岩土类材料弹塑性力学模型及本构方程【范本模板】
[工学]第1章 岩土弹塑性力学
![[工学]第1章 岩土弹塑性力学](https://img.taocdn.com/s3/m/e84c57aedd88d0d233d46ae4.png)
(9)传统塑性理论中,材料的弹性系数与塑性变形无关,称为弹塑 性不耦合。而岩土塑性理论中,有时要考虑弹塑性耦合,即弹性 系数随塑性变形发展而减少
岩土塑性力学的基本内容
(1)岩土类材料的塑性本构关系理论与模型 (2)岩土类材料的极限分析理论 (3)它们在岩土工程设计和施工中的应用
弹性本构关系的基本特征
岩石力学性质
弹性 塑性 粘性
体力和面 力Fi,Ti
位移ui
平衡
本构关系
相容性 (几何)
应力ij
应变ij
固体力学问题解法中各种变量的相互关系
§1-2 应力状态
1 应力张量
•应力状态——一点所有截面应力矢量的集合。
x xy xz 11 12 13
ij yx y yz 21 22 23
塑性阶段:研究材料在塑性阶段内的受力与变形,这阶 段内的应力应变关系要受到加载状态、应力水平、应力 历史与应力路径的影响。 差别:在应力与应变之间的物理关系不同,即本构关系 不同。 本质差别:在于材料是否存在不可逆的塑性变形
弹性阶段:应力与应变之间的关系是一一对应的,这种应力和 应变之间能建上一一对应关系的称全量关系
第一章 岩土弹塑性力学
土体弹塑性力学(讲义)2

2G −1 3K
2G −1 3K
0
0
0⎤⎥ ⎥
⎢ ⎢
2G 3K
−
1
2 + 2G 3K
2G −1 3K
0
0
0⎥⎥
⎡⎣C e
⎤⎦
=
1 6G
⎢ ⎢ ⎢
2G 3K
−1
2G −1 3K
2 + 2G 3K
0
0
⎥ 0⎥
⎥
⎢ ⎢
0
0
0 3 0 0⎥⎥
⎢0
0
0 0 3 0⎥
⎢⎢⎣ 0
0
0 0 0 3⎥⎥⎦
(3-10b)
3K
在不同的应力条件下,Hooke 本构方程有不同的具体形式。下面给出几个特性应力条件下的应力-应变关系方程。
1 在静水压力(各项等向压力)条件下,σ xx = σ yy = σ zz = p , τ xy = τ yz = τ zx = 0 。则:
σ xx = σ yy = σ zz = Kεv
{ } [ ] σ = σ11
σ 22
σ 33
σ12
σ 23
σT 31
(3-7)
{ } [ ] ε = ε11
ε 22
ε 33
ε12
ε 23
εT 31
(3-8)
⎡⎣
De
⎤⎦
=
(1
+ν
E
) (1
−
2ν
)
⎡1−ν ν ν
⎢ ⎢
ν
1−ν
ν
i ⎢⎢ ⎢
ν 0
ν 1−ν 00
⎢0 0 0 ⎢
⎢⎣ 0 0 0
0 0 0 1− 2ν 0 0
第3章__岩土类介质本构模型- - Copy

p + ptel k ln( 0 ) = J el − 1 el (1 + e0 ) p + pt
-7-
(3.1.7)
其中 Jel-1 是名义体积应变。
QJ =
dv ∴ ε VOL = ln J , 即J = exp ε VOL dv 0
ε vol 即对数体积应变, p tel 是弹性状态下的拉应力极限值
第3章
岩土类介质本构模型
3.1 应力张量,不变量,应力空间
3.1.1 应力张量
一点的应力状态可以由应力张量表示:
⎡ σ11 σ = σ ij = ⎢ ⎢σ 21 ⎢ ⎣σ 31
σ12 σ 22 σ 32
σ13 ⎤ ⎡ σ x ⎢ σ 23 ⎥ ⎥ = ⎢τ yx σ 33 ⎥ ⎦ ⎢ ⎣ τ zx
τ xy σy τ zy
3 S ij S ij 2
(3.1.6)
图 3.1.1 子午线平面 为了描述偏应力的“偏离”程度,我们还需定义偏应力的度量值 t:
t=
其中 k 的范围为 0.778≤k≤1.0, 在三向受拉时,r=q,则 t =
q 1 1 r [1 + − (1 − )( ) 3 ] k k q 2
(3.1.6a)Leabharlann 3.1.2 应力张量的不变量
对弹塑性力学而言, 需要构建一个屈服面来区分弹性与塑性区, 即需要判断材料的应力 水平达到什么程度,才从弹性进入塑性。 对于简单的单向拉压情况,可以直接从实验来得出一个应力分量(拉或压应力)来进行 判定。但是在复杂应力状态时,有六个应力分量来同时描述一点的应力状态,这六个应力分 量的大小与组合有无穷多种可能性, 我们不可能用一一做实验的方法, 来得出从弹性进入塑 性的判断准则;其实这样做也是不必要的。关键是要找到一些与坐标无关的客观量,它们同 时又是应力水平的合理反映,这就是应力张量的不变量。 三个应力不变量为:
岩石的弹塑性本构关系

其中:
t 1 3, 2
s
1
3
2
用剪应力和平均应力来表示
• 常用三维: p q 空间表示
1
P
( 3
1
2
3)
q
1 2
(1
2 )2 ( 2
3 )2 ( 3
1 )2
3
3J2
2 oct
oct
2 3
J2
1 3
(1
2 )2 ( 2
3 )2 ( 3
1 )2
1 J2 6 ( 1
2 )2 ( 2
2)参数意义:
1 ,
(1 3 )u
1 a b
1 b
b 1
1
1
(1 3 )u
1 0
E0
1 3 1
1
a b1
1 a
1 a
E0
变化的规律为
Ti ijTj
•或
i 1,2,3
Ti jiTj
i 1,2,3
• 该3个元素组成的整体称为一阶张量,记作 T
Ti
i 1, 2,3
称为T 的分量,记作
T (Ti ) (T1,T2 ,T3 )
• 一阶张量=向量
4.二阶张量
• 有 32 9 个元素, Tij i, j 1,2,3
1.Cauchy假设:在外力作用下,物体内各点的 应力状态和应变状态之间存在着一一对应的关 系。因此,弹性介质的响应仅与当时的状态有 关而与应变路径或应力路径无关。
• 推论: ① 卸荷后,介质回到初始状态
② 应力、应变都是瞬时发生的,在时间上无先 后顺序
③ 在应力空间和应变空间的各点之间构成一 一对应的映射关系。
岩土弹塑性力学研究生课程教学课件U10

塑性应变增量偏张量和 应力偏张量相似且同轴
{ { 本构方程数学表达
d ii
1 2
E
d ii
deij deiej deipj
deiej
1 2G
dsij
deipj dSij
回忆:张量分解 球张量和偏张量分解
ij m ij sij
m
1 3
(
x
y
z)
yxx
xy y
xz yz
m
m
xy y m
xz yz
zx zy z 0 0 m zx
zy z m
ij m ij eij
m
1 3
( x
y
z)
ii x y z
yxx
xy y
xz yz
m
0
0 m
0 0
x yx
m
xy y m
xz yz
zx zy z 0 0 m zx
硕士研究生课程
岩土弹塑性力学
第十章 经典塑性理论
同济大学地下建筑与工程系
10.1 塑性全量理论 10.2 塑性增量理论 10.3 塑性位势理论
回忆:张量分解 球张量和偏张量分解
ij m ij sij
m
1 3
(
x
y
z)
yxx
xy y
xz yz
m
0
0 m
0 0
x yx
与Mises屈服条件相关连的流动法则
屈服条件
f
J2
2 s
0
Drucker公设确定方向
d
p ij
d f ij
d
J
2
ij
dsij
引入弹性应变
《岩土弹塑性力学》课件

02
数值模拟的精度和稳 定性
数值模拟的精度和稳定性是评价数值 模拟技术的重要指标,需要不断改进 数值方法和模型参数,提高模拟结果 的可靠性和精度。
03
数值模拟的可视化和 后处理
可视化技术和后处理技术是数值模拟 的重要组成部分,能够直观地展示模 拟结果和进行结果分析,需要不断改 进和完善相关技术。
THANKS
感谢您的观看
弹塑性力学的未来发展
随着科技的不断进步和应用领域的拓展,弹塑性力学将进 一步发展并应用于更广泛的领域,如新能源、环保、生物 医学等。
Part
02
岩土材料的弹塑性性质
岩土材料的弹性性质
弹性模量
表示岩土材料在弹性范围内抵抗变形的能力,是 材料刚度的度量。
泊松比
描述材料横向变形的量,表示材料在单向受拉或 受压时,横向变形的收缩量与纵向变形的关系。
各向同性假设
假设材料在各个方向上具 有相同的物理和力学性质 ,即材料性质不随方向变 化而变化。
弹塑性力学的历史与发展
弹塑性力学的起源
弹塑性力学起源于20世纪初,随着材料科学和工程技术的 不断发展,人们对材料在复杂应力状态下的行为有了更深 入的认识。
弹塑性力学的发展
弹塑性力学经过多年的发展,已经形成了较为完善的理论 体系和研究方法,为解决工程实际问题提供了重要的理论 支持。
《岩土弹塑性力学》 PPT课件
• 弹塑性力学基础 • 岩土材料的弹塑性性质 • 岩土弹塑性本构模型 • 岩土弹塑性力学的应用 • 岩土弹塑性力学的挑战与展望
目录
Part
01
弹塑性力学基础
弹塑性力学定义
弹塑性力学
是一门研究材料在弹性变形和塑性变形共同作用下的力学行为的学科。
岩石粘弹塑性本构关系及改进的Burgers蠕变模型
第28卷 第6期 岩 土 工 程 学 报 Vol.28 No.62006年 6月 Chinese Journal of Geotechnical Engineering June, 2006岩石粘弹塑性本构关系及改进的Burgers蠕变模型袁海平,曹 平,许万忠,陈沅江(中南大学资源与安全工程学院,湖南 长沙 410083)摘 要:软弱岩石一般具有粘弹塑性共存特性,而典型的Burgers蠕变模型只能描述材料第三期蠕变以前的粘弹性规律,因此,本文基于Mohr-Coulomb准则,提出了新的塑性元件,该元件假定材料屈服后完全服从Mohr-Coulomb塑性流动规律。
将该元件与典型的Burgers模型串联,形成了能模拟粘弹塑性偏量特性和弹塑性体积行为的改进型Burgers蠕变模型,推导了相应的粘弹塑性本构关系。
给出了模型参数的求解方法,编制了相应的数据处理程序,并结合工程实例,对蠕变模型参数进行了拟合和加权平均取值。
应用结果表明:试验曲线与理论计算曲线吻合,改进的Burgers蠕变模型能较好的描述岩石的蠕变特性。
关键词:Burgers模型;Mohr-Coulomb;蠕变;粘弹塑性;屈服准则;本构关系中图分类号:TU452 文献标识码:A 文章编号:1000–4548(2006)0796–04作者简介:袁海平(1977–),男,博士研究生,从事岩石力学理论、工程模型及岩土工程数值计算与仿真研究。
Visco-elastop-lastic constitutive relationship of rock andmodified Burgers creep modelYUAN Hai-ping,CAO Ping,XU Wan-zhong,CHEN Yuan-jiang(School of Resources & Safety Engineering, Central South University, Changsha 410083, China)Abstract: The classic Burgers creep model could only describe the viscoelastic behaviour of rock material before the thirdcreep-phase, but weak rock usually was visco-elasto-plastic. So according to this shortage of Burgers model, a new plastic cellwas developed based on Mohr-Coulomb criterion, which was assumed to be in absolute accordance with the plastic flow law ofMohr-Coulomb when rock failed. And then the plastic cell acted in series with the classic Burgers model, and a modifiedBurgers creep model was built and the corresponding visco-elasto-plastic constitutive relationships were deduced. The modifiedmodel could simulate visco-elasto-plastic deviatoric behavior and elasto-plastic volumetric behavior. In addition, some methodsto solve model parameters were given and some corresponding programs were developed to deal with the test data. And themodel parameters of an engineering example were fitted and the values were obtained through weighted mean ones. It wasshown that the creep testing curves were coincident well with the theoretic curves, validating that the modified Burgers creepmodel was felicitous to characterize the creep behaviour law of rock.Key words: Burgers model; Mohr-Coulomb; creep; viscoelastic plasticity; yield criterion; constitutive relationship0 引 言岩石的蠕变特性是岩石类材料重要的力学性质之一,国内外学者对岩石的蠕变特性和蠕变模型进行了大量的研究[1-10],在理论与实践上取得了重大研究成果。
第1章 岩土弹塑性力学
1 平均正应力: m ( x y z ) 3
1 Kronecker 符号: ij 0
在弹性理论和经典塑性理论中:
i j i j
应力球张量只产生体应变,即受力体只发生体积变化而不发生 形状变化; 应力偏张量则产生剪变形,即只引起物体形状变化而不发生体 积大小的变化。
法则,即塑性应变增量方向沿着屈服 面的梯度或外法线方向
粘性本构关系
材料的应力或应变随时间而变化
常常和弹性或塑性性质同时发生,因此,材料的粘性本构 方程分为 粘弹性
粘塑性
粘弹塑性 在工程中,常称材料的粘性性质为流变 常称应力下变形随时间的不断变化为材料的蠕变 常称应变下应力随时坏 破坏力学
2 1 22
2 J 2 3 8
与应力偏张量有关
Lode 角及其参数:
Lode 角及其参数:
平面上应力在x、y轴上的投影为:
x OP cos 30 P P cos 30 ( 1 3 ) 1 2 2 3 3 2
1 2
( 1 3 )
斜面上的剪应力
2 2 2 v px p2 p y z N
2 主应力与应力主方向
斜面ABC为主微分面,面上只有正应力σ 投影到坐标轴上
p y m
p x l
p z n
p x xl yx m zx n p y xy l y m zy n p z xz l yz m z n
弹性
岩石力学性质 塑性 粘性
体力和面 力Fi,Ti
平衡
位移ui 相容性 (几何)
本构关系
应力ij 应变ij
清华大学 岩土材料弹塑型
岩土类材料最基本的力学特性
岩土的压硬性 岩土的等压屈服特性 剪胀性(包含剪缩性) 塑性应变增量的方向与应力增量的方向 有关 应变软化性质
岩土的压硬性
在一定范围内,岩土抗剪强度和刚度随压应力 的增大而增大,这种特性可称为岩土的压硬性。 岩土的抗剪强度不仅由粘结力产生,而且由内 摩擦角产生。 这是因为岩土由四项材料堆积或胶结而成,属 于摩擦型材料,因而它的抗剪强度与内摩擦角 及压应力有关 而金属材料不具这种特性,抗剪强度与压应力 无关。
塑性应变增量的方向与应力增 量的方向有关
塑性应变增量的方向与应力增量的方向 有关,而不像传统塑性位势理论中规定 的塑性应变增量方向只与应力状态有关, 而与应力增量无关。 当主应力值不变,主应力轴方向发生改 变时土体也会产生塑性变形,而基于传 统塑性力学的本构模型不可能算出这种 塑性变形。
应变软化性质
Onset of Dilatancy Compaction
Measure of Porosity Volum etric Strain
v
本构关系
塑性状态下,应力一应交关系是非线性 的,而且还与应力路径、应力历史、加 载、卸载等状态有关,因而简单地说成 应力一应变关系已不能完全反映实际情 况,所以称此为本构关系,这比弹性力 学中的线性关系复杂得多。
岩石弹塑性本构模型课件
考虑了应力和应变之间的非线性关系, 适用于大应变情况。
塑性本构模型
理想塑性本构模型 弹塑性本构模型
岩石材料的变形特性
01
02
03
岩石的弹性变形
岩石的塑性变形
岩石的破裂
03
岩石弹塑性本构模型的 建立
CHAPTER
基于物理基础的岩石本构模型
物质连续性假设
物理基础
弹性常数
经验本构模型
课程内容概述
包括岩石弹塑性本构模型的物理基础、数学模型建立、模型参数确定方法、模型在岩石工程中的应用及局限性等。 其中,重点讲解岩石弹塑性本构模型的数学模型建立方法和模型参数确定方法,同时介绍模型在岩石工程中的应 用案例及局限性。
02
岩石弹塑性本构模型的 基本概念
CHAPTER
弹性本构模型
线性弹性本构模型
04
岩石弹塑性本构模型的 参数确定和验证
CHAPTER
参数确定的方法
实验测定
通过室内实验和现场试验测定材 料的弹性模量、泊松比、屈服强
度等参数。
反演分析
利用已知的地质资料和工程数据, 采用反演分析方法确定模型参数。
数值模拟
利用数值模拟软件进行模型参数 的拟合和优化。
模型验证的方法和步骤
数据来源
基于实验数据
参数拟合 局限性
唯象本构模型
现象描述
材料常数
唯象本构模型主要基于实验现象的观 察和描述,对岩石的弹塑性行为进行 建模。
唯象本构模型的材料常数通常根据实 验测定,如剪切模量、体积模量等, 用于描述岩石的弹塑性行为。
屈服条件
唯象本构模型通常基于屈服条件,如 Mohr-Coulomb准则、DruckerPrager准则等,描述岩石的屈服行为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
岩土类材料的弹塑性力学模型及本构方程摘要:本文主要结合岩土类材料的特性,开展研究其在受力变形过程中的弹性及塑性变形的特点,描述简化的力学模型特征及对应的适用条件,同时在分析研究其弹塑性力学模型的基础上,探究了关于岩土类介质材料的各种本构模型,如M-C、D-P、Cam、D-C、L—D及节理材料模型等,分析对应使用条件,特点及公式,从而推广到不同的材料本构模型的研究,为弹塑性理论更好的延伸发展做一定的参考性。
关键词:岩土类材料,弹塑性力学模型,本构方程不同的固体材料,力学性质各不相同.即便是同一种固体材料,在不同的物理环境和受力状态中,所测得的反映其力学性质的应力应变曲线也各不相同。
尽管材料力学性质复杂多变,但仍是有规律可循的,也就是说可将各种反映材料力学性质的应力应变曲线,进行分析归类并加以总结,从而提出相应的变形体力学模型.第一章岩土类材料地质工程或采掘工程中的岩土、煤炭、土壤,结构工程中的混凝土、石料,以及工业陶瓷等,将这些材料统称为岩土材料。
岩土塑性力学与传统塑性力学的区别在于岩土类材料和金属材料具有不同的力学特性。
岩土类材料是颗粒组成的多相体,而金属材料是人工形成的晶体材料。
正是由于不同的材料特性决定了岩土类材料和金属材料的不同性质.归纳起来,岩土材料有3点基本特性:1.摩擦特性.2。
多相特性。
3.双强度特性。
另外岩土还有其特殊的力学性质:1。
岩土的压硬性,2.岩土材料的等压屈服特性与剪胀性,3.岩土材料的硬化与软化特性。
4.土体的塑性变形依赖于应力路径。
对于岩土类等固体材料往往在受力变形的过程中,产生的弹性及塑性变形具备相应的特点,物体本身的结构以及所加外力的荷载、环境和温度等因素作用,常使得固体物体在变形过程中具备如下的特点。
固体材料弹性变形具有以下特点:(1)弹性变形是可逆的.物体在变形过程中,外力所做的功以能量(应变能)的形式贮存在物体内,当卸载时,弹性应变能将全部释放出来,物体的变形得以完全恢复;(2)无论材料是处于单向应力状态,还是复杂应力状态,在线弹性变形阶段,应力和应变成线性比例关系;(3)对材料加载或卸载,其应力应变曲线路径相同。
因此,应力与应变是一一对应的关系.固体材料的塑性变形具有以下特点:(l)塑性变形不可恢复,所以外力功不可逆.塑性变形的产生过程,必定要消耗能量(称耗散能或形变功); (2)在塑性变形阶段,应力和应变关系是非线性的。
因此,不能应用叠加原理。
又因为加载与卸载的规律不同,应力与应变也不再存在一一对应的关系,也即应力与相应的应变不能唯一地确定,而应当考虑到加载的路径(即加载历史); (3)当受力固体产生塑性变形时,将同时存在有产生弹性变形的弹性区域和产生塑性变形的塑性区域。
并且随着载荷的变化,两区域的分界面也会产生变化。
第二章 弹塑性力学中常用的简化力学模型对于不同的材料,不同的应用领域,可以采用不同的变形体模型。
在确定力学模型时,要特别注意使所选取的力学模型必须符合材料的实际情况,这是非常重要的,因为只有这样才能使计算结果反映结构或构件中的真实应力及应力状态。
另一方面要注意所选取的力学模型的数学表达式应足够简单,以便在求解具体问题时,不出现过大的数学上的困难。
岩上材料的力学特性不外乎由室内试验、现场试验取得。
一般说来,室内试验所得到的力学特性不能完全反映现场实际情况,要得到真实的本构关系必须根据现场试验直接量测荷载—变形—时间之关系。
但该方法不仅花费大而且难以实现,目前大量的还是根据室内试验来决定。
岩土材料的力学性质颇为复杂,这是因为它们是由固相(土粒子)、液相(空隙中的水)、气相(空隙中的空气)组成,易受密度、空隙率、温度、时间、水等因素影响。
岩土材料从微观上应视为非连续体,但从工程角度,宏观上可视为连续体。
2.1 理想弹塑性力学模型当材料进行塑性状态后,具有明显的屈服流动阶段,而强化程度较小。
若不考虑材料的强化性质,则可得到如图2-1所示理想弹塑性模型,又称为弹性完全塑性模型。
在图2-1中,线段OA 表示材料处于弹性阶段,线段AB 表示材料处于塑性阶段,应力可用如下公式求出:sE σσεσ== (当时;s s εεεε≥≤) (2-1) 由公式(2-1)中只包括了材料常数E 和εs ,故不能描述应力应变曲线的全部特征,又由于在ε=εs 处解析式有变化,故给具体计算带来一定困难.这一力学模型抓住了韧性材料的主要特征,因而与实际情况符合得较好.2.2 理想线性强化弹塑性力学模型当材料有显著强化率,而屈服流动不明显时,可不考虑材料的塑性流动,而采用如图4-4所示线性强化弹塑性力学模型。
图中有两条直线,其解析表达式为)-(1ss E E εεσσεσ+== (当时;s s εεεε≥≤) (2—2) 式中E 及E1分别表示线段OA 及AB 的斜率。
具有这种应力应变关系的材料,称为弹塑性线性强化材料。
由于OA 和AB 是两条直线,故有时也称之为双线性强化模型.显然,这种模型和理想弹塑性力学模型虽然相差不大,但具体计算却要复杂得多。
在许多实际工程问题中,弹性应变比塑性应变小得多,因而可以忽略弹性应变。
于是上述两种力学模型又可简化为理想刚塑性力学模型。
2.3 理想刚塑性力学模型如图2-1所示,应力应变关系的数学表达式为:εσE = (当时0≥ε) (2-3)上式表明在应力到达屈服极限之前,应变为零,这种模型又称为刚性完全塑性力学模型,它特别适宜于塑性极限载荷的分析。
2。
4 理想线性强化刚塑性力学模型如图2—1所示,其应力应变关系的数学表达式为:εσσ1E s += (当时0≥ε) (2—4)2。
5 幂强化力学模型为了避免在ε=εs 处的变化,有时可以采用幂强化力学模型,即取:n A εσ= (2—5)式中n 为幕强化系数,介于0与1之间。
式(2—5)所代表的曲线(如图2—1所示)在ε=0处与ζ轴相切,而且有:AA ==σεσ (当时0;1==n n ) (2—6) 式(2-6)的第一式代表理想弹性模型,若将式中 的A 用弹性模量E 代替,则为虎克定律式; 第二式若将A 用ζs 代替,则为理想塑性(或称理想 刚塑性)力学模型.通过求解式(2-6)则可得ε=1,即 两条直线在ε=1处相交。
由于幂强化模型也只有两 个参数A 和n ,因而也不可能第三章 岩土类介质本构模型岩土塑性与本构模型的发展,主要是围绕着两个方面:一是对经典塑性理论的修正与静力本构模型的完善;二是针对不同岩土不同工况发展了许多新型的本构模型。
国内学者作了大量的工作,新发展的广义塑性力学既适应岩土类摩擦材料,也适应金属,可以作为岩土塑性力学的理论基础。
新型模型中动力模型、复杂路径模型等正在逐渐走向实用。
本章主要探究岩土体材料的Mohr-Coulomb(M-C)理想弹塑性模型 、Drucker —Prager (D —P)模型、Cam-clay (Cam)模型、Duncan —Chang(D-C )模型、Lade-Duncan (L —D )模型、修正的帽子模型、与蠕变耦合的帽子塑性模型、节理材料模型等。
3。
1 Mohr —Coulomb (M-C )理想弹塑性模型Coulomb 在土的摩擦试验、压剪试验和三轴试验的基础上,于1773年提出了库仑破坏准则,即剪应力屈服准则,它认为当土体某平面上剪应力达到某一特定值时,就进入屈服。
Mohr-Coulomb 塑性模型主要适用于在单调荷载下以颗粒结构为特征的材料,如土壤,它与率变化无关。
其准则方程形式一般为:),,(n n c f σϑτ=.其中,c 为土的粘聚力;ϑ为土的内摩擦角;n σ为屈服面上的正应力。
这个函数关系式通过试验确定。
M-C 条件为:ϑστtan n n c +=。
在π平面上的屈服曲线为一封闭的非正六边形。
现在,M —C 准则仍被广泛应用,该准则在π平面上的拉、压轴相等时即为广义Tresca 准则。
M —C 准则比较符合试验,但是它的缺点在于三维应力空间中的屈服面存在角点奇异性,且没有考虑中间主应力2σ的影响。
3。
2 Drucker —Prager(D-P )模型1952年Drucker 和Prager 首先把不考虑中间主应力2σ影响的Coulomb 屈服准则与不考虑净水压力P 影响的Mises 准则联系在一起,提出广义Mises 理想塑性模型,即D-P 模型。
D —P 模型的屈服面方程为:0-12=-=K I J F α。
D-P 屈服函数所表示的屈服面在π平面上是一个圆,更适合数值计算。
但是作为近似计算,D-P 模型仍被广泛应用,它的主要缺点也是没有考虑中间主应力2σ的影响.该系列的模型适用于实质上是单调加载的场合,如土基的极限荷载分析。
它最适合用于仿真有内摩擦力的材料。
该模型具备如下几个特点:1. 应力空间中存在弹性区域与塑性区以及它们的分界面2. 材料是初始各向同性的.3. 屈服行为取决于静水压力的大小。
静水压力越大,材料的强度越高,而且材料在软化或硬化时是各向同性的,因此可以用引入与静水压力的相关关系的方式来体现模型在各种情况下的变化。
4. 非弹性变形与体积变形同时发生,流动法则中可考虑剪胀行为,所以提供了两种不同的流动准则。
5。
屈服行为受第二主应力2 σ大小的影响。
6。
材料可以与应变率有关。
7. 材料参数可以与温度有关。
8. 模型的弹性部分可以是线弹性或非线性的孔隙材料弹性.9。
提供了三种不同的屈服准则供选择。
其区别基于三种不同的屈服面子午线:线性、双曲线或一般的指数函数.10。
模型选择的合理性在很大程度上取决于材料的类型和标定模型参数时试验数据的有效性,还取决于压应力值序列是否与材料性质合拍。
3。
3 Cam —clay (Cam )模型Cam 模型由英国剑桥大学Roscoe 等人于1963年提出,适用范围为粘土或者正常固结土,模型可应用于土石坝、地基和桩基础等,其屈服面方程为:0ln ''0'=-p p M p q (3—1)1965年,Roscoe,Burland 分别研究了Cam 模型屈服面与临界状态线及正常固结线的关系,根据能量方程对Cam 模型屈服面的形状进行了修正,提出了修正Cam 模型。
在q p -'平面上修正Cam 模型的屈服面是通过原点的椭圆形曲线。
屈服面函数为: 0222'''P M M p q p =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛ (3-2)Cam 模型只有3个参数,且易于测定,因此是当前应用最广的模型之一。
模型的主要缺点是受到传统塑性理论的限制,且没有充分考虑剪切变形。
3。
4 Duncan-Chang (D —C)模型1970年Duncan 和Chang 根据Kondner (1963年)的研究成果,将三轴试验得到的土体131)(εσσ--(轴向应变)曲线用下述双曲线方程来表示:1131)(εεσσb a +=-。