123 角的平分线的性质 学案09

合集下载

123角平分线的性质教学方案设计

123角平分线的性质教学方案设计

123角平分线的性质教学方案设计精品教学教案课题§12.3角平分线的性质(第一课时)备课人:丁兴儒教材分析:本节课是在学生学习了角平分线的概念和全等三角形的基础上进行教学的,它主要学习角平分线的作法和角平分线的性质定理。

这节课的学习将为证明线段相等或角相等开辟了新的思路,并为今后对圆的内心的学习做好知识准备,因此他既是对前面所学知识的应用,又是为后续学习作铺垫,具有举足轻重的作用。

因此,本节课在教材占有非常重要的地位.学情分析:学生已经具备基础的几何知识,有一定的推理能力。

好奇心强,有探究欲望,能在教师的引导下,发现生活的数学知识,并运用所学推出新知.一、教学目标(一)知识与技能1.会作已知角的平分线;2.了解角的平分线的性质,能利用三角形全等证明角的平分线的性质;3.会利用角的平分线的性质进行证明与计算.(二)过程与方法在探究作角的平分线的方法及角的平分线的性质的过程,进一步发展学生的推理证明意识和能力.(三)情感、态度与价值观在探究作角的平分线的方法及角的平分线的性质的过程,培养学生探究问题的兴趣、合作交流的意识、动手操作的能力与探索精神,增强解决问题的信心,获得解决问题的成功体验.二、教学重点、难点重点:角的平分线的性质的证明及应用;难点:角的平分线的性质的探究.三、教法学法三步导学的教学模式;自主探索,合作交流的学习方式.四、教学过程设计(一)导入新课如图是小明制作的风筝,他根据AB=AD,BC=DC.不用度量,就知道AC 是∠DAB的角平分线,你知道其的道理吗?(二)操作探究1、探究一:角的平分线的作法BD 21Ⅰ、议一议问题1请你拿出准备好的角,用你自己的方法画出它的角平分线. 问题2如图是一个平分角的仪器,其AB=AD ,BC=DC.将点 A 放在角的顶点,AB 和AD 沿着角的两边放下,画一条射线AE ,AE 就是∠DAB 的平分线. 你能说明它的道理吗?问题3通过上面的探究,你有什么启发?你能用尺规作图作已知角的平分线吗?请你试着做一做,并与同伴交流.已知:∠MAN求作:∠MAN 的角平分线.作法: (1)以A 为圆心,适当长为半径画弧,交AM 于B ,交AN 于D.(2)分别以B 、D 为圆心,大于的长为半径画弧,两弧在∠MAN 的内部交于点C.(3)画射线AC.∴射线AC 即为所求.Ⅱ、练一练平分平角∠AOB.通过上面的步骤得到射线OC 以后,把它反向延长得到直线CD.直线CD 与直线AB 是什么关系?思考:你能总结出“过直线上一点作这条直线的垂线”的方法吗?请说明你的方法。

角的平分线的性质教案

角的平分线的性质教案

角的平分线的性质教案教案:角的平分线的性质一、知识背景1.平分线的存在性:对于任意一个角,都存在且唯一一条通过其顶点的平分线。

2.平分线的性质:平分线上的任意一点都与角的两边的端点连线所得的两条边相等。

二、教学目标1.知识目标:了解角的平分线的定义和性质。

2.能力目标:能够应用平分线的性质,解决与角的平分线相关的问题。

三、教学重难点1.教学重点:角的平分线的定义和性质。

2.教学难点:能够应用平分线的性质解决问题。

四、教学过程1.导入新知识:通过展示一张图示例,在黑板上画出一个角,并说明角的概念和角的顶点、边等基本要素。

2.角的平分线的定义:向学生介绍角的平分线的概念和定义,并说明平分线的存在性。

3.平分线的性质:通过展示一个新的角,并在其顶点处画出一条平分线,向学生解释平分线上任意一点与角的两边的连线等长的性质,并引导学生猜测平分线的性质。

4.定理的证明:通过几何推理,给出平分线的性质的证明,从而使学生对角的平分线的性质有更深刻的理解。

5.例题讲解:给出一些具体的角和平分线的问题,引导学生应用平分线的性质解决问题,例如:已知角A的平分线BC,求角ABC的度数。

6.练习与解答:让学生自己完成一些练习题,巩固和运用所学的知识。

7.拓展延伸:给学生一些更复杂的问题,让学生运用平分线的性质解决问题,例如:已知平面内有三条互不相交的直线,任意两线的交角都相等,求证这三条直线共点。

五、教学方法1.讲授法:通过讲解和示例,向学生介绍角的平分线的定义和性质。

2.演练法:让学生自己完成一些练习题,巩固和应用所学的知识。

3.启发法:通过给出具体的问题和图示,引导学生发现平分线的性质,并进行推理思考。

六、教学评价与反思1.教学评价:通过学生的参与和表现,观察他们对角的平分线的理解和运用。

2.教学反思:根据教学评价的结果,总结学生的差异化学习需求,找到改进教学的方法和策略。

七、教学延伸1.角的平分线在三角形中的运用:通过引导学生观察,发现角平分线在三角形中的运用,比如说角平分线与三角形的中位线、高、垂心等的关系。

【免费下载】123 角平分线的性质教案说课稿

【免费下载】123 角平分线的性质教案说课稿

12.3 角平分线的性质(1)一、说教材1、教材的地位及作用:本节课是在学生学习了角平分线的概念和全等三角形的基础上进行教学的,它主要学习角平分线的作法和角平分线的性质定理。

这节课的学习将为证明线段或角相等开辟了新的思路,并为今后对圆的内心的学习作好知识准备.因此它既是对前面所学知识的应用,又是为后续学习作铺垫,具有举足轻重的作用,因此本节课在教材中占有非常重要的地位。

2、教学目标:根据《新课程》对本节课内容的要求,针对学生的一般性认知规律及学生个性品质发展的需要,确定教学目标如下:知识与技能:1、掌握用尺规作已知角的平分线的方法;2、理解角的平分线的性质并能初步运用。

过程与方法:通过让学生经历观察演示,动手操作,合作交流,自主探究等过程,培养学生用数学知识解决问题的能力。

情感态度与价值观:培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,激发学生应用数学的热情。

3、教学重点、难点:根据教材的内容及作用确定本节课的教学重点:掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用。

难点:1、对角平分线性质定理中点到角两边的距离的正确理解;2、对于性质定理的运用。

二、学情分析学生具备基础的几何知识,有一定的推理能力,好奇心强,有探究的欲望,能在教师的引导下发现生活中的数学知识,并运用所学推出新知。

三、说教法现代教学理论认为:在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。

根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我将借助多媒体,创设问题情景,采用“启发诱导—探索发现”以及“讲练结合”的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的引导下发现、分析和解决问题,给学生留出足够的思考时间和空间,从真正意义上完成对知识的自我建构。

人教版八年级上册12.3角的平分线的性质教案设计

人教版八年级上册12.3角的平分线的性质教案设计
课件展示证明过程。
【过渡】通过刚刚的练习,希望大家能够牢记角的平分线的性质在应用时需要满足的条件。
【过渡】在了解了角的平分线的性质之后,我们就会有这样的疑问,将性质反过来是否同样成立呢?
我们先来看课本思考的内容。
要在S区建一个集贸市场,使它到公路,铁路距离相等且离公路,铁路的交叉处500米,应建在何处?(比例尺1:20 000)
(学生讨论回答)
【过渡】观察这个图形,我们其实可以把它看作两个三角形,那么问题也就转化为数学问题,再结合三角形全等的性质,我们进一步将其转化为证明三角形全等的问题。大家仔细观察一下,能够得到哪些已知条件呢?
课件展示解题过程。
证明:在△ACD和△ACB中
AD=AB(已知)
DC=BC(已知)
CA=CA(公共边)
求证:点P在∠AOB的平分线上。
课件展示。
【过渡】通过证明,我们得到了我们想要的结论,而这个也角的平分线的性质的逆定理:
角的内部到角的两边的距离相等的点在角的平分线上。
【过渡】通过这个逆定理,我们可以去判断是否是角的平分线。
学习了角的平分线的性质及判定之后,我们一起来看课本的例题。
课件展示过程。
【过渡】这个例题的结论告诉我们一个事实:
∴△ACD≌△ACB(SSS)
∴∠CAD=∠CAB(全等三角形的对应边相等)
∴AC平分∠DAB(角平分线的定义)
【过渡】通过刚刚的证明,我们得到了我们想要的结论。从上面的探究中,可以得出作已知角的平分线的方法。
课件展示画图过程。
(学生动手)
【过渡】大家也都自己动手画了角平分线,那么我们接下来看课本探究的内容。
【过渡】在这个定理中,我们必须明白,这个性质的应用必须满足几个条件:

部编版人教初中数学八年级上册《12.3角的平分线的性质 备课资料教案》最新精品获奖完美优秀实用

部编版人教初中数学八年级上册《12.3角的平分线的性质 备课资料教案》最新精品获奖完美优秀实用

前言:
该备课资料教案由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。

实用性强。

高质量的备课资料教案是高效课堂的前提和保障。

(最新精品备课资料教案)
第十二章 12.3角的平分线的性质
知识点1:角平分线的作法
平分一个角的方法有很多,如度量法、折叠法,实际上根据尺规作图也可以作出一个角的角平分线.
知识点2:角平分线的性质
角平分线上的点到角两边的距离相等.
关键提醒:1. 性质中的“距离”是指“点到直线的距离”,因此在应用时需含有“垂直”这个条件,否则不能得到线段相等.
2. 该性质可以直接证明线段相等,不用再证明三角形全等.
3. 使用该性质进行证明时,要注意条件“一个角平分线,二个垂直”缺一不可.
知识点3:角平分线的判定
角的内部到角的两边距离相等的点在这个角的平分线上.
关键提醒:它与角平分线的性质是互逆定理,在运用这两个定理的时候,一定要弄清楚题设和结论,切记不要搞错.
考点1:利用角平分线条件求距离与角
【例1】如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为.
1。

《角的平分线的性质》教学设计

《角的平分线的性质》教学设计

《角的平分线的性质》教学设计《角的平分线的性质》教学设计1教材分析1.角的平分线性质是初中阶段几何证明中重要的内容,为证明三角形全等提供更多的方法和条件;2、在利用全等三角形的基础上更进一步推理出角的平分线性质;3、在这节课中,也能让学生更多的动手作图,练习学生的尺规作图能力,把数学运用到实际生活中去;学情分析1.学生对数学学习兴趣不够高,基础知识参差不齐,特别是对作图方法难以掌握;2.学生对做角的平分线、角平分线到两边的距离作图不够规范,达不到垂直的要求;3.学生对如何动手作角平分线和证明角平分线的性质过程感到比较难掌握。

教学目标1、掌握作已知角的.平分线的方法;2、掌握角平分线的性质,掌握角平分线性质的推导过程;3、角平分线性质的运用。

教学重点和难点重点:角的平分线性质的证明及运用;难点:角的平分线性质的探究。

《角的平分线的性质》教学设计2【教学目标】1.使学生掌握角平分线的性质定理和判定定理,并会用两个定理解决有关简单问题.2.通过引导学生参与实验、观察、比较、猜想、论证的过程,使学生体验定理的发现及证明的过程,提高思维能力.3.通过师生互动以及交互性多媒体教学课件的使用,培养学生学习的自觉性,丰富想象力,激发学生探究新知的热情.【教学重点】角平分线的性质定理和判定定理的探索与应用.【教学难点】理解运用在角平分线上任意选取一点的方法证明角平分线性质定理以及两个定理的区别与联系.【教学方法】启发探究式.【教学手段】多媒体(投影仪,计算机).【教学过程】一、复习引入:1.角平分线的定义:一条射线把一个角分成两个相等的角,这条射线叫这个角的平分线.表达方式:如图1,∵ OC是∠AOB的平分线,∴∠1=∠2(或∠AOB=2∠1=2∠2或∠1=∠2= ∠AOB).2.角平分线的画法:你能用什么方法作出∠AOB的平分线OC?(可由学生任选方法画出OC).可以用尺规作图,可以用折纸的方法,可以用TI图形计算器.3.创设探究角平分线性质的情境:用两个全等的30的直角三角板拼出一个图形,使这个图形中出现角平分线,并且平分出的两个角都是30.学生可能拼出的图形是:(拼法1)(拼法2)(拼法3)选择第三种拼法(如图2)提出问题:(1)P是∠DOE平分线上一点,PD、PE与∠DOE的边有怎样的位置关系?(2)点P到∠DOE两边的距离可以用哪些线段来表示?(3)PD、PE有怎样的数量关系?(投影)二、探究新知:(一)探索并证明角平分线的性质定理:1.实验与猜想:引导学生任意画出一个角的平分线,并在角平分线上任取一点,作出到角两边的距离.通过度量、观察并比较,猜想它们有怎样的数量关系?用TI图形计算器实验的结果:(教师用计算机演示:点P在角平分线上运动及改变∠AOB大小,引导学生观察PD与PE的数量关系).引导学生用语言阐述自己的观点,得出猜想:命题1在角平分线上的点,到这个角的两边的距离相等.2.证明与应用:(学生写在笔记本上)已知:如图3,OC是∠AOB的平分线,P为OC上任意一点,PD⊥OA于D,PE ⊥OB于E.求证:PD=PE.(投影)证明:∵ OC是∠AOB的平分线,∴∠1=∠2.∵ PD⊥OA于D,PE⊥OB于E,∴∠ODP=∠OEP=90.又∵ OP=OP,∴△ODP≌△OEP(AAS).∴ PD=PE三、作业设计反思:一、重视情境创设,让学生经历求知过程。

八年级数学上册 12.3 角的平分线的性质学案(新版)新人教版

八年级数学上册 12.3 角的平分线的性质学案(新版)新人教版

12.3角的平分线的性质自学案(一)学习目标1.会用尺规作一个角的平分线,知道作法的合理性;2.探索并证明角的平分线的性质;3.能用角的平分线的性质解决简单问题。

(二)学习重点探索并证明角的平分线的性质。

(三)学习难点能用角的平分线的性质解决简单问题。

(四)课前预习1.点P 是∠BAC 内一点,PE ⊥AB 于点E ,PF ⊥AC 于点F ,由PE=PF ,PA=PA 得到△PEA ≌△PFA 的理由是( )A.HLB.ASAC.AASD.SAS2.如图,两条笔直的公路l 1,l 2相交于点O,村庄C 的村民在公路的旁边建三个加工厂A,B,D,已AB=BC=CD=DA=5千米,村庄C 到公路l 1的距离为4千米,则村庄C 到公路l 2的距离是( )A.3千米B.4千米C.5千米D.6千米3.如图,OP 平分AOB ∠,OA PA ⊥,OB PB ⊥,垂足分别为A,B 。

下列结论中不一定成立的是( )。

A.PA=PBB.PO 平分APB ∠C.OA=OBD.AB 垂直平分OP4.如图所示,AB ∥CD ,O 为∠BAC 、∠ACD 的平分线的交点,OE ⊥AC 于E ,且OE =5,则AB 与CD 间的距离等于____.5.如图,现有一块三角形的空地,其三条边长分别是20m,30m,40m.现要把它分成面积比为2∶3∶4的三部分,分别种植不同种类的花,请你设计一种方案,并简单说明理由.(五)疑惑摘要预习之后,你还有哪些没有弄清的问题,请记下来,课堂上我们共同探讨。

探究案典型例题例1、如图,BC、AD分别垂直OA、OB,BC和AD相交于E,且OE平分∠AOB. 求证:EA=EB.例2、如图,在△ABC中,∠C=90° AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF.求证:CF=EB.训练案课后作业一、选择题1.如图,∠1=∠2,PD⊥OA于点D,PE⊥OB于点E,则下列结论错误的是( )A.PD=PEB.OD=OEC.PD=ODD.∠OPD=∠OPE2.如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D.若CD=3cm,则点D到AB的距离DE是( )A.5cmB.4cmC.3cmD.2cm3.尺规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是( )A.SSSB.ASAC.AASD.角平分线上的点到角两边的距离相等4.如图,点D,P,E分别在OA,OC,OB上,且PD=PE,以下不能得出OC平分∠AOB的是( )A.OD=OEB.∠DPO=∠EPOC.∠ODP=∠OEPD.PD⊥OA,PE⊥OB二、填空题5.在Rt△ABC中,∠C=90°,若BC=10,AD平分∠BAC交BC于点D, 且BD∶CD=3∶2,则点D到线段AB的距离为.6.如图,AD是△ABC中∠BAC的平分线,DE⊥AB交AB于点E,DF⊥AC交AC于点F,S△ABC=7,DE=2,AB=4,则AC的长是.7.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,则∠CAP= .8.如图,DB⊥AB,DC⊥AC,BD=DC,∠BAC=80°,则∠ADC的度数是.三、解答题9.如图,D是△ABC外角∠ACE的平分线上的一点,DF⊥AC于F,DE⊥BC交BC的延长线于E,求证:CF=CE.10.如图,∠1=∠2,AE⊥OB于E,BD⊥OA于D,AE与BD相交于点C.求证:AC=BC.11.已知:如图,BE=CF,BF⊥AC于点F,CE⊥AB于点E,BF和CE交于点D,求证:AD平分∠BAC.四、拓展提高如图,四边形ABDC中,∠D=∠B=90゜,点O为BD的中点,且OA平分∠BAC.(1)求证:OC平分∠ACD;(2)求证:OA⊥OC;(3)求证:AB+CD=AC.。

新人教版八年级数学上册导学案《12.3角的平分线的性质》

新人教版八年级数学上册导学案《12.3角的平分线的性质》

《12.3角的平分线的性质》(1)导学案【学习目标】1、经历角的平分线性质的发现过程,初步掌握角的平分线的性质定理.2、能运用角的平分线性质定理解决简单的几何问题.3、极度热情、高度责任、自动自发、享受成功。

教学重点:掌握角的平分线的性质定理教学难点: 角平分线定理的应用。

一、预习案1、复习思考什么是角的平分线?怎样画一个角的平分线?2.如右图,AB=AD,BC=DC,沿着A、C画一条射线AE,AE就是∠BAD的角平分线,你知道为什么吗探究案3.OC是∠AOB的平分线,点P是射线OC上的任意一点,操作测量:取点P的三个不同的位置,分别过点P作PD⊥OA,PE ⊥OB,点D、E 为垂足,测量PD、PE的长.将三次数据填入下表:观察测量结果,猜想线段PD与PE的大小关系,写出结论4、命题:角平分线上的点到这个角的两边距离相等.题设:一个点在一个角的平分线上结论:这个点到这个角的两边的距离相等结合第4题图形请你写出已知和求证,并证明命题的正确性O A BE D CP D C A 思考:证明一个几何命题的步骤有那些?6、用数学语言来表述角的平分线的性质定理:如右上图,∵OC 是∠AOB 的平分线,点P 是∴三、训练案1、如图所示OC 是∠AOB 的平分线,P 是OC 上任意一点,问PE=PD?为什么?2、如图:在△ABC 中,∠C=90°,AD 是∠BAC 的平分线,DE ⊥AB 于E ,F 在AC上,BD=DF ;求证:CF=EB如图,在△ABC 中,AC ⊥BC ,AD 为∠BAC 的平分线,DE ⊥AB ,AB =7㎝,AC =3㎝,求BE 的长我的收获:1、知识方面:2、我的困惑:3、思想感悟:P N MC BA《12.3角的平分线的性质》(2)导学案【学习目标】1、会叙述角的平分线的性质及“到角两边距离相等的点在角的平分线上”.2、能应用这两个性质解决一些简单的实际问题.3、极度热情、高度责任、自动自发、享受成功。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P N M C
B A
使用说明:学生利用自习先预习课本第21页8分钟,然后30分钟独立做完学案。

正课由小组讨论交流10分钟,25分钟展示点评,10分钟整理落实,对于有疑问的题目教师点拨、拓展。

【学习目标】
1、会叙述角的平分线的性质及“到角两边距离相等的点在角的平分线上”.
2、能应用这两个性质解决一些简单的实际问题.
3、极度热情、高度责任、自动自发、享受成功。

教学重点:角平分线的性质及其应用
教学难点: 灵活应用两个性质解决问题。

【学习过程】
一、自主学习
1、复习思考
(1)、画出三角形三个内角的平分线
你发现了什么特点吗?
(2)、如图,△ABC 的角平分线BM ,CN 相交于点P ,求证:点P 到三边AB ,BC ,CA 的距离相等。

2、求证:到角的两边的距离相等的点在角的平分线上。

(提示:先画图,并写出已知、求证,再加以证明)
3、要在S区建一个集贸市场,使它到公路,铁路
D C B A 距离相等且离公路,铁路的交叉处500米,应建在何处?(比例尺 1:20 000)
二、合作探究
1、比较角平分线的性质与判定新课标第一网
2、如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D ,E ,BE ,CD 相交于点O ,OB =OC ,求证∠1=∠2
三、学以致用
22页练习题
四、能力提高(*)
如图,在四边形ABCD 中,BC>BA ,AD=DC,B D 平分∠AB C,求证:∠A+∠C=180°
五、课堂小结
这节课你有什么收获呢?与你的同伴进行交流
六、作业
1、已知△ABC中,∠A=60°,∠ABC,∠ACB的平分线交于点O,则∠BO C的度数为
2、下列说法错误的是()
A、到已知角两边距离相等的点都在同一条直线上
B、一条直线上有一点到已知角的两边的距离相等,则这条直线平分已知角
C、到已知角两边距离相等的点与角的顶点的连线平分已知角
D、已知角内有两点各自到两边的距离相等,经过这两点的直线平分已知角
3、到三角形三条边的距离相等的点是()
A、三条中线的交点
B、三条高线的交点
C、三条边的垂直平分线的交点
D、三条角平分线的交点
4、课本23页第6题。

相关文档
最新文档