至少要过4h 后才能开车.11.若4x +2x +1+m >1对一切实数x 成立,则实数m 的取值范围是__________.考点 指数函数性质的综合应用题点 与指数函数有关的恒成立问题答案 [1,+∞)解析 4x +2x +1+m >1等价于(2x )2+2·2x +1>2-m ,即(2x +1)2>2-m .∵2x ∈(0,+∞), ∴2x +1∈(1,+∞),∴2-m ≤1,解得m ≥1.三、解答题12.已知函数f (x )=2a ·4x -2x-1.(1)当a =1时,解不等式f (x )>0;(2)当a =12,x ∈[0,2]时,求f (x )的值域. 考点 指数函数性质的综合应用题点 与指数函数有关的恒成立问题解 (1)当a =1时,f (x )=2·4x -2x -1. f (x )>0,即2·(2x )2-2x -1>0,解得2x >1或2x <-12(舍去), ∴x >0,∴不等式f (x )>0的解集为{x |x >0}.(2)当a =12时,f (x )=4x -2x -1,x ∈[0,2].设t =2x,∵x ∈[0,2],∴t ∈[1,4].令y =g (t )=t 2-t -1(1≤t ≤4),画出g (t )=t 2-t -1(1≤t ≤4)的图象(如图),可知g (t )min =g (1)=-1,g (t )max =g (4)=11,∴f (x )的值域为[-1,11].13.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=1-2-x ,(1)写出f (x )的单调区间;(2)求不等式f (x )<-12的解集. 考点 指数函数性质的综合应用题点 与指数函数有关的恒成立问题解 (1)∵f (x )是定义在R 上的奇函数,∴f (0)=0. f (x )在[0,+∞)上是增函数,∴f (x )在(-∞,+∞)上是增函数.(2)f (x )<-12=-f (1)=f (-1), 由(1)知f (x )在R 上是增函数,∴x <-1.即f (x )<-12的解集为(-∞,-1). 四、探究与拓展14.设f (x )满足f (x )=f (4-x ),且当x >2时,f (x )是增函数,则a =f (1.10.9),b =f (0.91.1),c =f (2)的大小关系是________.(按由大到小排列)考点 指数幂的大小比较题点 比较指数幂大小答案 b >a >c解析 ∵f (x )=f (4-x ),∴f (x )关于x =2对称.又∵f (x )在(2,+∞)上是增函数,∴f (x )在(-∞,2)上是减函数.又∵1.10.9>1,0<0.91.1<1,∴0.91.1<1.10.9<2,∴f (0.91.1)>f (1.10.9)>f (2),即b >a >c .15.已知函数f (x )=3x +k ·3-x 为奇函数.(1)求实数k 的值;(2)若关于x 的不等式f (9221ax x --)+f (1-3ax -2)<0只有一个整数解,求实数a 的取值范围. 考点 指数函数性质的综合应用题点 指数函数的综合问题解 (1)显然f (x )的定义域为R .∵f (x )是奇函数,∴f (x )+f (-x )=3x +k ·3-x +3-x +k ·3x=(k +1)(3x +3-x )=0对一切实数x 都成立,∴k =-1.(2)由(1)可知f (x )为R 上的增函数,又f (x )是奇函数,∴f (9221ax x --)+f (1-3ax -2)<0⇒9221ax x --<3ax -2-1⇒3224ax x -<3ax -2⇒2ax 2-4x <ax -2 ⇒(ax -2)(2x -1)<0.当a ≤0时,显然不符合题意;当a >0时,由不等式只有一个整数解,可知不等式的解集为⎝ ⎛⎭⎪⎫12,2a ,且1<2a ≤2⇒1≤a <2, ∴实数a 的取值范围是[1,2).。
2019高中数学 第二章 基本初等函数(Ⅰ)2.1.2 指数函数及其性质(1)导学案新人教A版必修1

精 品 试 卷2.1.2指数函数及其性质(1)【导学目标】1.使学生了解指数函数模型的实际背景,认识数学与其他学科的联系;2.理解指数函数的概念,能画出具体指数函数的图象,并理解指数函数的性质;3.在学习的过程中体会研究指数函数及其性质的过程和方法.【自主学习】 新知梳理:一般地,函数xa y =( __ ___ )叫做指数函数,其中函数的定义域是 _ __ . 对点练习:1. 函数x y 53⋅=是指数函数吗? 对点练习:2. 函数1)31()(-=x x f 的定义域是 2.指数函数的图象与性质(以2x y =与12xy ⎛⎫= ⎪⎝⎭为例) (1)列表、描点、作图象(2)两个图象的关系函数x y 2=与12xy ⎛⎫= ⎪⎝⎭的图象都经过定点 ,它们的图象关于 对称.通过图象的上升和下降可以看出,函数 是定义域上的增函数;函数 是定义域上的减函数. 对点练习:3. .函数x y -=2的图像是( )对点练习:4.函数x a xf )1()(-=在R 上为增函数,则a 的取值范围是A B C D【合作探究】典例精析例题1:函数x a a a x f )33()(2+-=是指数函数,则有()A.1=a 或2=aB. 1=aC.2=aD.0>a 且1≠a变式训练1:下列函数中,指数函数的个数是( )①x y 32⋅= ②13+=x y③ x y 3= ④3x y =A.0B.1C.2D.3例2:比较下列各题中两个值的大小:(1)5.27.1,37.1; (2)1.08.0-,2.08.0-;(3)3.07.1,1.39.0.变式练习2:已知a =0.80.7,b =0.80.9,c =1.20.8,则a ,b ,c 的大小关系是( ) A .a >b >c B .b >a >cC .c >b >aD .c >a >b例3.求下列指数函数的定义域和值域:(1)142x y -=; (2)y =变式练习3:(1)函数f (x )=1-2x +1x +3的定义域为() A .(-3,0]B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1](2)函数f (x )=⎝ ⎛⎭⎪⎫13x-1,x ∈[-1,2]的值域为________.【课堂小结】。
高中数学第2章基本初等函数Ⅰ2.1.2指数函数及其性质第2课时指数函数及其性质的应用学案新人教A版必修1
第2课时指数函数及其性质的应用(1)1.52.5和1.53.2;(2)0.6-1.2和0.6-1.5;(3)1.70.2和0.92.1;(4)a1.1与a0.3(a>0且a≠1).[解](1)1.52.5,1.53.2可看作函数y=1.5x的两个函数值,由于底数1.5>1,所以函数y =1.5x在R上是增函数,因为2.5<3.2,所以1.52.5<1.53.2.(2)0.6-1.2,0.6-1.5可看作函数y=0.6x的两个函数值,因为函数y=0.6x在R上是减函数,且-1.2>-1.5,所以0.6-1.2<0.6-1.5.(3)由指数函数性质得,1.70.2>1.70=1,0.92.1<0.90=1,所以1.70.2>0.92.1.(4)当a>1时,y=a x在R上是增函数,故a1.1>a0.3;当0<a<1时,y=a x在R上是减函数,故a1.1<a0.3.比较幂的大小的方法(1)同底数幂比较大小时构造指数函数,根据其单调性比较.(2)指数相同底数不同时分别画出以两幂底数为底数的指数函数图象,当x取相同幂指数时可观察出函数值的大小.(3)底数、指数都不相同时,取与其中一底数相同与另一指数相同的幂与两数比较,或借助“1”与两数比较.(4)当底数含参数时,要按底数a>1和0<a<1两种情况分类讨论.[解] 先根据幂的特征,将这4个数分类:(2)中, (也可在同一平面直角坐标系中,分别作出y =⎝ ⎛⎭⎪⎫43x ,y =2x 的图象,再分别取x=13,x =23,比较对应函数值的大小,如图),【例2】 (1)解不等式⎝ ⎛⎭⎪⎫12≤2;(2)已知ax 2-3x +1<ax +6(a >0,a ≠1),求x 的取值范围.[解] (1)∵2=⎝ ⎛⎭⎪⎫12-1,∴原不等式可以转化为⎝ ⎛⎭⎪⎫123x -1≤⎝ ⎛⎭⎪⎫12-1.∵y =⎝ ⎛⎭⎪⎫12x在R 上是减函数,∴3x -1≥-1,∴x ≥0, 故原不等式的解集是{x |x ≥0}. (2)分情况讨论:①当0<a <1时,函数f (x )=a x(a >0,a ≠1)在R 上是减函数, ∴x 2-3x +1>x +6,∴x 2-4x -5>0, 根据相应二次函数的图象可得x <-1或x >5;②当a >1时,函数f (x )=a x(a >0,a ≠1)在R 上是增函数, ∴x 2-3x +1<x +6,∴x 2-4x -5<0, 根据相应二次函数的图象可得-1<x <5.综上所述,当0<a <1时,x <-1或x >5;当a >1时,-1<x <5.1.利用指数型函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式. 2.解不等式af (x )>ag (x )(a >0,a ≠1)的依据是指数型函数的单调性,要养成判断底数取值范围的习惯,若底数不确定,就需进行分类讨论,即af (x )>ag (x )⇔⎩⎪⎨⎪⎧f (x )>g (x ),a >1,f (x )<g (x ),0<a <1.2.若a x +1>⎝ ⎛⎭⎪⎫1a 5-3x(a >0且a ≠1),求x 的取值范围.[解] 因为a x +1>⎝ ⎛⎭⎪⎫1a 5-3x,所以a x +1>a 3x -5,当a >1时,y =a x为增函数,可得x +1>3x -5,所以x <3; 当0<a <1时,y =a x为减函数,可得x +1<3x -5,所以x >3.综上,当a >1时,x 的取值范围为(-∞,3);当0<a <1时,x 的取值范围为(3,+∞).1.试结合图象,分析y =2-x,y =2|x |,y =⎝ ⎛⎭⎪⎫12x +1的单调性,并写出相应单调区间.提示:减区间为(-∞,+∞) 增区间为(0,+∞)减区间为(-∞,0) 减区间为(-∞,+∞)2.结合探究1,分析函数y =2|x |与函数y =|x |的单调性是否一致? 提示:y =2|x |的单调性与y =|x |的单调性一致.3.函数y =a -x 2(a >0,且a ≠1)的单调性与y =-x 2的单调性存在怎样的关系? 提示:分两类:(1)当a >1时,函数y =a -x 2的单调性与y =-x 2的单调性一致; (2)当0<a <1时,函数y =a -x 2的单调性与y =-x 2的单调性相反. 【例3】 判断f (x )=⎝ ⎛⎭⎪⎫13x 2-2x 的单调性,并求其值域. 思路点拨:令u =x 2-2x ―→函数u (x )的单调性―→函数y =⎝ ⎛⎭⎪⎫13u的单调性――→同增异减函数f (x )的单调性[解] 令u =x 2-2x ,则原函数变为y =⎝ ⎛⎭⎪⎫13u. ∵u =x 2-2x =(x -1)2-1在(-∞,1]上递减,在[1,+∞)上递增,又∵y =⎝ ⎛⎭⎪⎫13u在(-∞,+∞)上递减,∴y =⎝ ⎛⎭⎪⎫13x 2-2x 在(-∞,1]上递增,在[1,+∞)上递减.∵u =x 2-2x =(x -1)2-1≥-1,∴y =⎝ ⎛⎭⎪⎫13u,u ∈[-1,+∞), ∴0<⎝ ⎛⎭⎪⎫13u≤⎝ ⎛⎭⎪⎫13-1=3,∴原函数的值域为(0,3].函数y=a f(x)(a>0,a≠1)的单调性的处理技巧(1)关于指数型函数y=a f(x)(a>0,且a≠1)的单调性由两点决定,一是底数a>1还是0<a<1;二是f(x)的单调性,它由两个函数y=a u,u=f(x)复合而成.(2)求复合函数的单调区间,首先求出函数的定义域,然后把函数分解成y=f(u),u=φ(x),通过考查f(u)和φ(x)的单调性,求出y=f(φ(x))的单调性.1.比较两个指数式值的大小的主要方法(1)比较形如a m与a n的大小,可运用指数函数y=a x的单调性.(2)比较形如a m与b n的大小,一般找一个“中间值c”,若a m<c且c<b n,则a m<b n;若a m>c 且c>b n,则a m>b n.2.解简单指数不等式问题的注意点(1)形如a x>a y的不等式,可借助y=a x的单调性求解.如果a的值不确定,需分0<a<1和a>1两种情况进行讨论.(2)形如a x>b的不等式,注意将b化为以a为底的指数幂的形式,再借助y=a x的单调性求解.(3)形如a x>b x的不等式,可借助图象求解.3.(1)研究y=a f(x)型单调区间时,要注意a>1还是0<a<1.当a>1时,y=a f(x)与f(x)单调性相同.当0<a<1时,y=a f(x)与f(x)单调性相反.(2)研究y=f(a x)型单调区间时,要注意a x属于f(u)的增区间还是减区间.1.思考辨析(1)y =21-x是R 上的增函数.( ) (2)若0.1a>0.1b,则a >b .( ) (3)a ,b 均大于0且不等于1,若a x=b x,则x =0.( )(4)由于y =a x(a >0且a ≠1)既非奇函数,也非偶函数,所以指数函数与其他函数也组不成具有奇偶性的函数.( )[答案] (1)× (2)× (3)× (4)× 2.若2x +1<1,则x 的取值范围是( )A .(-1,1)B .(-1,+∞)C .(0,1)∪(1,+∞)D .(-∞,-1)D [∵2x +1<1=20,且y =2x是增函数,∴x +1<0,∴x <-1.] 3.下列判断正确的是( ) A .1.72.5>1.73B .0.82<0.83C .π2<π2D .0.90.3>0.90.5D [∵y =0.9x在定义域上是减函数,0.3<0.5,∴0.90.3>0.90.5.]4.已知函数f (x )=a x(a >0且a ≠1)的图象经过点⎝ ⎛⎭⎪⎫2,19.(1)比较f (2)与f (b 2+2)的大小; (2)求函数g (x )=ax 2-2x (x ≥0)的值域.[解] (1)由已知得a 2=19,解得a =13,因为f (x )=⎝ ⎛⎭⎪⎫13x 在R 上递减,2≤b 2+2,所以f (2)≥f (b 2+2).(2)因为x ≥0,所以x 2-2x ≥-1,所以⎝ ⎛⎭⎪⎫13x 2-2x ≤3,即函数g (x )=ax 2-2x (x ≥0)的值域为(0,3].。
高中数学第2章基本初等函数Ⅰ2.1.2指数函数及其性质第1课时指数函数的图象及性质学案新人教A版必修1
第1课时指数函数的图象及性质1.指数函数的概念一般地,函数y=a x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R.2.指数函数的图象和性质1.指数函数y=a x(a>0且a≠1)的图象“升”“降”主要取决于什么?[提示]指数函数y=a x(a>0且a≠1)的图象“升”“降”主要取决于字母a.当a>1时,图象具有上升趋势;当0<a<1时,图象具有下降趋势.2.指数函数值随自变量有怎样的变化规律?[提示]指数函数值随自变量的变化规律1.下列函数一定是指数函数的是( )A.y=2x+1B.y=x3C.y=3·2x D.y=3-xD[由指数函数的定义可知D正确.]2.函数y=3-x的图象是( )A B C DB [∵y =3-x=⎝ ⎛⎭⎪⎫13x,∴B 选项正确.] 3.若指数函数f (x )的图象过点(3,8),则f (x )的解析式为( ) A .f (x )=x 3B .f (x )=2xC .f (x )=⎝ ⎛⎭⎪⎫12xD .f (x )=x 13B [设f (x )=a x(a >0且a ≠1),则由f (3)=8得a 3=8,∴a =2,∴f (x )=2x ,故选B.]4.函数y =a x(a >0且a ≠1)在R 上是增函数,则a 的取值范围是________.(1,+∞) [结合指数函数的性质可知,若y =a x(a >0且a ≠1)在R 上是增函数,则a >1.]A .1B .2C .3D .0(2)已知函数f (x )为指数函数,且f ⎝ ⎛⎭⎪⎫-32=39,则f (-2)=________.(1)D (2)19 [(1)①中底数-8<0,所以不是指数函数;②中指数不是自变量x ,而是x 的函数, 所以不是指数函数;③中底数a ,只有规定a >0且a ≠1时,才是指数函数; ④中3x前的系数是2,而不是1,所以不是指数函数,故选D.(2)设f (x )=a x (a >0且a ≠1),由f ⎝ ⎛⎭⎪⎫-32=39得a -32=39,所以a =3,又f (-2)=a -2,所以f (-2)=3-2=19.]1.判断一个函数是否为指数函数,要牢牢抓住三点: (1)底数是大于0且不等于1的常数;(2)指数函数的自变量必须位于指数的位置上; (3)a x的系数必须为1.2.求指数函数的解析式常用待定系数法.1.已知函数f (x )=(2a -1)x是指数函数,则实数a 的取值范围是________.⎝ ⎛⎭⎪⎫12,1∪(1,+∞) [由题意可知⎩⎪⎨⎪⎧2a -1>0,2a -1≠1,解得a >12,且a ≠1, 所以实数a 的取值范围是⎝ ⎛⎭⎪⎫12,1∪(1,+∞).]( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0(2)函数y =ax -3+3(a >0,且a ≠1)的图象过定点________.(1)D (2)(3,4) [(1)由于f (x )的图象单调递减,所以0<a <1, 又0<f (0)<1,所以0<a -b<1=a 0,即-b >0,b <0,故选D. (2)令x -3=0得x =3,此时y =4.故函数y =a x -3+3(a >0,且a ≠1)的图象过定点(3,4).]指数函数图象问题的处理技巧(1)抓住图象上的特殊点,如指数函数的图象过定点.(2)利用图象变换,如函数图象的平移变换(左右平移、上下平移).(3)利用函数的奇偶性与单调性.奇偶性确定函数的对称情况,单调性决定函数图象的走势.2.已知f (x )=2x的图象,指出下列函数的图象是由y =f (x )的图象通过怎样的变化得到: (1)y =2x +1;(2)y =2x -1;(3)y =2x+1;(4)y =2-x ;(5)y =2|x |. [解] (1)y =2x +1的图象是由y =2x的图象向左平移1个单位得到.(2)y =2x -1的图象是由y =2x的图象向右平移1个单位得到.(3)y =2x +1的图象是由y =2x的图象向上平移1个单位得到.(4)∵y =2-x与y =2x 的图象关于y 轴对称,∴作y =2x的图象关于y 轴的对称图形便可得到y =2-x的图象.(5)∵y =2|x |为偶函数,故其图象关于y 轴对称,故先作出当x ≥0时,y =2x的图象,再作关于y 轴的对称图形,即可得到y =2|x |的图象.]1.函数y =的定义域与f (x )=x 2+1的定义域什么关系? 提示:定义域相同. 2.如何求y =的值域?提示:可先令t =x 2+1,则易求得t 的取值范围为[1,+∞),又y =2t在[1,+∞)上是单调递增函数,故2t ≥2,所以y =2x 2+1的值域为[2,+∞).【例3】 求下列函数的定义域和值域:思路点拨:函数式有意义―→原函数的定义域 ――――→指数函数的值域原函数的值域 [解] (1)要使函数式有意义,则1-3x≥0,即3x≤1=30,因为函数y =3x在R 上是增函数,所以x ≤0,故函数y =1-3x的定义域为(-∞,0].因为x ≤0,所以0<3x≤1,所以0≤1-3x<1,所以1-3x∈[0,1),即函数y =1-3x的值域为[0,1).(3)因为对于任意的x ∈R ,函数y =4x+2x +1+2都有意义,所以函数y =4x +2x +1+2的定义域为R .因为2x>0,所以4x+2x +1+2=(2x )2+2×2x+2=(2x+1)2+1>1+1=2,即函数y =4x+2x +1+2的值域为(2,+∞).1.若本例(1)的函数换为“y =⎝ ⎛⎭⎪⎫13x-1”,求其定义域. [解] 由⎝ ⎛⎭⎪⎫13x -1≥0得⎝ ⎛⎭⎪⎫13x≥⎝ ⎛⎭⎪⎫130,∴x ≤0,即函数的定义域为(-∞,0]. 2.若本例(3)的函数增加条件“0≤x ≤2”,再求函数的值域. [解] ∵0≤x ≤2,∴1≤2x ≤4,∴y =4x +2x +1+2=(2x )2+2×2x +2=(2x +1)2+1.令2x=t ,则t ∈[1,4],且f (t )=(t +1)2+1,易知f(t)在[1,4]上单调递增,∴f(1)≤f(t)≤f(4),即5≤f(t)≤26,即函数y=4x+2x+1+2的值域为[5,26].1.函数y=a f(x)的定义域与y=f(x)的定义域相同.2.函数y=a f(x)的值域的求解方法如下:(1)换元,令t=f(x);(2)求t=f(x)的定义域x∈D;(3)求t=f(x)的值域t∈M;(4)利用y=a t的单调性求y=a t,t∈M的值域.3.形如y=f(a x)的值域,要先求出u=a x的值域,再结合y=f(u)确定出y=f(a x)的值域.1.判断一个函数是否为指数函数只需判定其解析式是否符合y=a x(a>0且a≠1)这一结构形式.2.指数函数在同一直角坐标系中的图象的相对位置与底数大小的关系:在y轴右侧,图象从上到下相应的底数由大变小;在y轴左侧,图象从下到上相应的底数由大变小,即无论在y轴的左侧还是右侧,底数按逆时针方向变大.3.由于指数函数y=a x(a>0且a≠1)的定义域为R,所以函数y=a f(x)(a>0且a≠1)与函数f(x)的定义域相同,求与指数函数有关的函数的值域时,要考虑并利用指数函数本身的要求,并利用好指数函数的单调性.1.思考辨析(1)y=x2是指数函数.( )(2)函数y=2-x不是指数函数.( )(3)指数函数的图象一定在x轴的上方.( )[答案](1)×(2)×(3)√2.如图是指数函数①y=a x,②y=b x,③y=c x,④y=d x的图象,则a,b,c,d与1的大小关系是( )A.a<b<1<c<d B.b<a<1<d<cC.1<a<b<c<d D.a<b<1<d<cB[作直线x=1,与四个图象分别交于A,B,C,D四点,则A(1,a),B(1,b),C(1,c ),D (1,d ),由图可知b <a <1<d <c ,故选B.]3.函数y =1-⎝ ⎛⎭⎪⎫12x的定义域是________. [0,+∞) [由1-⎝ ⎛⎭⎪⎫12x≥0得⎝ ⎛⎭⎪⎫12x≤1=⎝ ⎛⎭⎪⎫120,∴x ≥0, ∴函数y =1-⎝ ⎛⎭⎪⎫12x的定义域为[0,+∞).] 4.设f (x )=3x,g (x )=⎝ ⎛⎭⎪⎫13x. (1)在同一坐标系中作出f (x ),g (x )的图象;(2)计算f (1)与g (-1),f (π)与g (-π),f (m )与g (-m )的值,从中你能得到什么结论? [解] (1)函数f (x ),g (x )的图象如图所示:(2)f (1)=31=3,g (-1)=⎝ ⎛⎭⎪⎫13-1=3,f (π)=3π,g (-π)=⎝ ⎛⎭⎪⎫13-π=3π,f (m )=3m,g (-m )=⎝ ⎛⎭⎪⎫13-m=3m .从以上计算的结果看,两个函数当自变量取值互为相反数时,其函数值相等,即当指数函数的底数互为倒数时,它们的图象关于y 轴对称.。
高中数学 第二章 2.1 指数函数 2.1.2 指数函数及其性质(二)学案(含解析)新人教A版必修1
2.1.2 指数函数及其性质(二)学习目标 1.掌握指数函数与其他函数复合所得的函数单调区间的求法及单调性的判断.2.能借助指数函数的性质比较大小.3.会解简单的指数方程、不等式.知识点一 不同底指数函数图象的相对位置思考 y =2x与y =3x都是增函数,都过点(0,1),在同一坐标系内如何确定它们两个的相对位置?答案 经描点观察,在y 轴右侧,2x<3x,即y =3x图象在y =2x上方,经(0,1)点交叉,位置在y 轴左侧反转,y =2x在y =3x图象上方.梳理 一般地,在同一坐标系中有多个指数函数图象时,图象的相对位置与底数大小有如下关系:(1)在y 轴右侧,图象从上到下相应的底数由大变小;在y 轴左侧,图象从下到上相应的底数由大变小.即无论在y 轴的左侧还是右侧,底数按逆时针方向变大.这一性质可通过令x =1时,y =a 去理解,如图.(2)指数函数y =a x与y =⎝ ⎛⎭⎪⎫1ax (a >0且a ≠1)的图象关于y 轴对称.知识点二 比较幂的大小思考 若x 1<x 2,则1x a 与2xa (a >0且a ≠1)的大小关系如何? 答案 当a >1时,y =a x在R 上为增函数,所以12,x xa a < 当0<a <1时,y =a x在R 上为减函数,所以12.x xa a > 梳理 一般地,比较幂大小的方法有:(1)对于同底数不同指数的两个幂的大小,利用指数函数的单调性来判断;(2)对于底数不同指数相同的两个幂的大小,利用指数函数的图象的变化规律来判断; (3)对于底数不同指数也不同的两个幂的大小,则通过中间值来判断. 知识点三 解指数方程、不等式简单指数不等式的解法 (1)形如af (x )>ag (x )的不等式,可借助y =a x的单调性求解;(2)形如a f (x )>b 的不等式,可将b 化为以a 为底数的指数幂的形式,再借助y =a x的单调性求解;(3)形如a x >b x 的不等式,可借助两函数y =a x ,y =b x的图象求解. 知识点四 与指数函数复合的函数单调性思考 112xy ⎛⎫=⎪⎝⎭的定义域与y =1x 的定义域是什么关系?112xy ⎛⎫= ⎪⎝⎭的单调性与y =1x 的单调性有什么关系?答案 由于y =a x(a >0且a ≠1)的定义域为R ,故112xy ⎛⎫=⎪⎝⎭的定义域与y =1x 的定义域相同,故研究112xy ⎛⎫=⎪⎝⎭的单调性,只需在y =1x 的定义域内研究.若设0<x 1<x 2,则1x 1>1x 2,121111,22x x ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭不等号方向的改变与y =⎝ ⎛⎭⎪⎫12x ,y =1x 的单调性均有关.梳理 一般地,有形如y =a f (x )(a >0,且a ≠1)函数的性质(1)函数y =af (x )与函数y =f (x )有相同的定义域.(2)当a >1时,函数y =a f (x )与y =f (x )具有相同的单调性;当0<a <1时,函数y =af (x )与函数y =f (x )的单调性相反.1.y =21-x是R 上的增函数.( × )2.若0.1a>0.1b,则a >b .( × )3.a ,b 均大于0且不等于1,若a x=b x,则x =0.( × )4.由于y =a x(a >0且a ≠1)既非奇函数,也非偶函数,所以指数函数与其他函数也组不成具有奇偶性的函数.( × )类型一 解指数方程 例1 解下列方程.(1)81×32x=⎝ ⎛⎭⎪⎫19x +2;(2)22x +2+3×2x-1=0.考点 指数方程的解法 题点 指数方程的解法解 (1)∵81×32x=⎝ ⎛⎭⎪⎫19x +2,∴32x +4=3-2(x +2),∴2x +4=-2(x +2), ∴x =-2. (2)∵22x +2+3×2x-1=0,∴4×(2x )2+3×2x-1=0.令t =2x(t >0),则方程可化为4t 2+3t -1=0, 解得t =14或t =-1(舍去).∴2x=14,解得x =-2.反思与感悟 (1)af (x )=b 型通常化为同底来解.(2)解指数方程时常用换元法,用换元法时要特别注意“元”的范围.转化为解二次方程,用二次方程求解时,要注意二次方程根的取舍. 跟踪训练1 解下列方程. (1)33x -2=81;(2)5x=325; (3)52x-6×5x+5=0. 考点 指数方程的解法 题点 指数方程的解法 解 (1)∵81=34,∴33x -2=34,∴3x -2=4,解得x =2.(2)∵5x=325,∴x 2=23,解得x =43. (3)令t =5x,则t >0,原方程可化为t 2-6t +5=0, 解得t =5或t =1,即5x=5或5x=1,∴x =1或x =0.类型二 指数函数单调性的应用 命题角度1 比较大小例2 比较下列各题中两个值的大小. (1)1.7-2.5,1.7-3;(2)1.70.3,1.50.3;(3)1.70.3,0.83.1. 考点 指数幂的大小比较 题点 比较指数幂大小解 (1)∵1.7>1,∴y =1.7x在(-∞,+∞)上是增函数. ∵-2.5>-3,∴1.7-2.5>1.7-3.(2)方法一 ∵1.7>1.5,∴在(0,+∞)上,y =1.7x的图象位于y =1.5x的图象的上方. 而0.3>0,∴1.70.3>1.50.3.方法二 ∵1.50.3>0,且1.70.31.50.3=⎝ ⎛⎭⎪⎫1.71.50.3,又1.71.5>1,0.3>0,∴⎝ ⎛⎭⎪⎫1.71.50.3>1,∴1.70.3>1.50.3. (3)∵1.70.3>1.70=1,0.83.1<0.80=1, ∴1.70.3>0.83.1.反思与感悟 当两个数不能利用同一函数的单调性作比较时,可考虑引入中间量,常用的中间量有0和±1.跟踪训练2 比较下列各题中的两个值的大小. (1)0.8-0.1,1.250.2;(2)⎝ ⎛⎭⎪⎫1π-π,1; (3)0.2-3,(-3)0.2. 考点 指数幂的大小比较 题点 比较指数幂大小解 (1)∵0<0.8<1,∴y =0.8x在R 上是减函数. ∵-0.2<-0.1,∴0.8-0.2>0.8-0.1,即0.8-0.1<1.250.2.(2)∵0<1π<1,∴函数y =⎝ ⎛⎭⎪⎫1πx在R 上是减函数.又∵-π<0,∴⎝ ⎛⎭⎪⎫1π-π>⎝ ⎛⎭⎪⎫1π0=1,即⎝ ⎛⎭⎪⎫1π-π>1.(3)0.2-3=⎝ ⎛⎭⎪⎫210-3=⎝ ⎛⎭⎪⎫15-3=53,210.2105(3)(3)3,-=-=1135333,5125 3.∴<==>1330.2535,(3).-∴<>-即0.2命题角度2 解指数不等式 例3 解关于x 的不等式:a 2x +1≤ax -5(a >0,且a ≠1).考点 指数不等式的解法 题点 指数不等式的解法 解 ①当0<a <1时,∵a2x +1≤ax -5,∴2x +1≥x -5,解得x ≥-6. ②当a >1时,∵a2x +1≤ax -5,∴2x +1≤x -5,解得x ≤-6.综上所述,当0<a <1时,不等式的解集为{x |x ≥-6};当a >1时,不等式的解集为{x |x ≤-6}.反思与感悟 解指数不等式的基本方法是先化为同底指数式,再利用指数函数单调性化为常规的不等式来解,注意底数对不等号方向的影响. 跟踪训练3 已知(a 2+a +2)x >(a 2+a +2)1-x,则x 的取值范围是________.考点 指数不等式的解法 题点 指数不等式的解法答案 ⎝ ⎛⎭⎪⎫12,+∞ 解析 ∵a 2+a +2=⎝ ⎛⎭⎪⎫a +122+74>1,∴(a 2+a +2)x >(a 2+a +2)1-x⇔x >1-x ⇔x >12.∴x ∈⎝ ⎛⎭⎪⎫12,+∞.类型三 求与指数函数复合的函数的单调区间 例4 (1)求函数261712x x y ⎛⎫ ⎪⎝⎭-+=的单调区间;(2)求函数y =⎝ ⎛⎭⎪⎫122x -8·⎝ ⎛⎭⎪⎫12x+17的单调区间.考点 指数函数的单调性 题点 指数型复合函数的单调区间 解 (1)函数261712x x y ⎛⎫ ⎪⎝⎭-+=的定义域为R .在(-∞,3]上,y =x 2-6x +17是减函数, ∴261712x x y ⎛⎫ ⎪⎝⎭-+=在(-∞,3]上是增函数.在[3,+∞)上,y =x 2-6x +17是增函数, ∴261712x x y ⎛⎫ ⎪⎝⎭-+=在[3,+∞)上是减函数.∴261712x x y ⎛⎫ ⎪⎝⎭-+=的增区间是(-∞,3],减区间是[3,+∞).(2)函数y =⎝ ⎛⎭⎪⎫122x -8·⎝ ⎛⎭⎪⎫12x+17的定义域为R .设t =⎝ ⎛⎭⎪⎫12x >0,又y =t 2-8t +17在(0,4]上单调递减,在[4,+∞)上单调递增,令⎝ ⎛⎭⎪⎫12x≤4,得x ≥-2, ∴当-2≤x 1<x 2时,12114,22x x⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭≥即4≥t 1>t 2,∴t 21-8t 1+17<t 22-8t 2+17.∴y =⎝ ⎛⎭⎪⎫122x -8·⎝ ⎛⎭⎪⎫12x+17的单调增区间是[-2,+∞).同理可得减区间是(-∞,-2].反思与感悟 复合函数单调性问题归根结底是由x 1<x 2到f (x 1)与f (x 2)的大小,再到g (f (x 1))与g (f (x 2))的大小关系问题. 跟踪训练4 求下列函数的单调区间.223(1);xx y a +-=(2)y =10.2x -1.考点 指数函数的单调性 题点 指数型复合函数的单调区间 解 (1)设y =a u ,u =x 2+2x -3,由u =x 2+2x -3=(x +1)2-4,得u 在(-∞,-1]上为减函数,在[-1,+∞)上为增函数. 当a >1时,y 关于u 为增函数; 当0<a <1时,y 关于u 为减函数,∴当a >1时,原函数的增区间为[-1,+∞),减区间为(-∞,-1]; 当0<a <1时,原函数的增区间为(-∞,-1],减区间为[-1,+∞). (2)已知函数的定义域为{x |x ≠0}. 设y =1u -1,u =0.2x ,易知u =0.2x为减函数. 而根据y =1u -1的图象可知在区间(-∞,1)和(1,+∞)上,y 是关于u 的减函数, ∴原函数的增区间为(-∞,0)和(0,+∞).1.下列大小关系正确的是( ) A .0.43<30.4<π0B .0.43<π0<30.4C .30.4<0.43<π0D .π0<30.4<0.43考点 指数幂的大小比较 题点 比较指数幂大小 答案 B解析 0.43<0.40=π0=30<30.4. 2.方程42x -1=16的解是( )A .x =-32B .x =32C .x =1D .x =2考点 指数方程的解法 题点 指数方程的解法 答案 B解析 ∵42x -1=42,∴2x -1=2,x =32.3.函数211()2x f x -⎛⎫= ⎪⎝⎭的单调递增区间为( )A .(-∞,0]B .[0,+∞)C .(-1,+∞)D .(-∞,-1)考点 指数函数的单调性 题点 指数型复合函数的单调区间 答案 A解析 ∵211()2x f x -⎛⎫= ⎪⎝⎭,0<12<1,∴f (x )的单调递增区间为u (x )=x 2-1的单调递减区间,即(-∞,0].4.设0<a <1,则关于x 的不等式22232223x x x x aa -++->的解集为________. 考点 指数不等式的解法 题点 指数不等式的解法 答案 (1,+∞)解析 ∵0<a <1,∴y =a x在R 上是减函数, 又∵22232223x x x x aa -++->,∴2x 2-3x +2<2x 2+2x -3,解得x >1. 5.f (x )=2x+2-x的奇偶性是________. 考点 与指数函数相关的函数的奇偶性 题点 与指数函数相关的函数的奇偶性 答案 偶函数解析 f (x )的定义域为R .f (-x )=2-x +2-(-x )=2x +2-x =f (x ),∴f (x )为偶函数.1.比较两个指数式值的大小的主要方法(1)比较形如a m与a n的大小,可运用指数函数y =a x的单调性.(2)比较形如a m与b n的大小,一般找一个“中间值c ”,若a m<c 且c <b n,则a m<b n;若a m>c 且c >b n ,则a m >b n .2.解简单指数不等式问题的注意点(1)形如a x>a y的不等式,可借助y =a x的单调性求解.如果a 的值不确定,需分0<a <1和a >1两种情况进行讨论.(2)形如a x>b 的不等式,注意将b 化为以a 为底的指数幂的形式,再借助y =a x的单调性求解. (3)形如a x>b x 的不等式,可借助图象求解. 3.(1)研究y =a f (x )型单调区间时,要注意a >1还是0<a <1.当a >1时,y =af (x )与f (x )单调性相同. 当0<a <1时,y =af (x )与f (x )单调性相反.(2)研究y =f (a x)型单调区间时,要注意a x属于f (u )的增区间还是减区间.一、选择题1.设x <0,且1<b x<a x,则( ) A .0<b <a <1 B .0<a <b <1 C .1<b <aD .1<a <b考点 指数不等式的解法 题点 指数不等式的解法 答案 B解析 ∵1<b x<a x,x <0,∴0<a <1,0<b <1. 当x =-1时,1b <1a,即b >a ,∴0<a <b <1.2.函数y =a x在[0,1]上的最大值与最小值的和为3,则函数y =2ax -1在[0,1]上的最大值是( ) A .6B .1C .3D.32考点 指数函数的最值题点 根据指数函数的最值求底数 答案 C解析 函数y =a x在[0,1]上是单调的,最大值与最小值都在端点处取到,故有a 0+a 1=3,解得a =2,因此函数y =2ax -1=4x -1在[0,1]上是单调递增函数,当x =1时,y max =3. 3.已知a =5-12,函数f (x )=a x,若实数m ,n 满足f (m )>f (n ),则m ,n 的关系为( )A .m +n <0B .m +n >0C .m >nD .m <n考点 指数不等式的解法 题点 指数不等式的解法 答案 D 解析 ∵0<5-12<1,∴f (x )=a x=⎝ ⎛⎭⎪⎫5-12x 在R 上单调递减, 又∵f (m )>f (n ),∴m <n ,故选D. 4.若函数f (x )=a |2x -4|(a >0,且a ≠1),满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .[2,+∞)C .[-2,+∞)D .(-∞,-2]考点 指数函数的单调性 题点 指数型复合函数的单调区间 答案 B解析 由f (1)=19得a 2=19,所以a =13(a =-13舍去),即f (x )=⎝ ⎛⎭⎪⎫13|2x -4|.由于y =|2x -4|在(-∞,2]上递减,在[2,+∞)上递增, 所以f (x )在(-∞,2]上递增,在[2,+∞)上递减. 故选B.5.设y 1=40.9,y 2=80.48,y 3=⎝ ⎛⎭⎪⎫12-1.5,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 2考点 指数幂的大小比较 题点 比较指数幂大小 答案 D 解析 40.9=21.8,80.48=21.44,⎝ ⎛⎭⎪⎫12-1.5=21.5,根据y=2x在R上是增函数,得21.8>21.5>21.44,即y1>y3>y2,故选D.6.设f(x)=|3x-1|,c<b<a且f(c)>f(a)>f(b),则下列关系式中一定成立的是( ) A.3c≤3b B.3c>3bC.3c+3a>2 D.3c+3a<2考点指数函数性质的综合应用题点指数函数的综合问题答案 D解析f(x)=|3x-1|的图象如下.由c<b<a且f(c)>f(a)>f(b)可知c,b,a不在同一个单调区间上.故有c<0,a>0.∴f(c)=1-3c,f(a)=3a-1.∴f(c)>f(a),即1-3c>3a-1,3c+3a<2.7.已知函数f(x)=x(e x+a e-x)(x∈R),若f(x)是偶函数,记a=m,若f(x)是奇函数,记a =n,则m+2n的值为( )A.0B.1C.2D.-1考点与指数函数相关的函数的奇偶性题点与指数函数相关的函数的奇偶性答案 B解析当f(x)是偶函数时,f(x)=f(-x),即x(e x+a e-x)=-x(e-x+a e x),即(1+a)(e x+e -x)x=0,因为上式对任意实数x都成立,所以a=-1,即m=-1.当f(x)是奇函数时,f(x)=-f(-x),即x(e x+a e-x)=x(e-x+a e x),即(1-a)(e x-e-x)x=0,因为上式对任意实数x都成立,所以a =1,即n =1,所以m +2n =1.8.若存在正实数x 使2x(x -a )<1,则a 的取值范围是( )A .(-∞,+∞)B .(-2,+∞)C .(0,+∞)D .(-1,+∞) 考点 指数函数的单调性题点 根据指数函数的单调性求参数的取值范围答案 D解析 由2x (x -a )<1,得a >x -12x (x >0), 令f (x )=x -12x ,即a >f (x )有解,则a >f (x )min ,又f (x )在(0,+∞)上是增函数, ∴f (x )>f (0)=-1,∴a >-1.故选D.二、填空题 9.函数f (x )=⎝ ⎛⎭⎪⎫13245x x --的单调递减区间是________. 考点 指数函数的单调性题点 指数型复合函数的单调区间答案 (2,+∞)解析 函数由f (t )=⎝ ⎛⎭⎪⎫13t ,t (x )=x 2-4x -5复合而成,其中f (t )=⎝ ⎛⎭⎪⎫13t 是减函数,t (x )=x 2-4x -5在(-∞,2)上是减函数,在(2,+∞)上是增函数.由复合函数的单调性可知,函数的单调递减区间为(2,+∞).10.某驾驶员喝酒后血液中的酒精含量f (x )(mg/mL)随时间x (h)变化的规律近似满足解析式f (x )=⎩⎪⎨⎪⎧ 5x -2,0≤x ≤1,35·⎝ ⎛⎭⎪⎫13x ,x >1.规定驾驶员血液中的酒精含量不得超过0.02mg/mL ,据此可知,此驾驶员至少要过______h 后才能开车.(精确到1h)考点 指数函数的实际应用题点 指数函数的实际应用答案 4解析 当0≤x ≤1时,125≤5x -2≤15,此时不宜开车;由35·⎝ ⎛⎭⎪⎫13x ≤0.02,可得x ≥3.10.故至少要过4h 后才能开车.11.若4x +2x +1+m >1对一切实数x 成立,则实数m 的取值范围是__________.考点 指数函数性质的综合应用题点 与指数函数有关的恒成立问题答案 [1,+∞)解析 4x +2x +1+m >1等价于(2x )2+2·2x +1>2-m ,即(2x +1)2>2-m .∵2x ∈(0,+∞), ∴2x +1∈(1,+∞),∴2-m ≤1,解得m ≥1.三、解答题12.已知函数f (x )=2a ·4x -2x-1.(1)当a =1时,解不等式f (x )>0;(2)当a =12,x ∈[0,2]时,求f (x )的值域. 考点 指数函数性质的综合应用题点 与指数函数有关的恒成立问题解 (1)当a =1时,f (x )=2·4x -2x -1. f (x )>0,即2·(2x )2-2x -1>0,解得2x >1或2x <-12(舍去), ∴x >0,∴不等式f (x )>0的解集为{x |x >0}.(2)当a =12时,f (x )=4x -2x -1,x ∈[0,2].设t =2x,∵x ∈[0,2],∴t ∈[1,4].令y =g (t )=t 2-t -1(1≤t ≤4),画出g (t )=t 2-t -1(1≤t ≤4)的图象(如图),可知g (t )min =g (1)=-1,g (t )max =g (4)=11,∴f (x )的值域为[-1,11].13.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=1-2-x ,(1)写出f (x )的单调区间;(2)求不等式f (x )<-12的解集. 考点 指数函数性质的综合应用题点 与指数函数有关的恒成立问题解 (1)∵f (x )是定义在R 上的奇函数,∴f (0)=0.f (x )在[0,+∞)上是增函数,∴f (x )在(-∞,+∞)上是增函数.(2)f (x )<-12=-f (1)=f (-1), 由(1)知f (x )在R 上是增函数,∴x <-1.即f (x )<-12的解集为(-∞,-1). 四、探究与拓展14.设f (x )满足f (x )=f (4-x ),且当x >2时,f (x )是增函数,则a =f (1.10.9),b =f (0.91.1),c =f (2)的大小关系是________.(按由大到小排列)考点 指数幂的大小比较题点 比较指数幂大小答案 b >a >c解析 ∵f (x )=f (4-x ),∴f (x )关于x =2对称.又∵f (x )在(2,+∞)上是增函数,∴f (x )在(-∞,2)上是减函数.又∵1.10.9>1,0<0.91.1<1,∴0.91.1<1.10.9<2,∴f (0.91.1)>f (1.10.9)>f (2),即b >a >c .15.已知函数f (x )=3x +k ·3-x 为奇函数.(1)求实数k 的值;(2)若关于x 的不等式f (9221ax x --)+f (1-3ax -2)<0只有一个整数解,求实数a 的取值范围. 考点 指数函数性质的综合应用题点 指数函数的综合问题解 (1)显然f (x )的定义域为R .∵f (x )是奇函数,∴f (x )+f (-x )=3x +k ·3-x +3-x +k ·3x=(k +1)(3x +3-x )=0对一切实数x 都成立,∴k =-1.(2)由(1)可知f (x )为R 上的增函数,又f (x )是奇函数,∴f (9221ax x --)+f (1-3ax -2)<0⇒9221ax x --<3ax -2-1⇒3224ax x -<3ax -2⇒2ax 2-4x <ax -2 ⇒(ax -2)(2x -1)<0.当a ≤0时,显然不符合题意;当a >0时,由不等式只有一个整数解,可知不等式的解集为⎝ ⎛⎭⎪⎫12,2a ,且1<2a ≤2⇒1≤a <2,∴实数a 的取值范围是[1,2).。
高中数学 2_1 指数函数教案 新人教版必修1
①1.72.5,1.73;
②0.8-0.1,0.8-0.2;
③1.70.3,0.93.1
二、【举一反三、能力拓展】
1、已知指数函数 ( >0且 ≠1)的图象过点(3,π),求
分析:要求 再把0,1,3分别代入 ,即可求得
作业:求函数y=( ) 的单调区间,并证明。
黑龙江省鸡西市高中数学 2.1 指数函数教案 新人教版必修1
课题:§2.1.2函数的单调性(1)指数函数
模式与方法
启发式
教学目的
1.使学生理解指数函数的含义;
2.并能正确作出其图象,探索并理解指数函数的性质。
重点
指数函数的概念、图象、性质
难点
指数函数的图象、性质
教学内容
师生活动及时间分配
一、引入课题
1.指数函数定义:
一般地,函数叫做指数函数,其中x是,函数定义域是,值域是。
2.研究指数函数y=ax的图象与性质:
a>1
0<a<1
图像
性质
(1)定义域:
(2)值域:
(3)图像过定点:
单调性:
单调性:
1.判断下列函数是否为指数函数:
① ②
③ ( 且 )
④ ⑤
⑥ ⑦
⑧ .
2.若函数 在 上是减函数,则实数 的取值范围是___________
教师引导学生总结
函数y=ax的图象的两域三性
引导学生学会分类讨论的思想
学生通过自学,完成学习目标.
师引导学生思考
练习讲解,增强记忆.
(由学生完成,师生共同分析讲评)
归纳、提升、补充,便于学生理解.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品 教育 试卷 习题 文档
1
指数函数及其性质
学习过程:
一、 实例学习
问题1:某种细
胞分裂时,由1个分裂成2个, 2个分裂成4个,……依此类推,写出1个这
样的细胞分裂x
次后,得到的细
胞个数y与x的
函数解析式?
问题2:公元前300年左右,中国有位杰出的学者庄子,在他的文章《庄子·天
下篇》 中写道:一尺之棰,日取其半,万世不竭。意思是,一尺长的木棍,
每天截掉一半,千年万载也截不完!设第 x天截得的木棍长度为y尺。根据这
句话,试求x 与y 之间的函数关系。
解答:问题1函数解析式为_________ 问题2函数解析式为_______
思考(1)以上两个函数有何共同特征?
(2)这类函数与我们学过的函数y=x,21,xyxy一样吗?有什么区
别?
二、指数函数的概念学习
1.理解指数函数的定义,你认为指数函数的解析式有咋样的结构特征?
2. 为什么规定底数a >0且a ≠1呢?为什么定义域为R?
3.判断下列函数是不是指数函数,为什么?
212333133xxx
xxxxyxyxyyyyyy
① ② ③ ④
⑤ ⑥⑦⑧
4.讲解课本例6,并思考:确定一个指数函数需要什么条件?
01xyaaa三、指数函数(且)的图象特征的学习
列表: 2xy
1
()2xy
描点、连线:
x … -3 -2 -1 0 1 2 3 …
y … …
x … -3 -2 -1 0 1 2 3 …
y … …
9
1
2
3
4
5
6
7
0
8
-1 -2
-3 -4
1 2 3
4
x
y
观察、思考:
(1) 这两个函数的图象有什么关系?
(2) 这两个函数的图象各有什么特点?
试着从以下几个方面找出这两个图象的共同点
和不同点:
① 图象范围
② 图象经过的特殊点
精品 教育 试卷 习题 文档
2
2.观察底数a取其它值时函数图象变化的情况
ya归纳结论:(1)两个指数函数的图象关于轴对称时其解析式的特点:____________
(2)指数函数的图象与底数之间的规律:______________
3.通过理解指数函数的图像和性质,完成例7.例8
四、小结
必做题:P58::练习1,2,3
P59:A组:5,6,7,8
选做题
1321.______.2..2.32xxxAyByxCyDy
下列函数一定是指数函数的是
(21),xyaa2.函数为指数函数求满足的范围______
0.70.90.8
0.8,0.8,1.2,,,abcabc3.已知则的大小关系是_________
(0.7)(0.7),mnmn4.若则和的关系是____