圆与方程周练测试题(含详细答案)精品

合集下载

2020秋人教版九年级数学上《一元二次方程》和《圆》测试卷含答案

2020秋人教版九年级数学上《一元二次方程》和《圆》测试卷含答案

《一元二次方程》单元测试一.选择题1.已知一元二次方程的两根分别是3和﹣2,则这个方程可以是()A.(x+3)(x﹣2)=0B.x2+x+6=0C.(x﹣3)(x+2)=0D.x2﹣3x+2=02.已知一元二次方程x2﹣6x+c=0有一个根为2,则另一根及c的值分别为()A.2,8B.3,4C.4,3D.4,83.用配方法将二次三项式a2﹣4a+3变形,结果是()A.(a﹣2)2﹣1B.(a+2)2﹣1C.(a+2)2﹣3D.(a﹣2)2﹣64.一元二次方程x2+11x﹣1=0()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根5.由于疫情得到缓和,餐饮行业逐渐回暖,某地一家餐厅重新开张,开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元,若设每天的增长率为x,则x满足的方程是()A.5000(1+x)=6050B.5000(1+2x)=6050C.5000(1﹣x)2=6050D.5000(1+x)2=60506.关于x的一元二次方程(k﹣1)x2﹣2kx+k=0有两个实数根,则k的取值范围是()A.k≥0且k≠1B.k≠1C.k≥0D.k≤07.若关于x的方程ax2+3x+1=0是一元二次方程,则a满足的条件是()A.a≤B.a>0C.a≠0D.a>8.已知一元二次方程x2﹣x=3,则下列说法中正确的是()A.方程有两个相等的实数根B.方程无实数根C.方程有两个不相等的实数根D.不能确定9.若x1是方程ax2﹣4x﹣c=0(a≠0)的一个根,设p=(ax1﹣2)2,q=ac+5,则p与q的大小关系为()A.p<q B.p=q C.p>q D.不能确定10.用公式法x=解一元二次方程3x2+5x﹣1=0中的b是()A.5B.﹣1C.﹣5D.1二.填空题11.一元二次方程x2﹣ax+2=0的一根是1,则a的值是.12.某超市一月份的营业额为200万元,已知二月和三月的总营业额为1000万元,如果平均每月增长率为x,则由题意列方程应为.13.等腰三角形的三边长分别为a,b,2,且a,b是关于x的一元二次方程x2﹣8x+n+10=0的两根,则n的值为.14.已知关于x的一元二次方程x2﹣2(k﹣1)x+k(k+2)=0有两个不相等的实数根.(1)写出k的取值范围;(2)写出一个满足条件的k的值,并写出此时方程的根.15.关于x的一元二次方程(2k+3)x2﹣x﹣=0有实数根,则常数k的取值范围是.三.解答题16.解下列方程:(1)2x2+5x+2=0;(2)(x﹣2)(3x﹣5)=1.17.已知关于x的一元二次方程x2﹣(m﹣2)x﹣m=0.(1)求证:无论m取任何的实数,方程总有两个不相等的实数根;(2)如果方程的两实根为x1、x2,且:x12+x22﹣2x1x2=13,求m的值.18.如图,利用一面墙(墙的长度不限),篱笆长20m.(1)围成一个面积为50m2的矩形场地,求矩形场地的长和宽;(2)可以围成一个面积为60m2的矩形场地吗?如果能,求出矩形场地的长和宽;如果不能,请说明理由.19.如图所示,在△ABC中,∠ACB=90°,AB=50cm,AC=40cm,点P从点C开始沿CA边向点A以4cm/s的速度运动,同时,另一点Q从点C开始以3cm/s的速度沿CB边向点B运动.(1)几秒钟后,PQ的长度是15cm?(2)几秒钟后,△PCQ的面积是△ABC面积的?20.如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根比另一个根大1,那么称这样的方程为“邻根方程”.例如,一元二次方程x2+x=0的两个根是x1=0,x2=﹣1,则方程x2+x=0是“邻根方程”.(1)通过计算,判断下列方程是否是“邻根方程”;①x2﹣x﹣6=0;②2x2﹣2x+1=0.(2)已知关于x的方程x2﹣(m﹣1)x﹣m=0(m是常数)是“邻根方程”,求m的值;(3)若关于x的方程ax2+bx+1=0(a、b是常数,a>0)是“邻根方程”,令t=12a﹣b2,试求t的最大值.参考答案一.选择题1.解:∵3+(﹣2)=1,3×(﹣2)=﹣6,∴以3和﹣2为根的一元二次方程可为x2﹣x﹣6=0.故选:C.2.解:设方程的另一个根为t,根据题意得t+2=6,2t=c,解得t=4,c=8.故选:D.3.解:a2﹣4a+3=a2﹣4a+4﹣1=(a﹣2)2﹣1,故选:A.4.解:∵a=1,b=11,c=﹣1,∴△=b2﹣4ac=112﹣4×1×(﹣1)=125>0,∴一元二次方程x2+11x﹣1=0有两个不相等的实数根.故选:A.5.解:设每天的增长率为x,依题意,得:5000(1+x)2=6050.故选:D.6.解:由题意可知:k﹣1≠0且4k2﹣4k(k﹣1)≥0,∴k≥0且k≠1,故选:A.7.解:∵关于x的方程ax2+3x+1=0是一元二次方程,∴a≠0,故选:C.8.解:一元二次方程x2﹣x=3,整理得:x2﹣x﹣3=0,∵a=1,b=﹣1,c=﹣3,∴△=1+12=13>0,则方程有两个不相等的实数根.故选:C.9.解:∵x1是方程ax2﹣4x﹣c=0(a≠0)的一个根,∴ax12﹣4x1=c,则p﹣q=(ax1﹣2)2﹣(ac+5)=a2x12﹣4ax1+1﹣ac﹣5=a(ax12﹣4x1)﹣ac﹣5=ac﹣ac﹣5=﹣5,∴p﹣q<0,∴p<q.故选:A.10.解:3x2+5x﹣1=0中的b=5,故选:A.二.填空题11.解:把x=1代入方程x2﹣ax+2=0得1﹣a+2=0,解得a=3.故答案为:3.12.解:∵一月份的营业额为200万元,平均每月增长率为x,∴二月份的营业额为200×(1+x),∴三月份的营业额为200×(1+x)×(1+x)=200×(1+x)2,∴可列方程为200(1+x)+200(1+x)2=1000,故答案为:200×(1+x)+200×(1+x)2=1000.13.解:当2为底边长时,则a=b,a+b=8,∴a=b=4.∵4,4,2能围成三角形,∴n+10=4×4,解得:n=6;当2为腰长时,a、b中有一个为2,则另一个为6,∵6,2,2不能围成三角形,∴此种情况不存在.故答案为:6.14.解:(1)∵关于x的一元二次方程x2﹣2(k﹣1)x+k(k+2)=0有两个不相等的实数根,∴△=[﹣2(k﹣1)]2﹣4k(k+2)=﹣16k+4>0,解得:k<;(2)当k=0时,原方程为x2+2x=0,∴x(x+2)=0,解得:x1=0,x2=﹣2.∴当k=0时,方程的根为0和﹣2.15.解:根据题意得2k+3≠0且1﹣k≥0且△=(﹣)2﹣4(2k+3)×(﹣)≥0,解得﹣4≤k≤1且k≠﹣.故答案为﹣4≤k≤1且k≠﹣.三.解答题16.解:(1)2x2+5x+2=0,(2x+1)(x+2)=0,2x+1=0或x+2=0,x1=﹣,x2=﹣2;(2)整理得,3x2﹣11x+9=0,∵a=3,b=﹣11,c=9,∴△=b2﹣4ac=(﹣11)2﹣4×3×9=13>0,∴方程有两个不相等的实数根,∴x==,∴x1=,x2=.17.解:(1)证明:∵x2﹣(m﹣2)x﹣m=0,∴△=[﹣(m﹣2)]2﹣4×1×(﹣m)=m2+4>0,∴无论m为任何的实数,方程总有两个不相等的实数根;(2)∵x2﹣(m﹣2)x﹣m=0,方程的两实根为x1、x2,∴x1+x2=m﹣2,x1x2=﹣m,又,∴,∴(m﹣2)2﹣4×(﹣m)=13,解得,m1=3,m2=﹣3,即m的值是3或﹣3.18.解:(1)设垂直于墙的边长为xm,则平行于墙的边长为(20﹣2x)m,依题意,得:x(20﹣2x)=50,整理,得:x2﹣10x+25=0,解得:x1=x2=5,∴20﹣2x=10.答:矩形场地的长为10m,宽为5m.(2)不能,理由如下:设垂直于墙的边长为ym,则平行于墙的边长为(20﹣2y)m,依题意,得:y(20﹣2y)=60,整理,得:y2﹣10y+30=0,∵△=(﹣10)2﹣4×1×30=﹣20<0,∴不能围成一个面积为60m2的矩形场地.19.解:(1)设t秒钟后,PQ的长度是15cm,此时CP=4tcm,CQ=3tcm.∵∠C=90°,∴PQ2=CP2+CQ2,即152=(4t)2+(3t)2,解得:t1=3,t2=﹣3(不合题意,舍去).答:3秒钟后,PQ的长度是15cm.(2)在Rt△ABC中,∠ACB=90°,AB=50cm,AC=40cm,∴BC==30cm.设x秒后,△PCQ的面积是△ABC面积的,此时CP=4xcm,CQ=3xcm.依题意,得:CP•CQ=×AC•BC,即×4x×3x=××40×30,解得:x1=5,x2=﹣5(不合题意,舍去).答:5秒后,△PCQ的面积是△ABC面积的.20.解:(1)①解方程得:(x﹣3)(x+2)=0,x=3或x=﹣2,∵2≠﹣3+1,∴x2﹣x﹣6=0不是“邻根方程”;②x==,∵=+1,∴2x2﹣2x+1=0是“邻根方程”;(2)解方程得:(x﹣m)(x+1)=0,∴x=m或x=﹣1,∵方程x2﹣(m﹣1)x﹣m=0(m是常数)是“邻根方程”,∴m=﹣1+1或m=﹣1﹣1,∴m=0或﹣2;(3)解方程得x=,∵关于x的方程ax2+bx+1=0(a、b是常数,a>0)是“邻根方程”,∴﹣=1,∴b2=a2+4a,∵t=12a﹣b2,∴t=8a﹣a2=﹣(a﹣4)2+16,∵a>0,∴a=4时,t的最大值为16.《圆》单元提升训练一.选择题1.如图,在△ABC中,∠ACB=90°,AC=3,BC=4.以B为圆心作圆与AC相切,则该圆的半径等于()A.2.5B.3C.4D.52.如图,△ABC内接于圆,∠ACB=90°,过点C的切线交AB的延长线于点P,∠P=28°.则∠CAB=()A.62°B.31°C.28°D.56°3.用反证法证明命题:“已知△ABC,AB=AC,求证:∠B<90°.”第一步应先假设()A.∠B≥90°B.∠B>90°C.∠B<90°D.AB≠AC4.一个圆锥的底面半径是4cm,其侧面展开图的圆心角是120°,则圆锥的母线长是()A.8cm B.12cm C.16cm D.24cm5.下列说法中,不正确的是()A.直径是最长的弦B.同圆中,所有的半径都相等C.圆既是轴对称图形又是中心对称图形D.长度相等的弧是等弧6.挂钟的分针长10cm,经过45分钟,它的针尖经过的路程是()A.cm B.15πcm C.cm D.75πcm7.⊙O是△ABC的外接圆,则点O是△ABC的()A.三条边的垂直平分线的交点B.三条角平分线的交点C.三条中线的交点D.三条高的交点8.平面内,⊙O的半径为2,点P到O的距离为2,过点P可作⊙O的切线条数为()A.0条B.1条C.2条D.无数条9.如图,AB是半圆O的直径,AB=5cm,AC=4cm.D是弧BC上的一个动点(含端点B,不含端点C),连接AD,过点C作CE⊥AD于E,连接BE,在点D移动的过程中,BE的取值范围是()A.﹣2<BE≤B.﹣2≤BE<3C.≤BE<3D.﹣≤BE<310.如图,△OAC按顺时针方向旋转,点O在坐标原点上,OA边在x轴上,OA=8,AC=4,把△OAC绕点A按顺时针方向转到△O′AC′,使得点O′的坐标是(4,4)则在这次旋转过程中线段OC扫过部分(阴影部分)的面积为()A.8πB.πC.2πD.48π二.填空题11.已知弦AB把圆周分成1:9两部分,则弦AB所对圆心角的度数为.12.如图,⊙O的半径为1,四边形ABCD内接于⊙O,连接OB,OD,若∠BOD=∠BCD,则的长为.13.如图所示的一扇形纸片,圆心角∠AOB为120°,半径OA的长为3,用它围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为.14.如图,PA、PB、DE分别切⊙O于点A、B、C,且D、E分别在PA、PB上,若PA=10,则△PDE的周长为.15.从一块直径为4m的圆形铁皮上剪出一个如图所示圆周角为90°的最大扇形,则阴影部分的面积为m2(结果保留π).三.解答题16.如图,AB是⊙O的直径,CD是⊙O的弦,如果∠ACD=30°.(1)求∠BAD的度数;(2)若AD=,求DB的长.17.如图,△ABC是⊙O的内接三角形,BC=4,∠A=30°,求⊙O的直径.18.如图,已知正方形ABCD,AB=4,以点A为圆心,AB为半径画弧得到扇形ABD,现将该扇形围成一圆锥的侧面,求出该圆锥底面圆的半径.19.已知圆锥的高为12,底面直径为10,求圆锥的表面积.20.已知:Rt△ABC,∠C=90°.(1)点E在BC边上,且△ACE的周长为AC+BC,以线段AE上一点O为圆心的⊙O恰与AB、BC边都相切.请用无刻度的直尺和圆规确定点E、O的位置;(2)若BC=8,AC=4,求⊙O的半径.参考答案一.选择题1.解:∵∠ACB=90°,即BC⊥AC,∴当圆的半径等于BC=4时,以B为圆心作圆与AC相切,故选:C.2.解:连接OC,如图,∵PC为切线,∴OC⊥PC,∴∠PCO=90°,∴∠POC=90°﹣∠P=90°﹣28°=62°,∵OA=OC,∴∠A=∠OCA,而∠POC=∠A+∠OCA,∴∠A=×62°=31°.故选:B.3.解:用反证法证明命题:“已知△ABC,AB=AC,求证:∠B<90°.”第一步应先假设∠B≥90°.故选:A.4.解:圆锥的底面周长为2π×4=8πcm,即为展开图扇形的弧长,由弧长公式得=8π,解得,R=12,即圆锥的母线长为12cm.故选:B.5.解:A、直径是最长的弦,说法正确;B、同圆中,所有的半径都相等,说法正确;C、圆既是轴对称图形又是中心对称图形,说法正确;D、长度相等的弧是等弧,说法错误;故选:D.6.解:∵分针经过60分钟,转过360°,∴经过45分钟转过270°,则分针的针尖转过的弧长是l===15π(cm).故选:B.7.解:∵⊙O是△ABC的外接圆,∴点O是△ABC的三条边的垂直平分线的交点.故选:A.8.解:∵⊙O的半径为2,点P到O的距离为2,∴点P在⊙O上,∴过点P可作⊙O的一条切线.故选:B.9.解:如图,由题意知,∠AEC=90°,∴E在以AC为直径的⊙M的上(不含点C、可含点N),∴BE最短时,即为连接BM与⊙M的交点(图中E′点),∵AB是半圆O的直径,∴∠ACB=90°,∴AB=5,AC=4,∴BC=3,CM=2,则BM===,∴BE长度的最小值BE′=BM﹣ME′=﹣2,当BE最长时,即E与C重合,∵BC=3,且点E与点C不重合,∴BE<3,综上,﹣2≤BE<3,故选:B.10.解:过O′作O′M⊥OA于M,则∠O′MA=90°,∵点O′的坐标是(4,4),∴O ′M =4,OM =4,∵AO =8, ∴AM =8﹣4=4,∴tan ∠O ′AM ==,∴∠O ′AM =60°,即旋转角为60°,∴∠CAC ′=∠OAO ′=60°,∵把△OAC 绕点A 按顺时针方向旋转到△O ′AC ′,∴S △OAC =S △O ′AC ′, ∴阴影部分的面积S =S 扇形OAO ′+S △O ′AC ′﹣S △OAC ﹣S 扇形CAC ′=S 扇形OAO ′﹣S 扇形CAC ′=﹣=8π,故选:A .二.填空题11.解:∵弦AB 把圆周分成1:9两部分,∴弦AB 所对圆心角的度数=×360°=36°.故答案为36°.12.解:由圆周角定理得,2∠BAD=∠BOD,∵四边形ABCD是⊙O的内接四边形,∴∠BCD=180°﹣∠BAD,∴180°﹣∠BAD=2∠BAD,解得,∠BAD=60°,∴∠BOD=2∠BAD=120°,∴的长==π,故答案为:π.13.解:设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=1,即该圆锥底面圆的半径为1.故答案为:1.14.解:∵PA、PB、DE分别切⊙O于A、B、C,∴PA=PB,DA=DC,EC=EB;=PD+DE+PE=PD+DA+EB+PE=PA+PB=10+10=20;∴C△PDE∴△PDE的周长为20;故答案为:20.15.解:∵∠ABC=90°,∴AC为⊙O的直径,即AC=4m,∴AB=AC=2m;∴S阴影=S圆﹣S扇形=π×22﹣=2π;故答案为2π.三.解答题16.解:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵∠B=∠ACD=30°,∴∠BAD=90°﹣∠B=90°﹣30°=60°;(2)在Rt△ADB中,BD=AD=×=3.17.解:连接OB,OC,∵∠A=30°,∴∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∴OC=BC=4,∴⊙O的直径=8.18.解:设底面圆的半径为r,根据题意得:2πr=,解得:r=1,所以该圆锥的底面圆的半径为1.19.解:底面直径为10,则底面周长=10π,底面面积=25π;由勾股定理得,母线长=13,圆锥的侧面面积S侧=×10π×13=65π,∴它的表面积S=25π+65π=90π,20.(1)如图,作∠ABC的平分线BO,作线段AB的垂直平分线EG,交BC于E,连接AE交BO于O,则点E、O即为所求作点;(2)解:设AE=BE=x,则CE=8﹣x,在Rt△ACE中,42+(8﹣x)2=x2,解得:x=5,在Rt△ABC中,AB===4,设⊙O的半径为r,∵S△ABE =S△AOB+S△BOE∴×5×4=×4r+×5r ∴r=,即⊙O的半径为.。

人教版高中数学选修一第二单元《直线和圆的方程》测试(含答案解析)

人教版高中数学选修一第二单元《直线和圆的方程》测试(含答案解析)

一、选择题1.两圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,若a R ∈,b R ∈且0ab ≠,则2211a b+的最小值为( ) A .72B .4C .1D .52.若平面上两点()2,0A -,()10B ,,则l :()1y k x =-上满足2PA PB =的点P 的个数为( ) A .0 B .1C .2D .与实数k 的取值有关3.点()4,2P -与圆224x y +=上任一点连线的中点轨迹方程是( ) A .()()22211x y -++= B .()()22214x y -++= C .()()22421x y ++-=D .()()22211x y ++-=4.已知直线1:210l ax y +-=2:820l x ay a ++-=,若12l l //,则a 的值为( ) A .4±B .-4C .4D .2±5.已知圆22:(1)1C x y +-=,点(3,0)A 在直线l 上,过直线l 上的任一点P 引圆C 的两条切线,若切线长的最小值为2,则直线l 的斜率k =( ) A .2B .12C .2-或12D .2或12-6.点P 是直线2100x y ++=上的动点,直线PA ,PB 分别与圆224x y +=相切于A ,B 两点,则四边形PAOB (O 为坐标原点)的面积的最小值等于( ) A .8 B .4C .24D .167.已知圆222:(1)(1)(0)C x y r r -+-=>,若圆C 上至少有3个点到直线20x y ++=,则实数r 的取值范围为( )A .(0,B .C .)+∞D .+∞[)8.在平面直角坐标系中,定义1212(,)||||d A B x x y y =-+-为两点11(,)A x y 、22(,)B x y 的“切比雪夫距离”,又设点P 及直线l 上任意一点Q ,称(,)d P Q 的最小值为点P 到直线l 的“切比雪夫距离”,记作(,)d P l ,给出下列三个命题: ①对任意三点A 、B 、C ,都有(,)(,)(,)d C A d C B d A B +≥; ②已知点(3,1)P 和直线:210l x y --=,则4(,)3d P l =; ③定义(0,0)O ,动点(,)P x y 满足(,)1d P O =,则动点P 的轨迹围成平面图形的面积是4;其中真命题的个数( ) A .0B .1C .2D .39.若过点(2,1)P 的圆与两坐标轴都相切,则圆心到直线230x y -+=的距离是( )A B C D 10.已知点(1,1)A - 和圆221014700C x y x y +--+=: ,一束光线从点A 出发,经过x 轴反射到圆C 的最短路程是( ) A .6B .7C .8D .911.曲线34y x x =-在点(1,3)--处的切线方程是( ) A .74y x =+B .72y x =+C .4y x =-D .2y x =-12.设点()0,1M x ,若在圆22:1O x y +=上存在点N ,使得45OMN ︒∠=,则0x 的取值范围是( )A .[0,1]B .[1,1]-C .⎡⎢⎣⎦D .⎡⎢⎣⎦二、填空题13.已知过点()4,1P 的直线l 与x 轴,y 轴的正半轴分别交于A 、B 两点,O 为坐标原点,当AOB 的面积最小时,直线l 的方程为______. 14.直线360x y +-=和圆()2215x y +-=的位置关系为______.15.已知圆C 过点(8,1),且与两坐标轴都相切,则面积较小的圆C 的方程为________. 16.设圆222:()0O x y r r +=>,定点(3,4)A -,若圆O 上存在两点到A 的距离为2,则r 的取值范围是___________.17.直线()130m x my m ++++=被圆2225x y +=所截的弦长的最小值为________. 18.若P 为直线40x y -+=上一个动点,从点P 引圆2240y x C x +-=:的两条切线PM ,PN (切点为M ,N ),则MN的最小值是________.19.若直线y x b =+与曲线y =b 的范围______________.20.若实数,a b ∈R 且0b ≠,则()221a b a b ⎛⎫-++ ⎪⎝⎭的最小值为_______.三、解答题21.在平面直角坐标系xOy 中,已知圆M 过点A (1,2),B (7,-6),且圆心在直线x +y -2=0上.(1)求圆M 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于C ,D 两点,且CD =2OA ,求直线l 的方程. 22.已知直线l 经过直线10x y -+=与直线240x y +-=的交点,且()2,3M ,()4,5N -到l 的距离相等,求直线l 的方程.23.已知圆C 过A (1,5)、B (4,2)两点,且圆心在直线2y x =上,直线l 过点()3,2P --且与AB 平行.(1)求直线l 及圆C 的方程;(2)设点M 、N 分别是直线l 和圆C 上的动点,求|MN |的取值范围. 24.已知圆C 的圆心在直线2y x =-上,且过点(2,1),(0,3)-- (1)求圆C 的方程;(2)已知直线l 经过原点,并且被圆C 截得的弦长为2,求直线l 的方程. 25.已知直线:10l x y +-=与圆22:430C x y x +-+=相交于,A B 两点. (1)求||AB ;(2)若(,)P x y 为圆C 上的动点,求+1yx 的取值范围. 26.如图,已知ABC 的边AB 所在直线的方程为360x y --=,()2,0M 满足BM MC =,点()1,1T -在AC 边所在直线上且满足0AT AB ⋅=.(1)求AC 边所在直线的方程; (2)求ABC 外接圆的方程;(3)求过()2,0N -的ABC 外接圆的切线方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由题意可知两圆外切,可得出2249a b +=,然后将代数式2211a b +与2249a b +相乘,展开后利用基本不等式可求得2211a b +的最小值. 【详解】圆222240x y ax a +++-=的标准方程为()224x a y ++=,圆心为()1,0C a -,半径为12r =,圆2224140x y by b +--+=的标准方程为()2221x y b +-=,圆心为()20,2C b ,半径为21r =.由于圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,则这两圆外切,所以,1212C C r r =+3=,所以,2249a b +=,所以,222222222211411141551999a b a b a b a b b a ⎛⎛⎫+⎛⎫+=+=++≥⨯+= ⎪ ⎪ ⎝⎭⎝⎭⎝, 当且仅当222a b =时,等号成立,因此,2211a b +的最小值为1. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.C解析:C 【分析】首先利用直接法求点P 的轨迹方程,则转化为直线()1y k x =-与轨迹曲线的交点个数. 【详解】 设(),P x y ,2PA PB =,=整理为:()22224024x y x x y +-=⇔-+=, 即点P 的轨迹是以()2,0为圆心,2r为半径的圆,直线():1l y k x =-是经过定点()1,0,斜率存在的直线,点()1,0在圆的内部,所以直线():1l y k x =-与圆有2个交点,则l :()1y k x =-上满足2PA PB =的点P 的个数为2个. 故选:C方法点睛:一般求曲线方程的方法包含以下几种:直接法:把题设条件直接“翻译”成含,x y 的等式就得到曲线的轨迹方程.定义法:运用解析几何中以下常用定义(如圆锥曲线的定义),可从曲线定义出发,直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.相关点法:首先要有主动点和从动点,主动点在已知曲线上运动,则可以采用此法.3.A解析:A 【分析】设圆上任意一点为()11,x y ,中点为(),x y ,则114222x x y y +⎧=⎪⎪⎨-⎪=⎪⎩,由此得解轨迹方程.【详解】设圆上任意一点为()11,x y ,中点为(),x y ,则114222x x y y +⎧=⎪⎪⎨-⎪=⎪⎩,112422x x y y =-⎧⎨=+⎩代入224x y +=得()()2224224x y -++=,化简得()()22211x y -++=.故选:A . 4.B解析:B 【分析】由12l l //可得280,a a ⨯-⨯=解得4a =±,然后再检验,得出答案. 【详解】因为12l l //,所以280,4a a a ⨯-⨯=∴=±. 当4a =时,两直线重合,所以4a =舍去. 当4a =-时,符合题意. 所以4a =-. 故选:B 【点睛】易错点睛:已知直线1110a x b y c ++=和直线2220a x b y c ++=平行求参数的值时,除了要计算12210a b a b -=,还一定要把求出的参数值代入原直线方程进行检验,看直线是否重合.本题就是典型例子,否则容易出现错解,属于中档题5.C【分析】根据勾股定理由切线长最小值求出||PC C 到直线l 的距离为l 的方程,根据点到直线的距离列式可解得结果.【详解】圆22:(1)1C x y +-=的圆心为(0,1)C ,半径为1,因为切线长的最小值为2,所以min ||PC ==所以圆心C 到直线l ,所以直线必有斜率,设:(3)l y k x =-,即30kx y k --=,所以圆心(0,1)C 到直线30kx y k --===22320k k +-=,解得12k =或2k =-.故选:C 【点睛】关键点点睛:根据勾股定理由切线长的最小值求出||PC 的最小值,也就是圆心C 到直线l 的距离是解题关键.6.A解析:A 【分析】根据题意,得到四边形PAOB 的面积22PAOS S PA ===只需求PO 最小值,进而可求出结果. 【详解】因为圆224x y +=的圆心为()0,0O ,半径为2r,圆心()0,0O 到直线2100x y ++=的距离为2d ==>,所以直线2100x y ++=与圆224x y +=相离,又点P 是直线2100x y ++=上的动点,直线PA ,PB 分别与圆224x y +=相切于A ,B 两点,所以PA PB =,PA OA ⊥,PB OB ⊥,因此四边形PAOB 的面积为12222PAO PBOPAOS SSSPA r PA =+==⨯⨯== 为使四边形面积最小,只需PO 最小,又min PO 为圆心()0,0O 到直线2100x y ++=的距离d =所以四边形PAOB 的面积的最小值为8=. 故选:A. 【点睛】 关键点点睛:求解本题的关键在于根据圆的切线的性质,将四边形的面积化为2PAOS =求面积最值问题,转化为定点到线上动点的最值问题,即可求解.7.D解析:D 【分析】根据题意,得到直线不过圆心,且求得圆心到直线的距离,结合题中条件,得到实数r 的取值范围. 【详解】圆222:(1)(1)(0)C x y r r -+-=>的圆心(1,1)到直线20x y ++=为:d ==,且直线20x y ++=不过圆心,若圆222:(1)(1)(0)C x y r r -+-=>上至少有3个点到直线20x y ++=,则有r ≥=所以实数r 的取值范围为+∞[), 故选:D. 【点睛】思路点睛:该题考查的是有关直线与圆的相关问题,解决该题的思路如下: (1)求得圆心到直线的距离,并且发现直线不过圆心; (2)结合题中条件,得到r 的取值范围.8.B解析:B 【分析】由新定义表示出三点,,A B C 两两之间的“切比雪夫距离”,然后根据绝对值的性质判断①,由新定义计算出(,)d P l ,判断②,根据新定义求出P 的轨迹方程,确定其轨迹,求得轨迹围成的图形面积判断③. 【详解】①设112233(,),(,),(,)A x y B x y C x y ,则1212(,)d A B x x y y =-+-,13132323(,)(,)d A C d B C x x y y x x y y +=-+-+-+-,显然1323132312()()x x x x x x x x x x -+-≥---=-,同理132312y y y y y y -+-≥-,∴(,)(,)(,)d C A d C B d A B +≥,①正确; ②设(,)P x y 是直线l 上任一点,则21y x =-,(,)31322d P l x y x x =-+-=-+-35,31,1353,1x x x x x x -≥⎧⎪=+≤<⎨⎪-<⎩,易知(,)d P l 在[1,)+∞上是增函数,在(,1)-∞上是减函数,∴1x =时,min (,)13222d P l =-+-=,②错; ③由(,)1d P O =得1x y +=,易知此曲线关于x 轴,y 轴,原点都对称,它是以(1,0),(0,1),(1,0),(0,1)--为顶点的正方形,其转成图形面积为12222S =⨯⨯=,③错.故选:B . 【点睛】关键点点睛:本题考查新定义,解题关键是理解新定义,解题方法是把新概念转化为绝对值的问题,利用绝对值的性质求解.9.C解析:C 【分析】由题意可知圆心在第一象限,设圆心的坐标为(),,0a a a >,可得圆的半径为a ,写出圆的标准方程,利用点()2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y -+=的距离. 【详解】由于圆上的点()2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=. 由题意可得()()22221a a a -+-=, 可得2650a a -+=,解得1a =或5a =, 所以圆心的坐标为()1,1或()5,5,圆心()1,1到直线230x y -+=的距离均为15d ==圆心()5,5到直线230x y -+=的距离均为25d ==圆心到直线230x y -+=的距离均为5d ==;所以,圆心到直线230x y -+=. 故选:C. 【点睛】关键点点睛:本题考查圆心到直线距离的计算,求出圆的圆心是解题的关键,考查计算能力.10.C解析:C 【分析】先将圆221014700C x y x y +--+=:化为标准方程,求出圆心和半径,再找出圆心O 关于x 轴对称的点'O ,最短距离即(1,1)A -和圆C 的圆心()5,7O 关于x 轴对称的点()'5,7O -的距离再减去半径的距离. 【详解】解:由题可知,圆221014700C x y x y +--+=:,整理得()()222572C x y -+-=:,圆心()5,7O ,半径2r最短距离即(1,1)A -和圆C 的圆心()5,7O 关于x 轴对称的点()'5,7O -的距离再减去半径的距离,所以21028d ==-=.故选:C 【点睛】本题主要考查圆的方程和直线与圆的位置关系,考查两点间的距离公式,属于简单题.11.D解析:D 【分析】已知点(1,3)--在曲线上,若求切线方程,只需求出曲线在此点处的斜率,利用点斜式求出切线方程. 【详解】由已知得:曲线为34y x x =-;则:对其进行求导得243y x '=-;当1x =-时,243(1)1y '=-⨯-=∴ 曲线34y x x =-在点(1,3)--处的切线方程为:31(1)y x +=⨯+化简得:2y x =-; 故选:D.【点睛】本题主要考查了求曲线切线方程,解题关键是掌握根据导数求切线的方法,考查了分析能力和计算能力,属于中档题.12.B解析:B 【分析】首先根据题中条件,可以判断出直线MN 与圆O 有公共点即可,从而可以断定圆心O 到直线MN 的距离小于等于半径,列出对应的不等关系式,求得结果. 【详解】依题意,直线MN 与圆O 有公共点即可, 即圆心O 到直线MN 的距离小于等于1即可,过O 作OA ⊥MN ,垂足为A , 在Rt OMA ∆中,因为OMA ∠045=, 故02sin 452OA OM ==1≤, 所以2OM ≤2012x +≤,解得011x -≤≤.故选:B. 【点睛】该题考查的是有关直线与圆的问题,涉及到的知识点有直线与圆的位置关系,解直角三角形,属于简单题目.二、填空题13.【分析】由题意可知直线的斜率存在且不为零可设直线的方程为求出点的坐标结合已知条件可求得的取值范围并求出的面积关于的表达式利用基本不等式可求得面积的最小值及其对应的值由此可求得直线的方程【详解】由题意 解析:480x y +-=【分析】由题意可知,直线l 的斜率存在且不为零,可设直线l 的方程为()14y k x -=-,求出点A 、B 的坐标,结合已知条件可求得k 的取值范围,并求出AOB 的面积关于k 的表达式,利用基本不等式可求得AOB 面积的最小值及其对应的k 值 ,由此可求得直线l 的方程. 【详解】由题意可知,直线l 的斜率存在且不为零,可设直线l 的方程为()14y k x -=-,即14y kx k =+-. 在直线l 的方程中,令0x =,可得14y k =-;令0y =,可得41k x k-=. 即点41,0k A k -⎛⎫⎪⎝⎭、()0,14B k -,由题意可得410140k k k -⎧>⎪⎨⎪->⎩,解得0k <, AOB 的面积为()1411111481688222AOBk S k k k k ⎛-⎛⎫=⨯⨯-=--≥+= ⎪ ⎝⎭⎝△,当且仅当()1160k k k-=-<时,即当14k =-时,等号成立,所以,直线l 的方程为()1144y x -=--,即480x y +-=. 故答案为:480x y +-=. 【点睛】关键点点睛:解本题的关键在于以下两点: (1)将三角形的面积利用k 加以表示;(2)在求解最值时,可充分利用基本不等式、导数、函数的单调性等知识来求解.14.相交【分析】由圆的标准方程求出圆心和半径根据圆心到直线的距离与半径的大小关系确定出直线与圆的位置关系【详解】解:圆的圆心坐标为半径则圆心到直线的距离直线与圆的位置关系是相交故答案为:相交【点睛】方法解析:相交 【分析】由圆的标准方程求出圆心和半径,根据圆心到直线的距离与半径的大小关系,确定出直线与圆的位置关系 【详解】解:圆()2215x y +-=的圆心坐标为(0,1),半径r =则圆心到直线360x y +-=的距离d =< ∴直线360x y +-=与圆()2215x y +-=的位置关系是相交.故答案为:相交. 【点睛】方法点睛:判断直线与圆的位置关系,常用圆心到直线的距离d 与圆半径r 的大小比较:(1)若d r =,则直线与圆相切; (2)若d r <,则直线与圆相交; (3)若dr ,则直线与圆相离.15.【分析】设圆的方程为代入点求得或进而得到圆的方程【详解】由题意圆过点且与两坐标轴都相切设圆的方程为将点代入圆的方程可得整理得解得或当时圆的面积较小所以圆的方程为故答案为:【点睛】求解圆的方程的两种方 解析:()()225525x y -+-=【分析】设圆的方程为222()()(0)x a y a a a -+-=>,代入点(8,1),求得5a =或13a =,进而得到圆的方程. 【详解】由题意,圆C 过点(8,1),且与两坐标轴都相切, 设圆的方程为222()()(0)x a y a a a -+-=>, 将点(8,1)代入圆的方程,可得222(8)(1)a a a -+-=, 整理得218650a a -+=,解得5a =或13a =,当5a =时,圆C 的面积较小,所以圆的方程为()()225525x y -+-=. 故答案为:()()225525x y -+-=. 【点睛】求解圆的方程的两种方法:几何法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程; 待定系数法:①根据题意,选择标准方程与一般方程; ②根据条件列出关于,,a b r 或,,D E F 的方程组; ③解出,,a b r 或,,D E F 的值,代入标准方程或一般方程.16.【分析】将问题转化为以为圆心2为半径的圆为圆与圆相交问题再根据圆与圆的位置关系求解即可【详解】解:根据题意设以为圆心2为半径的圆为圆所以圆圆心为半径为则两圆圆心距为:因为圆上存在两点到的距离为2所以 解析:(3,7)【分析】将问题转化为以(3,4)A -为圆心,2为半径的圆为圆A 与圆O 相交问题,再根据圆与圆的位置关系求解即可. 【详解】解:根据题意设以(3,4)A -为圆心,2为半径的圆为圆A , 所以圆222:(0),O x y r r +=> 圆心为(0,0),O 半径为r , 则两圆圆心距为 : ||5OA = , 因为圆O 上存在两点到A 的距离为2,所以圆O 与圆A 相交,所以252,r r -<<+ 解得 :37.r << 所以的取值范围是:(3,7). 故答案为:(3,7). 【点睛】圆与圆位置关系问题的解题策略:(1)判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法;(2)若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差消去22,x y 项得到.17.【分析】转化条件为直线过结合垂径定理可得当直线与直线垂直时弦长最小即可得解【详解】直线可变为由可得所以直线过定点又圆的圆心为半径所以点在圆内所以当直线与直线垂直时弦长最小此时弦长为故答案为:【点睛】解析:【分析】转化条件为直线过()3,2A -,结合垂径定理可得当直线AO 与直线()130m x my m ++++=垂直时,弦长最小,即可得解.【详解】直线()130m x my m ++++=可变为()130x y m x ++++=,由1030x y x ++=⎧⎨+=⎩可得32x y =-⎧⎨=⎩,所以直线()130m x my m ++++=过定点()3,2A -, 又圆2225x y +=的圆心为()0,0O ,半径=5r ,所以213AO =,点()3,2A -在圆内,所以当直线AO 与直线()130m x my m ++++=垂直时,弦长最小,此时弦长为==.故答案为: 【点睛】关键点点睛:解决本题的关键是找到直线经过的定点,再利用几何法转化出弦长.18.【分析】根据题意得当的长度最小时取最小值进而根据几何关系求解即可【详解】如图由题可知圆C 的圆心为半径要使的长度最小即要最小则最小因为所以当最小时最小因为所以当最小时最小因为所以所以由于所以故答案为:【分析】根据题意得当||MN 的长度最小时,||PC 取最小值,进而根据几何关系求解即可. 【详解】如图,由题可知圆C 的圆心为(2,0)C ,半径2r.要使||MN 的长度最小,即要MCN ∠最小,则MCP ∠最小. 因为||||tan 2PM PM MCP r ∠==, 所以当||PM 最小时,||MN 最小因为2||4PM PC =-∣, 所以当||PC 最小时,||MN 最小. 因为min ||3211PC ==+, 所以2cos 332MCP ∠==, 所以7sin 3MCP ∠=, 由于1in 2s 2MCP MN∠=所以min 47||MN =. 47. 【点睛】本题解题的关键是根据已知当||MN 的长度最小,即要MCN ∠最小,进而得当||PC 最小时,||MN 最小.由于||PC 的最小值为C 点到直线40x y -+=,故min ||32PC =.考查化归转化思想和运算能力,是中档题.19.或【分析】由曲线变形为画出的图象当直线经过时直线与曲线有两个公共点求出此时的以及直线过时的值再求出当直线与曲线相切时的的值数形结合即可得b 的范围【详解】由曲线变形为画出的图象①当直线经过时直线与曲线解析:22b -≤<或22b = 【分析】 由曲线24y x =-变形为()2204y x y +=≥,画出 y x b =+,()2204y x y +=≥的图 象,当直线经过()2,0A - ,()0,2B 时,直线与曲线有两个公共点,求出此时的b ,以及直线y x b =+过(2,0)C 时b 的值,再求出当直线与曲线相切时的b 的值,数形结合即可得b 的范围. 【详解】 由曲线24y x =-变形为()2204y x y +=≥,画出 y x b =+,()2204y x y +=≥的图象,①当直线经过()2,0A - ,()0,2B 时,直线与曲线有两个公共点,此时2b =, 当直线y x b =+过(2,0)C 时02b =+,得2b =-, 所以若直线与曲线有1个公共点,则22b -≤<. ②当直线与曲线相切时,联立224y x bx y =+⎧⎨+=⎩ ,化为222240x bx b ++-=, 令2248(4)0b b ∆=--=,解得:22b =,或22b =-(舍去), 综上所述b 的范围: 22b -≤<或22b =. 故答案为:22b -≤<或22b =.【点睛】本题主要考查了直线与圆相交相切问题、采用数形结合思想,属于中档题.20.2【分析】根据两点间的距离公式的几何意义可知表示点到点的距离点在直线上点在曲线上通过平移法设曲线的切线方程联立切线方程和曲线方程通过求出可求出切线方程最后利用两平行线间的距离公式求出两平行直线与的距【分析】(),a a 到点1,b b ⎛⎫- ⎪⎝⎭的距离,点(),a a 在直线y x =上,点1,b b ⎛⎫- ⎪⎝⎭在曲线1y x =-上,通过平移法,设曲线1y x=-的切线方程y x m =+,联立切线方程和曲线方程,通过0∆=求出m ,可求出切线方程,最后利用两平行线间的距离公式,求出两平行直线0x y -=与20x y -+=的距. 【详解】表示点(),a a 到点1,b b ⎛⎫- ⎪⎝⎭的距离, 而点(),a a 在直线y x =上,点1,b b ⎛⎫- ⎪⎝⎭在曲线1y x=-上, 将直线y x =平移到与曲线1y x=-相切,设切线为y x m =+,切线方程和曲线方程联立,即1y x my x =+⎧⎪⎨=-⎪⎩,得210x mx ++=,则240m ∆=-=,解得:2m =±,当2m =时,切线方程为:2y x =+,即20x y -+=, 所以两平行直线0x y -=与20x y -+=的距离为:d ==,所以()221a b a b ⎛⎫-++ ⎪⎝⎭的最小值为2. 故答案为:2. 【点睛】本题考查利用两点间距离的几何意义求最值,考查两点间的距离公式以及两平行线间的距离公式的应用,还涉及两平行线的斜率关系和一元二次方程根的判别式,考查转化思想和三、解答题21.(1)()()224225x y -++=;(2)2200x y --=. 【分析】(1)联立线段AB 的垂直平分线所在的方程与圆心所在直线方程,可得圆心坐标,进而求出圆的半径以及圆M 的标准方程;(2)设出直线l 的方程,由CD =2OA 可得弦长,利用点到直线的距离公式结合勾股定理列出方程,可得直线l 的方程. 【详解】(1)由题意可解得线段AB 的垂直平分线所在的方程为:y +2=34(x -4),即354y x =-,因为圆心在直线x +y -2=0上,且圆M 过点A (1,2),B (7,-6),则圆心为直线354y x =-与直线x +y -2=0的交点,联立20354x y y x +-=⎧⎪⎨=-⎪⎩,解得42x y =⎧⎨=-⎩,即圆心M 为(4,-2),半径为MA5=,所以圆M 的标准方程为()()224225x y -++=.(2)由直线l 平行于OA ,可设直线l 的方程为:20y x m m =+≠,,则圆心M 到直线l的距离为d ==CD =2OA =2525d +=,所以d ==,则解得m =-20或m =0(舍去),则直线l 的方程为2200x y --=. 【点睛】关键点点睛:本题考查圆的标准方程,考查圆的性质,解决本题的关键点是由已知求出弦长CD ,利用圆的弦长的一半,圆心到直线的距离和圆的半径构造直角三角形,结合勾股定理计算出参数的值,进而可得直线的方程,考查了学生计算能力,属于中档题. 22.3270x y +-=或460x y +-=. 【分析】根据题意求出交点坐标,由M ,N 到l 的距离相等,可判断直线有两种情况:①直线l 经过线段MN 的中点;②直线//l MN ,分别求解两种情况下的直线方程即可. 【详解】 联立10240x y x y -+=⎧⎨+-=⎩得12x y =⎧⎨=⎩,所以直线10x y -+=与直线240x y +-=的交点为()1,2P ,由M ,N 到l 的距离相等,知直线l 经过线段MN 的中点,或者直线//l MN ,线段MN 的中点为()3,1Q -,35424MN k +==--, ∴过点P ,Q 的直线l 的方程为3270x y +-=,∴过点P 与直线MN 平行的直线l 的方程为460x y +-=, 综上,直线l 的方程为3270x y +-=或460x y +-=. 【点睛】本题考查直线方程的求法,考查两直线交点等基础知识,两个点到直线的距离相等,可以分为两种情况:①直线l 经过线段MN 的中点;②直线//l MN ;当MN 的中点()3,1Q -在直线l 上时,计算出斜率PQ k ,利用点斜式即可得出直线l 的方程;当//MN l时,计算出斜率MN k ,再根据斜率相等,利用点斜式即可得出直线l 的方程.23.(1)x +y +5=0,(x -1)2+(y -2)2=9;(2))3,⎡+∞⎣. 【分析】(1)求出AB 的斜率,利用点斜式可得直线l 的方程,求出AB 的中垂线的方程,结合圆心在直线2y x =上可得圆心坐标,求出半径后可得所求的圆的方程. (2)求出圆心到直线l 的距离后可得|MN |的取值范围. 【详解】(1)∵1AB k =-, 直线l:y +2=-(x +3),即l:x +y +5=0,AB 的中点为57,22⎛⎫⎪⎝⎭,故AB 的中垂线方程为57122y x x =-+=+,由21y x y x =⎧⎨=+⎩解得12x y =⎧⎨=⎩,∴圆心C (1,2),半径3r CA ===, ∴圆C 的方程为:(x -1)2+(y -2)2=9.(2) ∵圆心C 到直线l 的距离为3d ==>,∴直线l 与圆C 相离,∴|MN |的最小值为3-,无最大值,∴|MN |的取值范围为)3,⎡+∞⎣. 【点睛】 方法点睛:(1)求圆的方程,关键是确定圆心坐标和圆的半径,前者的确定需要利用一些几何性质,如果圆心在弦的中垂线上,也在过切点且垂直于切线的直线上.(2)直线与圆的位置关系中的最值问题,往往转化为圆心到几何对象的距离问题. 24.(1)22(1)(2)2x y -++=;(2)0x =或34y x =-.【分析】(1)根据题意设圆心坐标为(,2)a a -,进而得222222(2)(12)(0)(32)a a r a a r ⎧-+-+=⎨-+-+=⎩,解得1,a r ==,故圆的方程为22(1)(2)2x y -++=(2)分直线l 的斜率存在和不存在两种情况讨论求解即可. 【详解】(1)圆C 的圆心在直线2y x =-上,设所求圆心坐标为(,2)a a - ∵ 过点(2,1),(0,3)--,222222(2)(12)(0)(32)a a r a a r ⎧-+-+=∴⎨-+-+=⎩解得1,a r ==∴ 所求圆的方程为22(1)(2)2x y -++= (2)直线l 经过原点,并且被圆C 截得的弦长为2 ①当直线l 的斜率不存在时,直线l 的方程为0x =, 此时直线l 被圆C 截得的弦长为2,满足条件; ②当直线l 的斜率存在时,设直线l 的方程为y kx =,由于直线l 被圆C 截得的弦长为2,故圆心到直线l 的距离为1d = 故由点到直线的距离公式得:1d ==解得34k =-,所以直线l 的方程为34y x =- 综上所述,则直线l 的方程为0x =或34y x =- 【点睛】易错点点睛:本题第二问在解题的过程中要注意直线斜率不存在情况的讨论,即分直线l 的斜率存在和不存在两种,避免在解题的过程中忽视斜率不存在的情况致错,考查运算求解能力与分类讨论思想,是中档题.25.(1;(2)⎡⎢⎣⎦. 【分析】(1)求出圆的圆心与半径,利用点到直线的距离公式求出圆心到直线的距离d ,由||AB =.(2)利用+1yx 表示圆上的点与原点构成直线的斜率即可求解. 【详解】(1)()222243021x y x x y +-+=⇒-+=,所以圆心为()2,0,半径1r =,则圆心到直线:10l x y +-=的距离:2d ==,所以||AB ===(2)+1yx 表示圆上的点(),x y 与()1,0-构成直线的斜率,当直线与圆相切时取得最值,设(1),1+1yk y k x x ==-=,,可得2291k k =+,218k =,k =±+1y x的取值范围为44⎡-⎢⎣⎦.【点睛】关键点睛:解题的关键在于利用几何法求弦长以及利用两点求斜率的计算公式得到+1yx 的取值范围26.(1)320x y ++=;(2)22(2)8x y -+=;(3)20x y -+=或20x y ++=. 【分析】(1)求出直线AC 的斜率后可得直线AC 的方程.(2)求出点A 的坐标,结合圆心坐标可求圆的半径,从而可得圆的方程. (3)利用点到直线的距离为半径可求切线的斜率,从而可得所求的切线的方程. 【详解】 (1)0AT AB ⋅=,AT AB ∴⊥,又T 在AC 上,AC AB ∴⊥,ABC ∴为Rt ABC ∆,又AB 边所在直线的方程为360x y --=,∴直线AC 的斜率为3-, 又点()1,1T -在直线AC 上,AC ∴边所在直线的方程为13(1)y x -=-+,即320x y ++=.(2)AC 与AB 的交点为A ,∴由360320x y x y --=⎧⎨++=⎩解得点A 的坐标为()0,2-,BM MC =,()2,0M ∴为Rt ABC 斜边上的中点,即为Rt ABC 外接圆的圆心,又||r AM === 从而ABC 外接圆的方程为22(2)8x y -+=. (3)设切线方程为(2)y k x =+=,解得1k =或1-.所以切线方程为20x y -+=或20x y ++=.【点睛】思路点睛:(1)确定直线的方程往往需要两个独立的条件,比如直线所过的两个不同点,或直线所过的一个点和直线的斜率;(2)确定圆的方程,关键是圆心坐标和半径的确定;(2)直线与圆的位置关系,往往通过圆心到直线的距离与半径的大小关系来判断.。

第二章 直线和圆的方程 专题测试(原卷版+解析版) (人教A版)高二数学选择性必修一

第二章 直线和圆的方程 专题测试(原卷版+解析版) (人教A版)高二数学选择性必修一

第二章 直线和圆的方程专题测试注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(每题只有一个选项为正确答案,每题5分,共40分)1.(2020·福建高二学业考试)已知直线1l :2y x =-,2l :y kx =,若12//l l ,则实数k =( ) A .-2B .-1C .0D .12.(2020·洮南市第一中学高一月考)直线()()1:2140l a x a y -+++=与()2:190l a x ay ++-=互相垂直,则a 的值是( ). A .-0.25B .1C .-1D .1或-13.(2020·江苏省海头高级中学高一月考)直线:l (1)230m x my m ---+=(m R ∈)过定点A ,则点A 的坐标为( ) A .(3,1)-B .(3,1)C .(3,1)-D .(3,1)--4.(2020·广东高二期末)设a R ∈,则“a =1”是“直线ax+y -1=0与直线x+ay+1=0平行”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件,5.(2020·黑龙江高一期末)若曲线y 与直线y =k (x ﹣2)+4有两个交点,则实数k 的取值范围是( ) A .3,14⎛⎤⎥⎝⎦B .3,4⎛⎫+∞⎪⎝⎭C .(1,+∞)D .(1,3]6.(2020·浙江柯城。

衢州二中高三其他)已知直线x y t +=与圆()2222x y t tt R +=-∈有公共点,则()4t t -的最大值为( )A .4B .289C .329D .3277.(2020·广东高一期末)若两平行直线20,(0)x y m m ++=>与30x ny --=则m +n =( ) A .0B .1C .1-D .2-8.(2020·北京市第五中学高三其他)过直线y =x 上的一点作圆22(5)(1)2x y -+-=的两条切线l 1,l 2,当直线l 1,l 2关于y =x 对称时,它们之间的夹角为( ) A .30°B .45°C .60°D .90°二、多选题(每题不止有一个选项为正确答案,每题5分,共20分)9.(2020·江苏省苏州第十中学校高一期中)圆221:20x y x O +-=和圆222:240O x y x y ++-=的交点为A ,B ,则有( )A .公共弦AB 所在直线方程为0x y -= B .线段AB 中垂线方程为10x y +-=C .公共弦ABD .P 为圆1O 上一动点,则P 到直线AB 距离的最大值为12+ 10.(2020·江苏徐州.高一期末)已知直线12:10,:(2)330l x my l m x y +-=-++=,则下列说法正确的是( )A .若12l l //,则m =-1或m =3B .若12l l //,则m =3C .若12l l ⊥,则12m =-D .若12l l ⊥,则12m =11.(2020·江苏扬州.高一期末)已知直线l 与圆22:240C x y x y a ++-+=相交于,A B 两点,弦AB 的中点为()0,1M ,则实数a 的取值可为( ) A .1B .2C .3D .412.(2020·江苏省江阴高级中学高一期中)下列说法正确的是( ) A .直线32()y ax a a R =-+∈必过定点(3,2) B .直线32y x =-在y 轴上的截距为2-C 10y ++=的倾斜角为60°D .过点(1,2)-且垂直于直线230x y -+=的直线方程为20x y +=第II 卷(非选择题)三、填空题(每题5分,共20分)13.(2020·湖南张家界。

圆的方程-2023届高考数学二轮专题必考点专练(含解析)

圆的方程-2023届高考数学二轮专题必考点专练(含解析)

专专9.2圆的专专一、单选题1. 已知圆1C :22()(2)1x a y ++-=与圆2C :22()(2)4x b y -+-=相外切,a ,b为正实数,则ab 的最大值为 ( )A. B.94C.32D.22. 直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆22(2)2x y -+=上,则ABP ∆面积的取值范围是( )A. [2,6]B. [4,8]C.D.3. 已知圆2260x y x +-=,过点(1,2)D 的直线被该圆所截得的弦的长度的最小值为( )A. 1B. 2C. 3D. 44. 已知圆M 的方程为22680x y x y +--=,过点(0,4)P 的直线l 与圆M 相交的所有弦中,弦长最短的弦为AC ,弦长最长的弦为BD ,则四边形ABCD 的面积为( )A. 30B. 40C. 60D. 805. 在平面直角坐标系xOy 中,已知点,,若动点M 满足||2||MA MO =,则OM ON ⋅的取值范围是( )A.B.C.D.6. 若平面内两定点A ,B 之间的距离为2,动点P 满足|||PB PA =,则tan ABP∠的最大值为( )A.2B. 1C.D. 7. 已知圆22:2220M x y x y +---=,直线:220l x y ++=,P 为l 上的动点,过点P 作圆M 的切线PA ,PB ,且切点为A ,B ,当||||PM AB ⋅最小时,直线AB 的方程为( )A. 210x y --=B. 210x y +-=C. 210x y -+=D. 210x y ++= 8. 已知圆221x y +=,点(1,0)A ,ABC 内接于圆,且60BAC ︒∠=,当B ,C 在圆上运动时,BC 中点的轨迹方程是( )A. 2212x y +=B. 2214x y +=C. 2211()22x y x +=<D. 2211()44x y x +=<9. 已知线段AB 是圆C :224x y +=上的一条动弦,且||23AB =,若点P 为直线40x y +-=上的任意一点,则的最小值为( )A. 1B. 1C. 2D. 2二、多选题10. 已知点P 在圆22(5)(5)16x y -+-=上,点(4,0)A ,(0,2)B ,则( ) A. 点P 到直线AB 的距离小于10 B. 点P 到直线AB 的距离大于2C. 当PBA ∠最小时,||PB =D. 当PBA ∠最大时,||PB =11. 已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成两段,弧长比为1:2,则圆C的方程为( )A. 224()33x y ++= B. 224(33x y +-=C. 224(3x y +=D. 224(3x y ++=12. 关于圆2221:2104C x y kx y k k +-++-+=,下列说法正确的是( ) A. k 的取值范围是0k >B. 若4k =,过(3,4)M 的直线与圆C 相交所得弦长为125160x y --=C. 若4k =,圆C 与圆221x y +=相交D. 若4k =,0m >,0n >,直线10mx ny --=恒过圆C 的圆心,则128m n+恒成立13. 圆C :224630x y x y ++--=,直线:3470l x y --=,点P 在圆C 上,点Q在直线l 上,则下列结论正确的是( )A. 直线l 与圆C 相交B. ||PQ 的最小值是1C. 若P 到直线l 的距离为2,则点P 有2个D. 从Q 点向圆C 引切线,切线长的最小值是314. 已知222{(,)|}A x y x y r =+=,222{(,)|()()}B x y x a y b r =-+-=,1122{(,),(,)}A B x y x y ⋂=,则( )A. 22202a b r <+<B. 1212()()0a x x b y y -+-=C. 1212,x x a y y b +=+=D. 221122a b ax by +=+三、填空题15. 已知P ,Q 分别为圆M :22(6)(3)4x y -+-=与圆N :22(4)(2)1x y ++-=上的动点,A 为x 轴上的动点,则||||AP AQ +的最小值为__________.16. 在平面直角坐标系xOy 中,A 为直线l :2y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点.D 若0AB CD ⋅=,则点A 的横坐标为__________.17. 已知圆C 的圆心在第一象限,且在直线2y x =上,圆C 与抛物线24y x =的准线和x 轴都相切,则圆C 的方程为__________.18. 已知圆O :221x y +=和点(2,0)A -,若定点(,0)(2)B b b ≠-和常数λ满足,对圆O 上任意一点M ,都有||||MB MA λ=,则λ=__________.19. 在平面直角坐标系xOy 中,已知直角ABC 中,直角顶点A 在直线60x y -+=上,顶点B ,C 在圆2210x y +=上,则点A 横坐标的取值范围是__________. 四、解答题20. 已知两个定点(4,0)A -,(1,0)B -,动点P 满足||2||.PA PB =设动点P 的轨迹为曲线E ,直线l : 4.y kx =-()Ⅰ求曲线E 的轨迹方程;()Ⅱ若l 与曲线E 交于不同的C ,D 两点,且90(COD O ︒∠=为坐标原点),求直线l的斜率;()Ⅲ若12k =,Q 是直线l 上的动点,过Q 作曲线E 的两条切线QM ,QN ,切点为M ,N ,探究:直线MN 是否过定点.答案和解析1.【答案】B解:由已知,得圆1C :22()(2)1x a y ++-=的圆心为1(,2)C a -,半径1 1.r = 圆2C :22()(2)4x b y -+-=的圆心为2(,2)C b ,半径2 2.r =圆1C :22()(2)1x a y ++-=与圆2C :22()(2)4x b y -+-=相外切,1212,||C C r r ∴=+即3a b +=, 由基本不等式,得29()24a b ab +=,取等号时32a b ==, 故选:.B2.【答案】A解:直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,∴令0x =,得2y =-,令0y =,得2x =-,(2,0)A ∴-,(0,2)B -,||4422AB =+=,点P 到直线20x y ++=的距离为ABP 的高h , 圆的圆心为(2,0),半径为2,圆心到直线的距离为:,所以点P 到直线的距离h 的最大值为22232+=,最小值为2222-=,则ABP 面积为,最大值为1223262⨯⨯=, 最小值为122222⨯⨯=, 所以ABP 面积的取值范围为[2,6]. 故选.A解:由圆的方程可得圆心坐标(3,0)C ,半径3r =,且点D 在圆内,设圆心到直线的距离为d ,则过(1,2)D 的直线与圆的相交弦长||AB = 当d 最大时||AB 最小,当直线与CD 所在的直线垂直时d 最大,这时||d CD ===所以最小的弦长||2AB ==, 故选.B4.【答案】B解:圆 M 的标准方程为 22(3)(4)25x y -+-=, 即圆是以 (3,4)M 为圆心,5为半径的圆,且由 22(03)(44)925-+-=<,即点 (0,4)P 在圆内, 则最短的弦是以 (0,4)P 为中点的弦, 所以 225()92AC =+,所以 8AC =, 过 (0,4)P 最长的弦 BD 为直径, 所以 10BD =,且 AC BD ⊥, 故而故选.B5.【答案】D解:设(,)M x y ,因为动点M 满足||||MA MO = 则222222(2)22(2)8x y x y x y ++=+⇒+-=,即(,)(1,0)[OM ON x y x ⋅=⋅=∈-, 故选.D解:以经过A ,B 的直线为x 轴,线段AB 的垂直平分线为y 轴,建立直角坐标系, 如图,则(1,0)A ,(1,0)B -,设,2222(1)2(1)x y x y ++=-+,整理得:2222610(3)8x y x x y +-+=⇒-+=,根据图象可知,当BP 为圆C 切线时,tan ABP ∠取得最大值, 此时BP == 则tan 1PC ABP PB ∠===, 故选:.B7.【答案】D解:圆M 方程的圆心(1,1)M ,半径2r =, 根据切线的性质及圆的对称性可知PM AB ⊥, 则||||42||||PAMPM AB SPA AM ⋅==⋅,要使||||PM AB ⋅最小,只需最小,即最小,此时PM l ⊥,min |212|||55PM ++∴==,22||||||1PA PM AM =-=, 过点M 且垂直于l 的方程为11(1)2y x -=-,将其与l 的方程联立,解得(1,0)P -, 以PM 为直径的圆的方程为,结合圆M 的方程两式相减可得直线AB 的方程为210x y ++=, 故选.D(,)P x y8.【答案】D解:设BC 中点是D ,圆周角等于圆心角的一半,120BOC ︒∴∠=,60BOD ︒∠=,在直角三角形BOD 中,有12OD =, 故中点D 的轨迹方程是:2214x y +=, 考虑A ,B 重合的极限情况,此时30OAC ︒∠=, 则直线AC 所在的方程为3333y x =-, 联立,得或故C 的横坐标为12-,AC 的中点横坐标为1.4因为A ,B 不重合,所以D 点横坐标14x <, 故选:.D9.【答案】C解:由题意,过圆心C 作CD AB ⊥交AB 于点D ,又圆C :224x y +=,圆心为(0,0)C ,半径2r =, 所以,则||||2||2||PA PB PC CA PC CB PC CD PD +=+++=+=, 当PC AB ⊥时,且D 在线段PC 上时,||PD 取最小值, 由点C 到直线40x y +-=的距离,所以,所以的最小值为42 2.-故选.C10.【答案】ACD解:由点(4,0)A ,(0,2)B , 可得直线AB 的方程为240.x y +-=则圆心(5,5)=,故P 到直线AB 410<,42<,所以A 正确,B 错误.由题意可知,当直线PB 与圆相切时,PBA ∠最大或最小, 由于圆心到B 的距离为,此时,故C ,D 都正确.故选.ACD11.【答案】AB解:由已知圆心在y 轴上,且被x 轴所分劣弧所对圆心角为23π, 设圆心(0,)a ,半径为 r , 则sin13r π=,cos||3r a π=,解得r =243r =,||3a =,即3a =±,故圆C 的方程为224(.33x y +±= 故选.AB12.【答案】ACD解:对于A ,若方程22212104x y kx y k k +-++-+=表示圆,则,化简得0k >,故A 正确;对于B ,若4k =,则圆22:4210C x y x y +-++=,即,圆心为,半径为2.过(3,4)M 的直线的斜率不存在时,直线方程为3x =,圆心到直线3x =的距离为1,则过(3,4)M 的直线与圆 C 相交所得弦长为2222123-=; 过(3,4)M 的直线的斜率存在时,设直线的斜率为k , 则直线方程为,即430kx y k -+-=,设圆心到直线430kx y k -+-=的距离为d ,因为弦长为23,则222223d -=,解得1d =, 故,解得125k =, 所以直线方程为,即125160x y --=,故满足条件的直线方程为3x =或125160x y --=, 故B 错误;对于C ,若4k =,则圆22:4210C x y x y +-++=,即,圆心为,半径为2.圆221x y +=的圆心为,半径为1,所以两圆心间的距离为,又21521-<<+,故两圆相交,故C 正确;对于D ,若4k =,则圆C 的圆心为,又直线10mx ny --=恒过圆C 的圆心,则21m n +=,又0m >,0n >, 则444248m n m n m n m=++⨯= 当且仅当224n m =,即11,42m n ==时等号成立, 故D 正确. 故选.ACD13.【答案】BCD解:圆的方程化为标准形式为,圆心为,半径 4.r =圆心C 到直线l 的距离为22|3(2)437|543(4)d ⨯--⨯-==>+-,∴直线l 与圆C 相离,不相交,故选项A 错误;||PQ 的最小值为541-=,故选项B 正确;圆C 上的点到l 的距离最小值为541-=,最大值为549+=,2(1,9)∈,∴圆C 上到直线l 的距离为2的点P 有2个,故选项C 正确;Q 到圆C 的切线QT ,T 为切点,则,当||QC 最小时||QT 最小,||QC 的最小值等于C 到直线l 的距离5d =,22||543QT ∴=-=最小值,故选项D 正确.故选.BCD14.【答案】BCD解:设两圆相交于111(,)P x y ,222(,)P x y ,圆,圆C :222()()x a y b r -+-=,则02||OC r <<,即22204a b r <+<,故A 错误,两圆方程相减可得直线12P P 的方程为:22220a b ax by +--=,即2222ax by a b +=+, 分别把111(,)P x y ,222(,)P x y 两点代入2222ax by a b +=+得:221122ax by a b +=+,222222ax by a b +=+,两式相减得:12122()2()0a x x b y y -+-=,即1212()()0a x x b y y -+-=,故BD 正确; 由圆的性质可知:线段12P P 与线段OC 互相平分,12x x a ∴+=,12y y b +=,故C 正确,故选:.BCD15.【答案】3解:如图所示,因为圆N :22(4)(2)1x y ++-=关于x 轴对称的圆为圆G :22(4)(2)1x y +++=, 则||||AP AQ +的最小值为22||12105355 3.MG --=+-=-故答案为55 3.-16.【答案】3解:设(,2)A a a ,0a >,(5,0)B ,5(,)2a C a +∴, 则圆C 的方程为(5)()(2)0.x x a y y a --+-=联立2(5)()(2)0y x x x a y y a =⎧⎨--+-=⎩,解得(1,2).D223215(5,2)(,2)240.22a a a AB CD a a a a a ----∴⋅=--⋅-=+-= 解得:3a =或 1.a =-又0a >, 3.a ∴=即A 的横坐标为3.故答案为:3.17.【答案】22(1)(2)4x y -+-=解:圆C 的圆心在第一象限,且在直线2y x =上,故可设圆心为(,2)C a a ,0a >,圆C 与抛物线24y x =的准线1x =-和x 轴都相切,故有|1||2|a a +=,解得1a =,或1(3a =-舍去),故半径为2, 则圆C 的方程为22(1)(2)4x y -+-=,故答案为:22(1)(2) 4.x y -+-=18.【答案】12解:根据题意,设(,)M x y ,若||||MB MA λ=,变形可得222||||MB MA λ=,即222222()(2)x b y x y λλ-+=++,又由221x y +=,则变形可得:2221245b bx x λλ+-=+, 则有2225142b bλλ⎧=+⎨=-⎩, 解可得1(2λ=负值舍去),12b =-; 故答案为:1.219.【答案】[4,2]--解:如图过直线60x y -+=上点P 作圆2210x y +=的切线,当两条切线垂直时,根据,得4OPB π∠=, 所以, 则由题意得,设(,6)A x x +,则22(6)25x x ++,即2680x x ++,解得42x --,所以点A 横坐标的取值范围是[4,2].--故答案为[4,2].--20.【答案】解:(1)设点P 坐标为(,)x y ,由||2||PA PB ==, 平方可得22228164(21)x y x x y x +++=+++,整理得:曲线E 的轨迹方程为224x y +=; (2)直线l 的方程为4y kx =-,依题意可得三角形COD 为等腰直角三角形,圆心到直线的距离为1||2CD =则d ==,k ∴=;(3)由题意可知:O ,Q ,M ,N 四点共圆且在以OQ 为直径的圆上, 设1(,4)2Q t t -,以OQ 为直径的圆的方程为1()(4)02x x t y y t -+-+=, 即:22(4)02t x tx y y -+--=,又M ,N 在曲线E :224x y +=上,可得MN 的方程为1(4)402tx t y +--=, 即()4(1)02y x t y +-+=,由0210y x y ⎧+=⎪⎨⎪+=⎩得121x y ⎧=⎪⎨⎪=-⎩, ∴直线MN 过定点1(,1).2-。

最新人教版高中数学选修一第二单元《直线和圆的方程》测试卷(含答案解析)

最新人教版高中数学选修一第二单元《直线和圆的方程》测试卷(含答案解析)

一、选择题1.若圆22220x y x y k +---=上的点到直线100x y +-=的最大距离为k 的值是( )A .2-B .2C .2-或2D .2-或02.若直线1y kx =-与曲线y =有公共点,则k 的取值范围是( ) A .4(0,]3B .14[,]33C .1[0,]2D .[0,1]3.若圆22:60,(0,0)M x y ax by ab a b +++--=>>平分圆22:4240N x y x y +--+=的周长,则2a b +的最小值为( )A .8B .9C .16D .204.圆C :x 2+y 2-6x -8y +9=0被直线l :ax +y -1-2a =0截得的弦长取得最小值时,此时a 的值为( ) A .3B .-3C .13D .-135.直线0x y +=被圆226240x y x y +-++=截得的弦长等于( )A .4B .2C .D6.在平面直角坐标系中,定义1212(,)||||d A B x x y y =-+-为两点11(,)A x y 、22(,)B x y 的“切比雪夫距离”,又设点P 及直线l 上任意一点Q ,称(,)d P Q 的最小值为点P 到直线l 的“切比雪夫距离”,记作(,)d P l ,给出下列三个命题: ①对任意三点A 、B 、C ,都有(,)(,)(,)d C A d C B d A B +≥; ②已知点(3,1)P 和直线:210l x y --=,则4(,)3d P l =; ③定义(0,0)O ,动点(,)P x y 满足(,)1d P O =,则动点P 的轨迹围成平面图形的面积是4;其中真命题的个数( ) A .0B .1C .2D .37.已知圆22:(2)2C x y ++=,则在x 轴和y 轴上的截距相等且与圆C 相切的直线有几条( ) A .1条 B .2条 C .3条 D .4条 8.若圆x 2+y 2+ax -by =0的圆心在第二象限,则直线x +ay -b =0一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限9.过点(0,2)P 的直线l 与以(1,1)A ,(2,3)B -为端点的线段有公共点,则直线l 的斜率k的取值范围是( ) A .5[,3]2-B .5(,][3,)2-∞-⋃+∞C .3[,1]2-D .1(,1][,)2-∞-⋃-+∞ 10.已知直线1l :(4)10kx k y +-+=与2l :2230kx y -+=平行,则k 的值是( ) A .1或0B .5C .0或5D .1或511.抛物线2?y x =上一点到直线240x y --=的距离最短的点的坐标是( ) A .()2,4B .11,24⎛⎫ ⎪⎝⎭C .39,24⎛⎫⎪⎝⎭D .()1,112.若直线220++=ax y 与直线840x ay ++=平行,则a 的值为( ) A .4B .4-C .4-或4D .2-二、填空题13.已知三条直线的方程分别为0y =0y -+=0y +-,那么到三条直线的距离相等的点的坐标为___________.14.已知点(),P x y 是直线240x y -+=上一动点,直线PA ,PB 是圆22:20C x y y ++=的两条切线,A ,B 为切点,C 为圆心,则四边形PACB 面积的最小值是______.15.经过点(2,1)M ,并且与圆2268240x y x y +--+=相切的直线方程是________. 16.已知点M 是直线l :22y x =--上的动点,过点M 作圆C :()()22114x y -+-=的切线MA ,MB ,切点为A ,B ,则当四边形MACB 的面积最小时,直线AB 的方程为______.17.已知直线l 经过点(1,2)P -,且垂直于直线2310x y ,则直线l 的方程是________.18.在直角坐标系xoy 中,已知圆C :()222824580x y m x my m m +---+-=,直线l 经过点()2,1,若对任意的实数m ,直线l 被圆C 截得弦长为定值,则直线l 方程为______.19.定义点()00,P x y 到直线()22:00l Ax By C A B ++=+≠的有向距离d =.已知点12,P P 到直线l 的有向距离分别是12,d d ,给出以下命题:①若120-=d d ,则直线12PP 与直线l 平行;②若120d d +=,则直线12PP 与直线l 平行;③若120d d +=,则直线12PP 与直线l 垂直;④若120<d d ,则直线12PP 与直线l 相交.其中正确命题的个数是_______.20.已知点M 为直线1:20l x y a +-=与直线2:210l x y -+=在第一象限的交点,经过点M 的直线l 分别交x ,y 轴的正半轴于A ,B 两点,O 为坐标原点,则当AOBS 取得最小值为1425时,a 的值为________.三、解答题21.已知圆221:2440C x y x y ++--=.(1)在下列两个条件中任选一个作答.注:如果选择两个条件分别解答,按第一个解答计分.①已知不过原点的直线l 与圆1C 相切,且在x 轴、y 轴上的截距相等,求直线l 的方程; ②从圆外一点(2,1)P 向圆引切线,求切线方程.(2)若圆222:4C x y +=与圆1C 相交与D 、E 两点,求线段DE 的长.22.已知圆C 的圆心在直线l :20x y -=上,且过点()0,0O 和()2,6A . (1)求圆C 的方程.(2)求证:直线1l :()130m x y m -+-=,m ∈R 与圆C 恒相交. (3)求1l 与圆C 相交所得弦的弦长的最小值及此时对应的直线方程.23.已知直线l :43100x y ++=,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方.(1)求圆C 的方程;(2)直线4y kx =-与圆C 交于不同的M ,N 两点,且120MCN ∠=︒,求直线l 的斜率;(3)过点()1,0M 的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分ANB ∠?若存在,请求出点N 的坐标;若不存在,请说明理由.24.已知圆C 经过点()1,0A -和()3,4B ,且圆心C 在直线3150x y +-=上. (1)求圆C 的标准方程;(2)设点()()1,0Q m m ->在圆C 上,求△QAB 的面积. 25.△ABC 中∠C 的平分线所在直线方程为y x =,且A (-1,52),B (4,0).(1)求直线AB 的截距式...方程; (2)求△ABC 边AB 的高所在直线的一般式...方程. 26.从圆外一点()4,4P -作圆22:1O x y +=的两条切线,切点分别为A ,B . (1)求以OP 为直径的圆的方程; (2)求线段AB 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】将圆的方程化成标准方程,求出圆心及半径r ,圆心到直线的距离为d ,则圆上的点到直线的最大距离为d r + 【详解】圆22220x y x y k +---=化成标准形式()()22112x y k -+-=+,圆心()1,1,半径r =2k >-;圆心()1,1到直线100x y +-=的距离===d圆上的点到直线的最大距离为+==d r=,解得:2k =或2k =-(舍去) 故选:B 【点睛】结论点睛:本题考查直线与圆的位置关系,求圆上点到直线的最大距离与最小距离常用的结论:设圆的半径r ,圆心到直线的距离为d , (1)当dr 时,圆上的点到直线的最大距离为d r +,最小距离为d r -;(2)当d r ≤时,圆上的点到直线的最大距离为d r +,最小距离为0; 2.D解析:D 【分析】1y kx =-是过定点()0,1-的直线,曲线表示以()2,0为圆心,半径为1的圆的下半部分,画出两函数图像,找出两图像有公共点时k 的范围即可. 【详解】解:根据题意可得:1y kx =-是过定点()0,1-的直线,曲线表示以()2,0为圆心,半径为1的圆的下半部分,画出函数图像,如图所示: 当直线与曲线相切时:0k =,当()1,0在直线上时,代入可得1k =,所以两函数图像有公共点的k 的范围是[]0,1. 故选:D.【点睛】本题考查直线与圆的位置关系,利用了数形结合的思想,属于中档题. 方法点睛:(1)画出函数图像;(2)根据图像找到有公共点的相切或相交的情况; (3)根据公式计算,得到结果.3.A解析:A 【分析】由两圆的相交弦是圆N 的直径得出,a b 的关系,然后由基本不等式求得最小值. 【详解】两圆方程相减得,(4)(2)100a x b y ab +++--=,此为相交弦所在直线方程, 圆N 的标准方程是22(2)(1)1x y -+-=,圆心为(2,1)N , ∴2(4)2100a b ab +++--=,121a b+=, ∵0,0a b >>,∴12442(2)()4428b a b aa b a b a b a b a b+=++=++≥+⨯=,当且仅当4b a a b =即2,4a b ==时等号成立.故选:A . 【点睛】本题考查圆的方程,考查基本不等式求最值.圆的性质:(1)圆的直径平分圆;(2)相交两圆方程相减所得一次方程是两圆公共弦所在直线方程.4.C解析:C 【分析】先判断直线l 恒过点(2,1)P ,可得直线l 垂直于直线PC 时,截得的弦长最短,利用直线垂直的性质可得答案. 【详解】直线:120+--=l ax y a 可化为:(2)(1)0-+-=l a x y , 故直线l 恒过点(2,1)P .圆22:6890+--+=C x y x y 的圆心为(3,4)C ,半径为4. 当直线l 垂直于直线PC 时,截得的弦长最短, 因为直线PC 的斜率41332PC k -==-, ax +y -1-2a =0的斜率为a -, 此时1313PC l k k a a ⋅=-=-⇒=.故选:C . 【点睛】方法点睛:判断直线过定点主要形式有: (1)斜截式,0y kx y =+,直线过定点()00,y ; (2)点斜式()00,y y k x x -=-直线过定点()00,x y ; (3)化为()(),,0tf x y g x y +=的形式,根据()(),0,0f x y g x y ⎧=⎪⎨=⎪⎩ 求解.5.A解析:A 【分析】先将圆化成标准方程,求出圆心与半径,再求圆心到直线的距离,然后解弦长即可. 【详解】因为226240x y x y +-++= 所以22(3)(1)6x y -++=, 圆心到直线的距离为22d ==直线0x y +=被圆226240x y x y +-++=截得的弦长()222(6)24l =-;故选:A . 【点睛】计算圆的弦长通常使用几何法简捷.也可使用代数法计算.6.B解析:B 【分析】由新定义表示出三点,,A B C 两两之间的“切比雪夫距离”,然后根据绝对值的性质判断①,由新定义计算出(,)d P l ,判断②,根据新定义求出P 的轨迹方程,确定其轨迹,求得轨迹围成的图形面积判断③. 【详解】①设112233(,),(,),(,)A x y B x y C x y ,则1212(,)d A B x x y y =-+-,13132323(,)(,)d A C d B C x x y y x x y y +=-+-+-+-,显然1323132312()()x x x x x x x x x x -+-≥---=-,同理132312y y y y y y -+-≥-,∴(,)(,)(,)d C A d C B d A B +≥,①正确; ②设(,)P x y 是直线l 上任一点,则21y x =-,(,)31322d P l x y x x =-+-=-+-35,31,1353,1x x x x x x -≥⎧⎪=+≤<⎨⎪-<⎩,易知(,)d P l 在[1,)+∞上是增函数,在(,1)-∞上是减函数,∴1x =时,min (,)13222d P l =-+-=,②错; ③由(,)1d P O =得1x y +=,易知此曲线关于x 轴,y 轴,原点都对称,它是以(1,0),(0,1),(1,0),(0,1)--为顶点的正方形,其转成图形面积为12222S =⨯⨯=,③错.故选:B . 【点睛】关键点点睛:本题考查新定义,解题关键是理解新定义,解题方法是把新概念转化为绝对值的问题,利用绝对值的性质求解.7.C解析:C 【分析】先看直线不过原点的情况,设出直线的方程,斜率为1-,则可知这样的直线有2条,再看直线过原点的情况,把原点代入即可知原点在圆外,则这样的直线也应该有2条,最后验证以上4条中有一条是重复,最后综合得到结论. 【详解】若直线不过原点,其斜率为1-,设其方程为y x m =-+,则d ==0m =或4-,当0m =时,直线过原点;若过原点,把()0,0代入()2200242++=>,即原点在圆外,所以过原点有2条切线,综上,一共有3条, 故选:C . 【点睛】本题主要考查了直线与圆的位置关系,考查了学生数形结合的思想和对基本知识的理解,属于中档题.8.C解析:C【分析】由圆心位置确定a ,b 的正负,再结合一次函数图像即可判断出结果. 【详解】因为圆22+0x y ax by +-=的圆心坐标为,22a b ⎛⎫-⎪⎝⎭, 由圆心在第二象限可得0,0a b >>,所以直线0x ay b +-=的斜率10a -<,y 轴上的截距为0b a>,所以直线不过第三象限. 故选:C9.D解析:D 【分析】画出图形,设直线l 的斜率为k ,求出PA k 和PB k ,由直线l 与线段AB 有交点,可知PA k k ≤或PB k k ≥,即可得出答案.【详解】直线过定点(0,2)P ,设直线l 的斜率为k , ∵12110PA k -==--,321202PB k -==---, ∴要使直线l 与线段AB 有交点,则k 的取值范围是1k ≤-或12k ≥-, 即1(,1][,)2k ∈-∞-⋃-+∞.故选:D. 【点睛】方法点睛:求直线的斜率(或取值范围)的方法:(1)定义法:已知直线的倾斜角为α,且90α︒≠,则斜率tan k α=; (2)公式法:若直线过两点()11,A x y ,()22,B x y ,且12x x ≠,则斜率2121y y k x x -=-;(3)数形结合方法:该法常用于解决下面一种题型:已知线段AB 的两端点及线段外一点P ,求过点P 且与线段AB 有交点的直线l 斜率的取值范围.若直线,PA PB 的斜率都存在,解题步骤如下: ①连接,PA PB ; ②由2121y y k x x -=-,求出PA k 和PB k ; ③结合图形写出满足条件的直线l 斜率的取值范围.10.C解析:C 【分析】由两直线平行得出()224k k k -=-,解出k 的值,然后代入两直线方程进行验证. 【详解】 解:直线1l :(4)10kx k y +-+=与2l :2230kx y -+=平行,()224k k k ∴-=-,整理得()50k k -=,解得0k =或5.当0k =时,直线11:4l y =-,23:2l y =,两直线平行;当5k =时,直线1:510l x y -+=,23:502l x y -+=,两直线平行. 因此,0k =或5. 故选:C. 【点睛】方法点睛:本题考查直线的一般方程与平行关系,在求出参数后还应代入两直线方程进行验证.(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A1、A2、B1、B2都不为零, ①11112222||A B C l l A B C ⇔=≠; ②2112210A A l B B l +⇔=⊥;11.D解析:D 【分析】设抛物线y=x 2上一点为A (x 0,x 02),点A (x 0,x 02)到直线2x-y-4=0的距离d ==由此能求出抛物线y=x 2上一点到直线2x-y-4=0的距离最短的点的坐标. 【详解】设抛物线y=x 2上一点为A (x 0,x 02), 点A (x 0,x 02)到直线2x-y-4=0的距离d ==∴当x 0=1时,即当A (1,1)时,抛物线y=x 2上一点到直线2x-y-4=0的距离最短. 故选D . 【点睛】本题考查抛物线上的点到直线的距离最短的点的坐标的求法,是基础题.解题时要认真审题,仔细解答.12.B解析:B 【分析】根据两直线平行,列出方程组,即可求解. 【详解】由题意,直线220++=ax y 与直线840x ay ++=平行,可得2802240a a a ⨯-⨯=⎧⎨-⨯≠⎩,解得4a =-.故选: B. 【点睛】本题主要考查了两直线的位置关系的应用,其中解答中熟记两直线的平行的条件是解答的关键,着重考查运算与求解能力.二、填空题13.【分析】先画出图形求出再分四种情况讨论得解【详解】如图所示由题得的平分线:和的平分线:的交点到三条直线的距离相等联立两直线的方程解方程组得交点为;的外角平分线:和的外角平分线:的交点到三条直线的距离解析:(0,30,3(-【分析】先画出图形,求出(1,0),(1,0)A B C -,再分四种情况讨论得解. 【详解】 如图所示,由题得(1,0),(1,0)A B C -,CAB ∠的平分线AO :0x =和ACB ∠的平分线CD :(1)3y x =+的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3xy x=⎧⎪⎨=+⎪⎩得交点为3(0,)3;ACB∠的外角平分线CE:3(1)y x=-+和ABC∠的外角平分线BF:3(1)y x=-的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3(1)y xy x⎧=-+⎪⎨=-⎪⎩得交点为(0,3)-;ACB∠的外角平分线CG:3(1)y x=-+和CAB∠的外角平分线AG:3y=的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3y xy⎧=-+⎪⎨=⎪⎩得交点为(2,3)-;ABC∠的外角平分线BH:3(1)y x=-和CAB∠的外角平分线AG:3y=的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3y xy⎧=-⎪⎨=⎪⎩得交点为(2,3).故答案为:(0,3)-、30,3、(2,3)、(2,3)-【点睛】关键点睛:解答本题的关键是利用平面几何的知识分析找到四个点,再利用直线的知识解答即可.14.2【分析】根据切线的性质可将面积转化为求出的最小值即到直线的距离【详解】圆化为可得圆心为半径为1如图可得则当取得最小值时最小点是直线上一动点到直线的距离即为的最小值故答案为:2【点睛】关键点睛:本题解析:2【分析】根据切线的性质可将面积转化为21PACBS PC=-PC的最小值即()0,1C-到直线240x y -+=的距离. 【详解】圆22:20C x y y ++=化为()2211x y ++=,可得圆心为()0,1-,半径为1,如图,可得22221PA PC AC PC =-=-,212212PACB PACS SPA AC PA PC ==⨯⨯⨯==-则当PC 取得最小值时,PACB S 最小, 点(),P x y 是直线240x y -+=上一动点,()0,1C ∴-到直线240x y -+=的距离即为PC 的最小值,()min 222014521PC ⨯++∴==+-()min 512PACB S ∴=-=.故答案为:2. 【点睛】关键点睛:本题考查直线与圆相切问题,解题的关键是利用切线性质将面积转化为21PACB S PC =-PC 的最小值即可.15.或【分析】求出圆心和半径判断斜率不存在的直线是否是切线斜率存在时设出直线方程由圆心到切线距离等于半径求得参数值得切线方程【详解】圆标准方程是圆心为半径为1易知直线与圆相切设斜率存在的切线方程为即由解解析:2x =或4350x y --= 【分析】求出圆心和半径,判断斜率不存在的直线是否是切线,斜率存在时设出直线方程,由圆心到切线距离等于半径求得参数值得切线方程. 【详解】圆标准方程是22(3)(4)1x y -+-=,圆心为(3,4),半径为1. 易知直线2x =与圆相切,设斜率存在的切线方程为1(2)y k x -=-,即210kx y k --+=,1=,解得43k =,切线方程为481033x y --+=,即4350x y --=.故答案为:2x =或4350x y --=. 【点睛】本题考查求圆的切线方程,解题方法是由圆心到切线的距离等于半径求解.但解题时要注意过定点斜率不存在的直线是否是切线,否则由方程求不出此直线方程.如果所过的点在圆上,由可由过切点的半径与切线垂直得出切线斜率后得直线方程.16.【分析】由已知结合四边形面积公式可得四边形MACB 面积要使四边形MACB 面积最小则需最小此时CM 与直线垂直求得以CM 为直径的圆的方程再与圆C 的方程联立可得AB 所在直线方程【详解】由圆的标准方程可知圆 解析:210x y ++=【分析】由已知结合四边形面积公式可得四边形MACB面积2||||2||CAM S S CA AM MA ==⋅==△要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直,求得以CM 为直径的圆的方程,再与圆C 的方程联立可得AB 所在直线方程. 【详解】由圆的标准方程可知,圆心C (1,1) ,半径r =2.因为四边形MACB的面积2||||2||CAM S S CA AM MA ==⋅==△ 要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直. 直线CM 的方程为11(x 1)2y -=- ,即11.22y x =+联立112222y x y x ⎧=+⎪⎨⎪=--⎩,解得(1,0)M -则以CM 为直径的圆的方程为2215()24x y +-=, 联立222215(),24(1)(1)4x y x y ⎧+-=⎪⎨⎪-+-=⎩消去二次项可得直线AB 的方程为210x y ++=, 故答案为:210x y ++=【点睛】关键点点睛:根据四边形的面积表达式可以看出要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直,此时所做圆的直径为CM ,写出圆的方程,两圆方程相减即可求出过AB 的直线方程.17.【分析】根据题意设直线的方程是代入点求得的值即可求解【详解】由题意所求直线垂直于直线设直线的方程是又由直线过点代入可得解得故的方程是【点睛】与直线平行的直线方程可;与直线垂直的直线方程可 解析:3270x y -+=【分析】根据题意,设直线l 的方程是320x y c -+=,代入点(1,2)P -,求得c 的值,即可求解. 【详解】由题意,所求直线l 垂直于直线2310x y , 设直线l 的方程是320x y c -+=,又由直线l 过点(1,2)P -,代入可得340c --+=,解得7c =, 故l 的方程是3270x y -+=. 【点睛】与直线220(0)Ax By C A B ++=+≠平行的直线方程可0()Ax By n n c ++=≠;与直线220(0)Ax By C A B ++=+≠垂直的直线方程可0Bx Ay M -+=。

选择性必修第二章直线与圆的方程测试题(含答案)

选择性必修第二章直线与圆的方程测试题(含答案)

, , : , , ,选择性必修第二章直线与圆的方程测试题时间:120 分钟满分:145 分命卷人:卢焕邓审核人:一、选择题(每小题 5 分,共 10 小题 50 分)1、过点且平行于直线的直线方程为( ) C. D.7、已知点,点是圆上的动点,点 是圆上的动点,则的最大值是()A.B.C. D.8、已知动点 是圆内一点,直线围成的四边形的面积 为 ,则下列说法正确的是( )A.B. C. D.4、两平行直线,分别过点,,它们分别绕 ,旋转, 但始终保持平行,则, 之间的距离的取值范围是()A.B.C.D.5、已知倾斜角为的直线与直线垂直,则( )A.B.C. D.6、直线与直线平行,则( ) A.B.且 A. B.C. D.9、圆 关于直线对称的圆是( )A.B. C.D.10、 过点作直线(不同时为零)的 垂线,垂足为 ,已知点,则当变化时,的取值范围是( ) A.B.C.D.二、填空题(每小题 5 分,共 7 小题 35 分)A.2、已知圆B.C.的圆心坐标为,则 D.( )A.3、若圆 :称,则由点 B.C.关于直线向圆所作的切线长的最小值是( )D.对11、已知是圆上的动点,是圆上的动点,则的取值范围为 . 三、解答题(每小题 12 分,共 5 小题 60 分)18、已知的顶点 ,边上的高为.求:边上的中线12、已知直线与圆相交于标为,则直线 的方程为.两点,且线段的中点坐 (1) 中线的方程;(2) 高所在直线的方程及高的长. 19、下列方程是否表示圆,若表示圆,写出圆心坐标和半径长.(1);(2) ;13、经过直线与的交点,且平行于直线的直线方程是.14、圆 上的点到直线的最近距离为(3);(4) .20、在平面直角坐标系中, 曲线与坐标轴的交点都在圆上.(1) 求圆 的方程;,最远距离为 .15、过点的直线 与圆交于两点,当 (2) 若圆与直线交于21、已知直线 经过点 ,斜率为 ;两点,且,求 的值.最小时,直线的方程为,此时.16、已知直线,若直线 与直线垂直,则的值为 ;动直线 被圆截得 的最短弦长为.17、已知半径为 5 的动圆的圆心在直线上.若动圆过点,求圆的方程,(1) 若的纵截距是横截距的两倍,求直线的方程; (2) 若,一条光线从点出发,遇到直线反射,反射光线遇到轴再次反射回点,求光线所经过的路程.22、已知圆:与圆: ,试判断两圆的位置关系,并求两圆公切线的方程. 存在正实数,使得动圆中满足与圆相外切的圆有且仅有一个.,,,,,,,选择性必修第二章直线与圆的方程测试题答案解析第 1 题答案D第 1 题解析由题意可设所求直线方程为,∵直线过点,代入可得,解得,∴所求直线,故选:D.第 2 题答案D第 2 题解析由圆的标准方程可知圆心为,即. 故选D.第 3 题答案C第 3 题解析第 4 题答案C第 4 题解析 当时,与的最大距离为,因为两直线平行,则两直线距离不为,故选C .第 5 题答案D第 5 题解析 因为直线 与直线垂直,所以 .将圆 的方程化为标准方程为: ,圆心为, 又为直线倾斜角,解得.圆关于直线对称,所以圆心位于该直线上,将圆心坐标代入,即点在直线上.过为,过点作圆的切线,切点设为,则切线长最短,此时,所以根据勾股定理,得.第 6 题答案B第 6 题解析 与直线平行的直线可设为,而直线,所以值为 ,的最小值为的最大值为.第 7 题答案B第 7 题解析第 10 题解析且直线,整理为:,从而可得直线过定点,如图,或者与之一重合,,故点在以为直径的圆上运动,设该圆的圆心为,则线段满足的范围为圆的圆心 ,半径,圆的圆心,半径 ,,所以:的取值范围是.则的最大,则第 8 题答案A第 8 题解析由已知 ,四条直线围成的面积 ,故选 A.第 9 题答案B第 9 题解析 圆心关于直线的对称点为,半径不变,∴所求圆的方程为.第 10 题答案A第 11 题答案第 11 题解析 易知,所以,即.第 12 题答案第 12 题解析因为圆圆心坐标为,又点坐标为,所以直线的斜率为;又因为是圆的一条弦, 为的中点,所以,故,即直线的斜率为, 因此,直线的方程为,即.第 13 题答案第 13 题解析联立方程组可知与的交点,为,设所求直线为,则,.第 14 题答案第 14 题解析圆的方程可化为,,半径.圆心到直线的距离,所以所求的最近距离为,最远距离为.第 15 题答案第 15 题解析圆的圆心为,当最小时,和垂直,∴直线的斜率等于,∴直线的方程为,即,,∴,∴,即.第 16 题答案或第 16 题解析由题意得,∴或.圆,动直,当时,截得的弦长最短,为第 18 题答案(1)见解答;(2)见解答 .第 18 题解析(1)设点的坐标为,因为点是线段中点,所以, ,即点的坐标为,由两点式得所在直线方程为即,所以中线的方程为: .第 17 题答案或第 17 题解析(2)直线的斜率为: ,因为,所以,所以所在直线方程是即.直线的方程为: ,因为就是点到直线的距离,(1)依题意,可设动圆的方程为,其中圆心.又∵动圆过点,∴.解方程组可得或故所求圆的方程为或.(2)圆的圆心到直线的距离.当满足时,即时,动圆中有且仅有 1 个圆与圆外切. 所以由点到直线的距离公式.第 19 题答案(1)不表示圆(2)不表示圆(3)不表示圆(4)表示圆,圆心坐标为,半径第 19 题解析, ∵ 的纵截距是横截距的两倍,∴,解得或,∴直线的方程为或(1)中与的系数不同,故原方程不表示圆. (2)中含有项,故原方程不表示圆. (3)∵,∴原方程不表示圆.(4)∵,∴方程表示圆,圆心坐标为,半径. (1)或;(2).第 21 题解析(1)由题意得.,(2)第 20 题解析(1)曲线与坐标轴的交点为,设圆的,则,.(2)由,得为等腰直角三角形, . 第 21 题答案即或;(2)当时,直线的方程为,设点关于的对称点为,则,, , 直线的方程为,即第 20 题答案令,得,(1)令,得,解得,∴点的坐标为,∴关于轴的对称点为,光线所经过的路程为.第 22 题答案外切,,,第 22 题解析由:与圆:可知,∴圆与圆外切有条公切线.如图,设两圆的外公切线与轴相交于,由相似三角形易,即,解得,故知.∴外公切线的斜率,故两程为,,,即,.。

高中数学圆的方程典型例题(含答案)

高中数学圆的方程典型例题类型一:圆的方程例1 求过两点 A(1,4)、B(3,2)且圆心在直线 y 0上的圆的标准方程并判断点 P(2,4)与圆的关系. 分析: 欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点 P 与圆的位置关系,只须看点 心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径, 则点在圆内.解法一:(待定系数法)设圆的标准方程为 (x a)2 (y b)2 r 2 . ∵圆心在 y 0 上,故 b 0. ∴圆的方程为 (x a)2 y 2 r 2.又∵该圆过 A(1,4)、 B(3,2)两点.22(1 a)216 r 2 22(3 a)24 r 2解之得: a 1, r 2 20.所以所求圆的方程为 (x 1)2 y 2 20 . 解法二:(直接求出圆心坐标和半径)42 因为圆过 A(1,4) 、 B(3 , 2)两点,所以圆心 C 必在线段 AB 的垂直平分线 l 上,又因为 k AB 4 21AB1 3 斜率为1,又 AB 的中点为 (2,3),故 AB 的垂直平分线 l 的方程为: y 3 x 2即 x y 1 0.又知圆心在直线 y 0上,故圆心坐标为 C( 1,0) ∴半径 r AC (1 1)2 42 20 . 故所求圆的方程为 (x 1)2 y 2 20 . 又点 P(2 ,4) 到圆心 C( 1,0)的距离为d PC (2 1)2 4225 r .∴点 P 在圆外.例2 求半径为 4,与圆 x 2 y 2 4x 2y 4 0相切,且和直线 y 0相切的圆的方程. 分析: 根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆 C :(x a)2 (y b)2 r 2.圆C 与直线 y 0相切,且半径为 4,则圆心 C 的坐标为 C 1(a, 4)或C 2(a, 4). 又已知圆 x 2 y 2 4x 2y 4 0的圆心 A 的坐标为 (2 ,1) ,半径为 3.P 与圆,故 l 的52t 3tt 2 (3t 5)2 .若两圆相切,则 CA 4 3 7或 CA 4 3 1.2 2 2 2 2 2(1)当C 1(a , 4)时, (a 2)2 (4 1)2 72,或 (a 2)2 (4 1)2 12 (无解),故可得 a 2 2 10.∴所求圆方程为 (x 2 2 10)2 (y 4)2 42,或 (x 2 2 10)2 (y 4)2 42.(2)当C 2 (a , 4)时, (a 2)2 ( 4 1)2 72,或(a 2)2 ( 4 1)2 12 (无解),故 a 2 2 6.∴所求圆的方程为 (x 2 2 6)2 (y 4)2 42 ,或 (x 2 2 6)2 (y 4)2 42. 说明: 对本题,易发生以下误解:由题意,所求圆与直线 y 0相切且半径为 4,则圆心坐标为 C(a,4) ,且方程形如 (x a)2 (y 4)2 42.又 2 2 2 2 2圆x 2 y 2 4x 2y 4 0,即(x 2)2 (y 1)2 3 2 ,其圆心为 A(2 , 1) ,半径为 3.若两圆相切,则 CA 4 3.故 (a 2)2 (4 1)2 72 , 解 之 得 a 2 2 10 . 所 以 欲 求 圆 的 方 程 为 (x 2 2 10)2 (y 4)2 42 , 或 2 2 2 (x 2 2 10)2 (y 4)2 42 .上述误解只考虑了圆心在直线 y 0 上方的情形,而疏漏了圆心在直线 y 0下方的情形.另外,误解中没有考虑两圆 内切的情况.也是不全面的.例3 求经过点 A(0 , 5) ,且与直线 x 2y 0和2x y 0都相切的圆的方程.分析: 欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点 A ,故只需确定圆心坐标.又圆与两已知直 线相切,故圆心必在它们的交角的平分线上.解: ∵圆和直线 x 2y 0与 2x y 0相切, ∴圆心 C 在这两条直线的交角平分线上, 又圆心到两直线 x 2y 0和 2x y 0 的距离相等.∴x 2y x 2y .∴ 5 5 .∴两直线交角的平分线方程是 x 3y 0或 3x y 0. 又∵圆过点 A(0 ,5) ,∴圆心 C 只能在直线 3x y 0 上. 设圆心 C(t ,3t)∵ C 到直线 2x y 0 的距离等于 AC化简整理得 t 2 6t 5 0 .解得: t 1或 t 5∴圆心是 (1 , 3) ,半径为 5 或圆心是 (5 ,15) ,半径为 5 5 . ∴所求圆的方程为 (x 1)2 (y 3)2 5或 (x 5)2 (y 15)2 125.说明: 本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过 定点且与两已知直线相切的圆的方程的常规求法.例 4、 设圆满足: (1)截 y 轴所得弦长为 2; (2)被 x 轴分成两段弧,其弧长的比为 3:1,在满足条件 (1)(2)的所有圆中, 求圆心到直线 l :x 2y 0 的距离最小的圆的方程.分析: 要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个, 其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到 符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一: 设圆心为 P(a ,b) ,半径为 r . 则P 到 x 轴、 y 轴的距离分别为 b 和 a由题设知:圆截 x 轴所得劣弧所对的圆心角为 90 ,故圆截 x 轴所得弦长为 2r . 2∴r 2b 2又圆截 y 轴所得弦长为 2.2∴r a 2 1 .又∵ P(a ,b) 到直线 x 2y 0的距离为22a 2 4b 24ab2 2 2 2a 2 4b 2 2(a 2 b 2 )2b当且仅当 a b 时取“ =”号,此时 d mina b这时有2b 2 a 2 1a 1 a1或b 1b1又r22b 22∴ 5d 22a 2b2故所求圆的方程为(x 1)2 (y 1)2 2或(x 1)2 (y 1)2 2 解法二:同解法一,得a 2bd.5∴ a 2b 5d .2 2 2∴ a2 4b2 4 5bd 5d2.将a2 2b2 1代入上式得:222b2 4 5bd 5d2 1 0 .上述方程有实根,故28(5d 2 1) 0,∴d 5.5将d 5代入方程得b 1.5又2b2 a2 1 ∴ a 1.由a 2b 1 知a 、b 同号.故所求圆的方程为(x 1)2 (y 1)2 2或(x 1)2 (y 1)2 2 .说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?类型二:切线方程、切点弦方程、公共弦方程例 5 已知圆O:x2 y2 4,求过点P 2,4 与圆O相切的切线.解:∵点P 2,4 不在圆O 上,∴切线PT 的直线方程可设为y k x 2 4根据d r∴2k 4 221 k3解得k343所以y 3 x 2 44即3x 4y 10 0因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0 解决(也要注意漏解) .还可以运用2x0x y0y r 2,求出切点坐标x0、y0的值来解决,此时没有漏解.例6 两圆C 1:x 2 y 2 D 1x E 1y F 1 0与C 2:x 2 y 2 D 2x E 2yF 2 0相交于 A 、 B 两点,求它们的公共弦AB 所在直线的方程.分析: 首先求 A 、 B 两点的坐标,再用两点式求直线 AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求,可以采用“设而不求”的技巧.解: 设两圆 C 1、C 2 的任一 交点坐标为 (x 0 , y 0) ,则有:22 x 0 y 0 D 1xE 1y 0F 1 0①22 x 0 yD 2x0 E 2 yF 2 0②①-②得: (D 1 D 2)x 0 (E 1 E 2)y 0 F 1F 2 0 .∵ A 、 B 的坐标满足方程(D 1 D 2)x(E 1 E 2)yF 1F 2 0 .∴方程 (D 1 D 2 )x (E 1E 2)yF 1 F 2是过 A 、 B 两点的直线方程又过 A 、 B 两点的直线是唯一的.∴两圆C 1、 C 2的公共弦 AB 所在直线的方程为 (D 1 D 2)x (E 1 E 2)yF 1 F 2 0.说明: 上述解法中,巧妙地避开了求 A 、 B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲 线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了 对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.例 7、过圆 x 2 y 2 1外一点 M(2,3) ,作这个圆的两条切线 MA 、 MB ,切点分别是 A 、B ,求直线 AB 的方程。

成都理工大学附属中学选修一第二单元《直线和圆的方程》测试卷(含答案解析)

一、选择题1.如图一所示,在平面内,点P 为圆O 的直径AB 的延长线上一点,2AB BP ==,过动点Q 作圆的切线QR ,满足2PQ QR =,则QAP 的面积的最大值为( )A .83B 83C .163D 163 2.若平面上两点()2,0A -,()10B ,,则l :()1y k x =-上满足2PA PB =的点P 的个数为( )A .0B .1C .2D .与实数k 的取值有关3.已知两点()1,2A -、()2,1B ,直线l 过点()0,1P -且与线段AB 有交点,则直线l 的倾斜角的取值范围为( )A .3,44ππ⎡⎤⎢⎥⎣⎦B .30,,424πππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦ C .30,,44πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭ D .3,,4224ππππ⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦4.光线从(3,4)A -点射出,到x 轴上的B 点后,被x 轴反射到y 轴上的C 点,又被y 轴反射,这时反射线恰好过点(1,6)D -,则BC 所在直线的方程是( )A .5270x y -+=B .310x y +-=C .3240x y -+=D .230x y --= 5.夹在两平行直线1:340l x y -=与2:34200l x y --=之间的圆的最大面积等于( ) A .2π B .4π C .8π D .12π6.直线220ax by -+=被222440x y x y ++--=截得弦长为6,则ab 的最大值是( )A .9B .4C .12D .147.点P 是直线2100x y ++=上的动点,直线PA ,PB 分别与圆224x y +=相切于A ,B 两点,则四边形PAOB (O 为坐标原点)的面积的最小值等于( )A .8B .4C .24D .168.已知0a >,0b >,直线1l :()410x a y +-+=,2l :220bx y +-=,且12l l ⊥,则1112a b++的最小值为( ) A .2 B .4 C .23 D .459.直线y =x +b 与曲线x =b 的取值范围是( )A .||b =B .-1<b ≤1或b =C .-1≤b <1D .非以上答案10.已知()()4,0,0,4A B ,从点(1,0)P 射出的光线被直线AB 反射后,再射到直线OB 上,最后经OB 反射后回到P 点,则光线所经过的路程是( )A B .6 C .D .11.直线0x ay a +-=与直线(23)10ax a y ---=互相垂直,则a 的值为( ) A .2 B .-3或1 C .2或0D .1或0第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案12.若圆()2220x y rr +=>上仅有4个点到直线20x y --=的距离为1,则实数r 的取值范围为( )A .)1,+∞B .)1-C .()1-D .()1 二、填空题13.已知过点()4,1P 的直线l 与x 轴,y 轴的正半轴分别交于A 、B 两点,O 为坐标原点,当AOB 的面积最小时,直线l 的方程为______.14.已知圆O :221x y +=,圆M :22()(2)2x a y -+-=.若圆M 上存在点P ,过点P 作圆O 的两条切线,切点为A ,B ,使得PA PB ⊥,则实数a 的取值范围为______.15.已知三条直线的方程分别为0y =0y -+=0y +-,那么到三条直线的距离相等的点的坐标为___________.16.若直线0x y m +-=与曲线2y =没有公共点,则实数m 所的取值范围是______.17.点(,)P x y 是直线30kx y ++=上一动点,,PA PB 是圆22:430C x y y +-+=的两条切线,,A B 是切点,若四边形PACB 面积的最小值为2,则k 的值为______. 18.已知k ∈R ,过定点A 的动直线10kx y +-=和过定点B 的动直线30x ky k --+=交于点P ,则22PA PB +的值为__________.19.在直角坐标系xOy 中,曲线1C 的方程为||2y k x =+,曲线2C 的方程为22(1)4x y ++=,若1C 与2C 有且仅有三个公共点,则实数k 的值为_____.20.已知过抛物线2:4C y x =焦点F 的直线交抛物线C 于P ,Q 两点,交圆2220x y x +-=于M ,N 两点,其中P ,M 位于第一象限,则11PM QN +的最小值为_____.参考答案三、解答题21.已知圆221:2440C x y x y ++--=.(1)在下列两个条件中任选一个作答.注:如果选择两个条件分别解答,按第一个解答计分.①已知不过原点的直线l 与圆1C 相切,且在x 轴、y 轴上的截距相等,求直线l 的方程; ②从圆外一点(2,1)P 向圆引切线,求切线方程.(2)若圆222:4C x y +=与圆1C 相交与D 、E 两点,求线段DE 的长. 22.如图,已知点()4,0A ,()0,2B ,直线l 过原点,且A 、B 两点位于直线l 的两侧,过A 、B 作直线l 的垂线,分别交l 于C 、D 两点.(1)当C 、D 重合时,求直线l 的方程;(2)当23AC BD =时,求线段CD 的长度.23.光线从(1,1)A 点射出,到x 轴上的B 点后,被x 轴反射到y 轴上的C 点,又被y 轴反射,这时反射线恰好过点(1,7)D . (1)求BC 所在直线的方程; (2)过点(2,2)E 且斜率为(0)m m ->的直线l 与x ,y 轴分别交于,P Q ,过,P Q 作直线BC 的垂线,垂足为,R S ,求线段||RS 长度的最小值.24.已知圆M 过点)5,3P ,且与圆222:(1)(2)(0)N x y r r -+-=>关于直线0:20x y l +-=对称.(1)求两圆的方程;(2)若直线1:70l x y +-=,在1l 上取一点A ,过点A 作圆M 的切线,切点为B ,C .证明:23BC ≠.25.已知圆C :x 2+y 2+Dx +Ey -12=0过点(1,7)P -,圆心C 在直线l :x -2y -2=0上. (1)求圆C 的一般方程.(2)若不过原点O 的直线l 与圆C 交于A ,B 两点,且12OA OB ⋅=-,试问直线l 是否过定点?若过定点,求出定点坐标;若不过定点,说明理由.26.已知直线:10l x y +-=与圆22:430C x y x +-+=相交于,A B 两点.(1)求||AB ;(2)若(,)P x y 为圆C 上的动点,求+1y x 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】以AB 所在的直线为x 轴,以AB 的垂直平分线为y 轴建立直角坐标系,利用两点间距离公式推导出点Q 的轨迹方程,可得点Q 到AP 距离的最大值,由此能求出QAP 的面积的最大值.【详解】以AB 所在的直线为x 轴,以AB 的垂直平分线为y 轴建立直角坐标系,因为2AB BP ==,所以()3,0P ,设(),Q x y因为过动点Q 作圆的切线QR ,满足2PQ QR =,()2224PQ QO OR =-所以()()2222341x y x y -+=+-, 整理得:()221613x y ++=, 所以点Q 的轨迹是以()1,0-3所以当点Q 在直线1x =-上时,y =此时点Q 到AP 距离最大,QAP 的面积的最大,所QAP 的面积最大为114223QAP SAP =⨯=⨯==, 故选:B【点睛】 关键点点睛:本题的关键点是建立直角坐标系,设(),Q x y ,利用()222244PQ QR OQ OR ==-,即可求出点Q 的轨迹方程,可得点Q 到AP 距离的最大值,即为三角形高最大,从而QAP 的面积最大.2.C解析:C【分析】首先利用直接法求点P 的轨迹方程,则转化为直线()1y k x =-与轨迹曲线的交点个数.【详解】设(),P x y ,2PA PB =,=整理为:()22224024x y x x y +-=⇔-+=,即点P 的轨迹是以()2,0为圆心,2r 为半径的圆,直线():1l y k x =-是经过定点()1,0,斜率存在的直线,点()1,0在圆的内部,所以直线():1l y k x =-与圆有2个交点,则l :()1y k x =-上满足2PA PB =的点P 的个数为2个.故选:C【点睛】方法点睛:一般求曲线方程的方法包含以下几种:直接法:把题设条件直接“翻译”成含,x y 的等式就得到曲线的轨迹方程.定义法:运用解析几何中以下常用定义(如圆锥曲线的定义),可从曲线定义出发,直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.相关点法:首先要有主动点和从动点,主动点在已知曲线上运动,则可以采用此法. 3.C解析:C【分析】作出图形,求出直线PA 、PB 的斜率,数形结合可得出直线l 的斜率的取值范围,进而可求得直线l 的倾斜角的取值范围.【详解】如下图所示:直线PA 的斜率为21110PA k -+==--,直线PB 的斜率为11120PB k +==-, 由图形可知,当直线l 与线段AB 有交点时,直线l 的斜率[]1,1k ∈-. 因此,直线l 的倾斜角的取值范围是30,,44πππ⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭. 故选:C.【点睛】关键点点睛:求直线倾斜角的取值范围的关键就是求出直线的斜率的取值范围,结合图象,利用直线PA 、PB 的斜率可得所要求的斜率的取值范围.4.A解析:A【分析】根据题意做出光线传播路径,求()3,4A -关于x 轴的对称点()'3,4A --,点(1,6)D -关于x 轴的对称点()'1,6D ,进而得BC 所在直线的方程即为''A D 直线方程,再根据两点式求方程即可.【详解】解:根据题意,做出如图的光线路径,则点()3,4A -关于x 轴的对称点()'3,4A --,点(1,6)D -关于y 轴的对称点()'1,6D ,则BC 所在直线的方程即为''A D 直线方程,由两点是方程得''A D 直线方程为:436413y x ++=++,整理得:5270x y -+= 故选:A.【点睛】本题解题的关键在于做出光线传播路径,将问题转化为求A 关于x 轴的对称点'A 与D 关于y 轴的对称点'D 所在直线''A D 的方程,考查运算求解能力,是中档题.5.B解析:B【分析】夹在两平行直线之间的面积最大的圆与这两条直线都相切,求出直径即可得到面积【详解】两平行直线1:340l x y -=与2:34200l x y --=之间的距离:204916d ==+,夹在两平行直线1:340l x y -=与2:34200l x y --=之间的圆半径最大值为2, 所以该圆的面积为4π.故选:B【点睛】此题考查求两条平行直线之间的距离,关键在于熟记距离公式正确求解.6.D解析:D【分析】根据弦长可知直线过圆心,再利用基本不等式求ab 的最大值.【详解】将222440x y x y ++--=化为标准形式:22(1)(2)9x y ++-=,故该圆圆心为(1,2)-,半径为3.因为直线截圆所得弦长为6,故直线过圆心,所以2220a b --+=,即1a b +=,所以2124a b ab +⎛⎫≤= ⎪⎝⎭(当且仅当12a b ==时取等号), 故选:D.【点睛】关键点点睛:本题考查直线与圆相交,基本不等式求最值,本题的关键是根据弦长判断直线过圆心,这样问题就变得简单易求.7.A解析:A【分析】根据题意,得到四边形PAOB 的面积22PAO S SPA ===只需求PO 最小值,进而可求出结果.【详解】因为圆224x y +=的圆心为()0,0O ,半径为2r ,圆心()0,0O 到直线2100x y ++=的距离为2d ==>, 所以直线2100x y ++=与圆224x y +=相离, 又点P 是直线2100x y ++=上的动点,直线PA ,PB 分别与圆224x y +=相切于A ,B 两点,所以PA PB =,PA OA ⊥,PB OB ⊥,因此四边形PAOB 的面积为12222PAO PBO PAO S S S S PA r PA =+==⨯⨯== 为使四边形面积最小,只需PO 最小,又min PO 为圆心()0,0O 到直线2100x y ++=的距离d =所以四边形PAOB 的面积的最小值为8=.故选:A.【点睛】关键点点睛:求解本题的关键在于根据圆的切线的性质,将四边形的面积化为2PAO S=求面积最值问题,转化为定点到线上动点的最值问题,即可求解. 8.D解析:D【分析】根据12l l ⊥得到125a b ++=,再将1112a b++化为积为定值的形式后,利用基本不等式可求得结果.【详解】因为12l l ⊥,所以240b a +-=,即125a b ++=,因为0,0a b >>,所以10,20a b +>>, 所以1112a b ++=1112a b ⎛⎫+ ⎪+⎝⎭()1125a b ⨯++1212512b a a b +⎛⎫=++ ⎪+⎝⎭14255⎛≥+= ⎝, 当且仅当35,24a b ==时,等号成立. 故选:D【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方 9.B解析:B【分析】作出曲线x =y x b =+,求出直线过半圆直径两端点时的b 值,及直线与半圆相切时的b 值可得结论.【详解】作出曲线x =y x b =+,如图,易知(0,1),(1,0)A B -,当直线y x b =+过点A 时,1b =,当直线y x b =+过点B 时,1b =-,当直线y x b =+1=,b =b =∴b 的取值范围是11b -<≤或b =故选:B【点睛】本题考查直线与圆的位置关系,解题时要注意曲线是半圆,因此直线过B 点时与半圆有两个交点,直线与半圆相切时,也只有一个公共点,这是易错点.10.A解析:A【分析】设点P 关于y 轴的对称点P ',点P 关于直线:40AB x y +-=的对称点P '',由对称点可求得P '和P ''的坐标,在利用入射光线上的点关于反射轴的对称点在反射光线所在的直线上,光线所经过的路程||P P '''.【详解】解:点P 关于y 轴的对称点P '坐标是(1,0)-,设点P 关于直线:40AB x y +-=的对称点(,)P a b '' ∴0111422b a a b -⎧=⎪⎪-⎨+⎪+=⎪⎩,解得43a b =⎧⎨=⎩,(4,3)P ∴'', ∴光线所经过的路程22||(41)334P P '''=++故选A .【点睛】本题考查求一个点关于直线的对称点的方法(利用垂直及中点在轴上),入射光线上的点关于反射轴的对称点在反射光线所在的直线上,把光线走过的路程转化为||P P '''的长度,属于中档题.11.C解析:C【分析】先考虑其中一条直线的斜率不存在时(0a =和32a =)是否满足,再考虑两直线的斜率都存在,此时根据垂直对应的直线一般式方程的系数之间的关系可求解出a 的值.【详解】当0a =时,直线为:10,3x y ==,满足条件; 当32a =时,直线为:3320,223x y x +-==,显然两直线不垂直,不满足; 当0a ≠且32a ≠时,因为两直线垂直,所以()230a a a --=,解得2a =, 综上:0a =或2a =. 故选C. 【点睛】根据两直线的垂直关系求解参数时,要注意到其中一条直线斜率不存在另一条直线的斜率为零的情况,若两直线对应的斜率都存在可通过121k k 去计算参数的值.12.A解析:A 【分析】到已知直线的距离为1的点的轨迹,是与已知直线平行且到它的距离等于1的两条直线,根据题意可得这两条平行线与222x y r +=有4个公共点,由此利用点到直线的距离公式加以计算,可得r 的取值范围. 【详解】解:作出到直线20x y --=的距离为1的点的轨迹,得到与直线20x y --=平行, 且到直线20x y --=的距离等于1的两条直线, 圆222x y r +=的圆心为原点,原点到直线20x y --=的距离为d∴两条平行线中与圆心O 距离较远的一条到原点的距离为1d '=,又圆222(0)x y r r +=>上有4个点到直线20x y --=的距离为1,∴两条平行线与圆222x y r +=有4个公共点,即它们都与圆222x y r +=相交.由此可得圆的半径r d '>,即1r ,实数r 的取值范围是)1,+∞.故选:A .【点睛】本题给出已知圆上有四点到直线的距离等于半径,求参数的取值范围.着重考查了圆的标准方程、直线与圆的位置关系等知识,属于中档题.二、填空题13.【分析】由题意可知直线的斜率存在且不为零可设直线的方程为求出点的坐标结合已知条件可求得的取值范围并求出的面积关于的表达式利用基本不等式可求得面积的最小值及其对应的值由此可求得直线的方程【详解】由题意 解析:480x y +-=【分析】由题意可知,直线l 的斜率存在且不为零,可设直线l 的方程为()14y k x -=-,求出点A 、B 的坐标,结合已知条件可求得k 的取值范围,并求出AOB 的面积关于k 的表达式,利用基本不等式可求得AOB 面积的最小值及其对应的k 值 ,由此可求得直线l 的方程.【详解】由题意可知,直线l 的斜率存在且不为零,可设直线l 的方程为()14y k x -=-,即14y kx k =+-. 在直线l 的方程中,令0x =,可得14y k =-;令0y =,可得41k x k-=. 即点41,0k A k -⎛⎫⎪⎝⎭、()0,14B k -,由题意可得410140k k k -⎧>⎪⎨⎪->⎩,解得0k <, AOB 的面积为()()14111111481682168222AOBk S k k k k k k ⎛-⎛⎫⎛⎫=⨯⨯-=--≥+-⋅-= ⎪ ⎪ ⎝⎭⎝⎭⎝△,当且仅当()1160k k k-=-<时,即当14k =-时,等号成立,所以,直线l 的方程为()1144y x -=--,即480x y +-=.故答案为:480x y +-=. 【点睛】关键点点睛:解本题的关键在于以下两点: (1)将三角形的面积利用k 加以表示;(2)在求解最值时,可充分利用基本不等式、导数、函数的单调性等知识来求解.14.【分析】将转化为由圆与圆:有公共点可解得结果【详解】因为所以所以所以圆与圆:有公共点所以所以得所以故答案为:【点睛】关键点点睛:转化为圆与圆:有公共点求解是解题关键 解析:22a -≤≤【分析】将PA PB ⊥转化为PO =,由圆222x y +=与圆M :22()(2)2x a y -+-=有公共点可解得结果. 【详解】因为PA PB ⊥,所以4APO BPO π∠=∠=,所以1PA PB ==,PO =,所以圆222x y +=与圆M :22()(2)2x a y -+-=有公共点,所以OM PO PM ≤+==≤24a ≤,所以22a -≤≤. 故答案为:22a -≤≤ 【点睛】关键点点睛:转化为圆222x y +=与圆M :22()(2)2x a y -+-=有公共点求解是解题关键.15.【分析】先画出图形求出再分四种情况讨论得解【详解】如图所示由题得的平分线:和的平分线:的交点到三条直线的距离相等联立两直线的方程解方程组得交点为;的外角平分线:和的外角平分线:的交点到三条直线的距离解析:(0,30,3(- 【分析】先画出图形,求出(1,0),(1,0)A B C -,再分四种情况讨论得解. 【详解】 如图所示,由题得(1,0),(1,0)A B C -,CAB ∠的平分线AO :0x =和ACB ∠的平分线CD :(1)3y x =+的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3xy x=⎧⎪⎨=+⎪⎩得交点为3(0,)3;ACB∠的外角平分线CE:3(1)y x=-+和ABC∠的外角平分线BF:3(1)y x=-的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3(1)y xy x⎧=-+⎪⎨=-⎪⎩得交点为(0,3)-;ACB∠的外角平分线CG:3(1)y x=-+和CAB∠的外角平分线AG:3y=的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3y xy⎧=-+⎪⎨=⎪⎩得交点为(2,3)-;ABC∠的外角平分线BH:3(1)y x=-和CAB∠的外角平分线AG:3y=的交点到三条直线的距离相等,联立两直线的方程解方程组3(1)3y xy⎧=-⎪⎨=⎪⎩得交点为(2,3).故答案为:(0,3)-、30,3、(2,3)、(2,3)-【点睛】关键点睛:解答本题的关键是利用平面几何的知识分析找到四个点,再利用直线的知识解答即可.16.【分析】根据题意作出曲线的图象然后采用平移直线的方法求解出的临界值由此求解出的取值范围【详解】如下图所示:即为表示圆心在半径为的半圆当直线与曲线在左下方相切时此时所以此时(舍)或;当直线经过点时所以解析:((),122,-∞⋃+∞【分析】根据题意作出曲线()22y x x =--+的图象,然后采用平移直线的方法求解出m 的临界值,由此求解出m 的取值范围. 【详解】如下图所示:()22y x x =--+即为()()()2212112x y y ++-=≤≤,表示圆心在()1,2-,半径为1的半圆,当直线与曲线在左下方相切时,此时0m <,所以12111m -+-=+,此时21m +=(舍)或12m =-;当直线经过点()0,2时,020m +-=,所以2m =,综上可知:当直线与曲线()22y x x =--+没有交点时,()(),122,m ∈-∞-⋃+∞, 故答案为:()(),122,-∞-⋃+∞.【点睛】思路点睛:根据直线与半圆的交点数求解参数范围的思路: (1)根据条件画出半圆的图象确定好圆心和半径; (2)采用平移直线的方法确定出直线的临界位置;(3)利用圆心到直线的距离公式以及直线经过某点求解出参数的临界值,由此确定出参数的取值范围.17.【分析】根据圆的切线性质可知四边形的面积转化为直角三角形的面积结合最小值可求的值【详解】由于是圆的两条切线是切点所以当最小时四边形的面积最小而的最小值即为到直线的距离又所以故答案为: 解析:2±【分析】根据圆的切线性质可知四边形PACB 的面积转化为直角三角形的面积,结合最小值可求k 的值. 【详解】由于,PA PB 是圆()22:21C x y +-=的两条切线,,A B 是切点,所以2||||2||PACB PAC S S PA AC PA ∆==⋅=== 当||PC 最小时,四边形PACB 的面积最小,而||PC 的最小值即为C 到直线的距离d , 又d =所以224 2.k k =⇒=⇒=± 故答案为:2±.18.13【分析】由两直线方程可得定点再联立两直线方程解出的坐标然后由两点间距离公式可得进而可以求解【详解】动直线过定点动直线过定点联立方程解得则由两点间距离公式可得:故答案为:13【点睛】本题考查了直线解析:13 【分析】由两直线方程可得定点(0,1)A ,(3,1)B --,再联立两直线方程解出P 的坐标,然后由两点间距离公式可得2PA ,2PB ,进而可以求解. 【详解】动直线10kx y +-=过定点(0,1)A 动直线30x ky k --+=过定点(3,1)B -- 联立方程1030kx y x ky k +-=⎧⎨--+=⎩,解得223(1k P k -+,2231)1k k k -+++, 则由两点间距离公式可得:PA =PB =2432432222222222224129412991249124()()(1)(1)(1)(1)k k k k k k k k k k PA PB k k k k -+-+++++∴+=+++++++422213(21)13(1)k k k ++==+,故答案为:13. 【点睛】本题考查了直线中定点问题以及两点间距离公式,考查了学生的运算能力,属于基础题.19.【分析】利用是过点B(02)且关于y 轴对称的两条射线将C1与C2有且仅有三个公共点等价转化为l1与C2只有一个公共点且l2与C2有两个公共点或l2与C2只有一个公共点且l1与C2有两个公共点验证即可解析:43-【分析】利用1C 是过点B (0,2)且关于y 轴对称的两条射线,将C 1与C 2有且仅有三个公共点等价转化为l 1与C 2只有一个公共点且l 2与C 2有两个公共点,或l 2与C 2只有一个公共点且l 1与C 2有两个公共点,验证,即可得出答案. 【详解】易知2C 是圆心为A (-1,0),半径为2的圆.由题设知,1C 是过点B (0,2)且关于y 轴对称的两条射线,记y 轴右边的射线为l 1,y 轴左边的射线为l 2,由于B 在圆C 2的外面,故C 1与C 2有且仅有三个公共点等价于l 1与C 2只有一个公共点且l 2与C 2有两个公共点,或l 2与C 2只有一个公共点且l 1与C 2有两个公共点. 当l 1与C 2只有一个公共点时,A 到l 1所在直线的距离为2,2=,故43k =-或k =0.经检验,当k =0时,l 1与C 2没有公共点; 当43k =-时,l 1与C 2只有一个公共点,l 2与C 2有两个公共点 当l 2与C 2只有一个公共点时,A 到l 2所在直线的距离为22=,故k =0或43k =,经检验,当k =0时,l 1与C 2没有公共点,当43k =时,l 2与C 2没有公共点. 故答案为:43- 【点睛】本题考查直线与圆的位置关系,属于中档题.20.【分析】设根据题意可设直线的方程为将其与抛物线方程联立可求出结合图形及抛物线的焦半径公式可得再利用基本不等式即可求出的最小值【详解】圆可化为圆心坐标为半径为抛物线的焦点可设直线的方程为设由得所以又所 解析:2【分析】设11(,)P x y ,22(,)Q x y ,根据题意可设直线PQ 的方程为1x my =+,将其与抛物线C 方程联立可求出121=x x ,结合图形及抛物线的焦半径公式可得12||||1PM QN x x ⋅==,再利用基本不等式,即可求出11PM QN+的最小值. 【详解】圆2220x y x +-=可化为22(1)1x y -+=,圆心坐标为(1,0),半径为1,抛物线C 的焦点(1,0)F ,可设直线PQ 的方程为1x my =+,设11(,)P x y ,22(,)Q x y ,由214x my y x=+⎧⎨=⎩,得2440y my --=,所以124y y =-, 又2114y x =,2224y x =,所以222121212()14416y y y y x x =⋅==,因为1212||||(||||)(||||)(11)(11)1PM QN PF MF QF NF x x x x ⋅=--=+-+-==,所以111122PM QN PM QN+≥⋅=,当且仅当||||1PM QN ==时,等号成立. 所以11PM QN+的最小值为2. 故答案为:2 【点睛】本题主要考查抛物线的几何性质,基本不等式求最值,考查基本运算能力,属于中档题.三、解答题21.(1)①132y x =-+±②4350x y --=或2x =;(2)4. 【分析】(1)①由已知得直线l 的斜率为1-,然后利用点到直线的距离等于半径可得直线截距可得答案;②分别讨论当过P 的直线斜率不存在和存在两种情况,不存在时特殊情况可得答案;存在时利用圆心到直线的距离等于半径可得答案;(2)两个圆的方程联立求得交点坐标,再利用两点间的距离公式可得答案. 【详解】(1)①圆C 的方程变形为22(1)(2)9x y ++-=,∴圆心C 的坐标为(1,2)-,半径为3.直线l 在两坐标轴上的截距相等且不为零, 故直线l 的斜率为1-.∴设直线l 的方程y x b =-+,又直线l 与圆22(1)(2)9x y ++-=相切,3=,整理得1b =± ∴所求直线l的方程为1y x =-+±②圆C 的方程变形为22(1)(2)9x y ++-=,∴圆心C 的坐标为(1,2)-,半径为3.当过P 的直线斜率不存在时,直线方程为2x =, 此时圆C 到直线的距离为3, 所以直线2x =是圆C 的切线. 当过P 的直线斜率存在时, 设切线方程为1(2)y k x -=-, 即120kx y k -+-=3=,43k ∴=,∴切线方程4412033x y -+-⨯=, 即4350x y --=,综上所述,切线方程为4350x y --=或2x =.(2)联立方程222224404x y x y x y ⎧++--=⎨+=⎩,得1155x y ⎧=⎪⎪⎨⎪=⎪⎩,2255x y ⎧=-⎪⎪⎨⎪=-⎪⎩,||4DE ∴===. 【点睛】直线和圆相切时,可以利用圆与直线联立的方程组有一组实数解,或者利用圆心到直线的距离等于圆的半径求得参数,有时利用后面方法计算运算量比较小些. 22.(1)2y x=;(2)2. 【分析】(1)求出直线AB 的斜率,由AB l ⊥可求得直线l 的斜率,进而可求得直线l 的方程; (2)设直线l 的方程为0kxy ,可知0k>,利用点到直线的距离公式结合AC =可求得k 的值,进而可求得AC 、BD ,利用勾股定理可求得OC 、OD ,由此可求得CD .【详解】(1)当C 、D 重合时,AB l ⊥, 直线AB 的斜率为021402ABk -==--,所以,直线l 的斜率为12AB k k =-=, 因此,直线l 的方程为2y x =; (2)设直线l 的倾斜角为的方程为0kx y ,可知0k >,则AC =,BD =,AC BD ==k =AC ∴=1BD =,由勾股定理可得2OC ==,OD ==因此,2CD OC OD =-=. 【点睛】在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件,用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线,故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况.23.(1)430x y +-=;(2)17. 【分析】(1)点(1,1)A 关于x 轴对称点()1,1E -,点D 关于y 轴对称点为()1,7F -,则其对称点,E F 在反射线上,即可求出反射线的直线方程;(2)写出直线l 的方程,求出()22,0,0,22P Q m m ⎛⎫++ ⎪⎝⎭,得到直线PR 和QS 的方程,转化为平行线的距离问题. 【详解】解:(1)点(1,1)A 关于x 轴对称为()1,1E - 点D 关于y 轴对称点为()1,7F -, 又直线BC 经过,F E 两点, 故直线BC :430x y +-=; (2)设l 的方程为()22y m x -=--, 则()22,0,0,22P Q m m ⎛⎫++⎪⎝⎭,可得直线PR 和QS 的方程分别为24(2)0x y m--+=和()44220x y m -++=, 又//PR QS ,∴RS =≥,当且仅当12m =取等号, ∴线段RS【点睛】 三种距离公式:(1)两点间的距离公式:平面上任意两点111222(,),(,),P x y P x y间的距离公式为12||PP = (2)点到直线的距离公式:点111(,)P x y 到直线:0l Ax By C ++=的距离d =;(3)两平行直线间的距离公式:两条平行直线10Ax By C ++=与20Ax By C ++=间的距离d =.24.(1)圆22:(1)9M x y +-=,圆22:(1)(2)9N x y -+-=;(2)证明见解析. 【分析】(1)由MN 与0l 垂直,MN 的中点在0l 上,可求得M 点坐标,得圆半径,从而得两圆方程;(2)设点(,7)A a a -,设B ,C 中点为Q .,假设BC =,则BQ =求得AM2=,如果此方程有解,则在在,此方程无解,则不存在,假设错误.从而可得结论. 【详解】解:(1)设点()00,M x y ,因为圆M 与圆N 关于直线0:20x y l +-=对称,且()1,2N ,根据直线MN 与直线0l 垂直,M ,N 中点在直线0l 上,得0000211122022y x x y -⎧=⎪-⎪⎨++⎪+-=⎪⎩,解得0001x y =⎧⎨=⎩,即(0,1)M ,所以||3MP ==,3r =,所以圆22:(1)9M x y +-=,圆22:(1)(2)9N x y -+-=.(2)由题可知1:70l x y +-=,设点(,7)A a a -,设B ,C 中点为Q . 假设23BC =,则3BQ =, 又∵3BM =,90BQM ∠=︒, ∴936MQ =-=,∵BMQ 与AMB 相似,∴MQ BMBM AM=, ∴23626BM AM MQ===, ∴2236(0)(71)2a a -+--=, 整理得24521202a a -+=, ∵45144421602∆=-⨯⨯=-<,所以方程无解, 假设23BC =不成立,所以23BC ≠.【点睛】方法点睛:本题考查圆关于直线对称问题,考查圆的切点弦长问题.解题方法:关于直线对称的圆的方程,圆心关于直线的对称点即为对称圆的圆心,半径为变,由此易得.过圆外一点作圆的切线,切点弦长一般结合几何方法求解,即由图中的BMQ 与AMB 相似建立关系求解.25.(1)x 2+y 2-4x -12=0;(2)直线l 过定点(2,0). 【分析】(1)根据题意,联立方程求解即可(2)当直线l 的斜率存在时,设直线l 的方程为y =kx +m (m ≠0),联立方程,利用韦达定理得到222(2)212121km km m k ---=-+,进而化简求证;而当直线l 的斜率不存在时,直接求解即可证明题中条件成立 【详解】解:(1)由题意可得圆心C 的坐标为(,)22D E --,则2()2022D E--⨯--=,①因为圆C经过点(P -,所以17120D +--=,②联立①②,解得D =-4,E =0.故圆C 的一般方程是x 2+y 2-4x -12=0.(2)当直线l 的斜率存在时,设直线l 的方程为y =kx +m (m ≠0),11(,)A x y ,22(,)B x y .联立224120,,x y x y kx m ⎧+--=⎨=+⎩整理得(k 2+1)x 2+2(km-2)x +m 2-12=0,则1222(2)1km x x k -+=-+,2122121m x x k -=+.因为12OA OB ⋅=-,所以121212x x y y +=-,由1212()()y y kx m kx m =++得,222(2)212121km km m k ---=-+,整理得m (m +2k )=0.因为m ≠0,所以m =-2k ,所以直线l 的方程为y =kx -2k =k (x -2).故直线l 过定点(2,0). 当直线l 的斜率不存在时,设直线l 的方程为x =m ,则A (m ,y ),B (m ,-y ),从而2241212OA OB m m ⋅=--=-,解得m =2,m =0(舍去).故直线l 过点(2,0).综上,直线l 过定点(2,0). 【点睛】关键点睛:解题关键是分类讨论直线l 的情况,并联立方程,利用韦达定理化简,根据直线l 的情况,得到12OA OB ⋅=-121212x x y y =+=-和2241212OA OB m m ⋅=--=-,进而求证,难度属于中档题26.(1;(2)44⎡-⎢⎣⎦. 【分析】(1)求出圆的圆心与半径,利用点到直线的距离公式求出圆心到直线的距离d ,由||AB =.(2)利用+1yx 表示圆上的点与原点构成直线的斜率即可求解. 【详解】(1)()222243021x y x x y +-+=⇒-+=,所以圆心为()2,0,半径1r =,则圆心到直线:10l x y +-=的距离:2d ==,所以||AB ===(2)+1yx 表示圆上的点(),x y 与()1,0-构成直线的斜率,当直线与圆相切时取得最值,设(1),1+1yk y k x x ==-=,,可得2291k k =+,218k =,4k =±,所以,+1y x的取值范围为44⎡-⎢⎣⎦.【点睛】关键点睛:解题的关键在于利用几何法求弦长以及利用两点求斜率的计算公式得到+1yx 的取值范围。

中职数学基础模块下册直线和圆的方程章末测试题(附答案)

直线与圆的方程第I 卷(选择题)一、单选题1.已知直线的倾斜角是π3,则此直线的斜率是( )AB .CD .2.已知直线斜率等于1−,则该直线的倾斜角为( ) A .30︒B .45︒C .120︒D .135︒3.已知直线1:210l ax y ++=与直线2:(1)10l x a y +++=平行,则实数a 的值为( ) A .2−B .23−C .1D .1或2−420y −+=的倾斜角为( ) A .30B .45C .60D .1205.已知直线l 经过点()2,4M ,且与直线240x y −+=垂直,则直线l 的方程为( ) A .210x y −+= B .210x y −−= C .220x y −+=D .280x y +−=6.直线2330x y +−=的一个方向向量是( ) A .()2,3−B .()2,3C .()3,2−D .()3,27.若直线1l :430x y −−=与直线2l :310x my −+=(m ∈R )互相垂直,则m =( )A .34B .34−C .12D .12−8.经过(1,A −−,(B 两点的直线的倾斜角为( ) A .30°B .60°C .120°D .150°9.“1a =±”是“直线0x y +=和直线20x a y −=垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件10.已知直线:8l y x =−.则下列结论正确的是( ) A .点()2,6在直线l 上 B .直线l 的倾斜角为4π C .直线l 在y 轴上的截距为8D .直线l 的一个方向向量为()1,1v =−11.已知圆C :2225x y +=与直线l :()3400x y m m −+=>相切,则m =( ) A .15B .5C .20D .2512.已知两圆2210x y +=和()()221320x y −+−=相交于A ,B 两点,则AB =( )A .B .CD .13.圆2220x y x y ++−=的圆心坐标为( ) A .11,2⎛⎫− ⎪⎝⎭B .11,2⎛⎫−− ⎪⎝⎭C .11,2⎛⎫⎪⎝⎭D .11,2⎛⎫− ⎪⎝⎭14.已知圆C 的圆心为()10,,且与直线2y =相切,则圆C 的方程是( ) A .()2214x y −+= B .()2214x y ++= C .()2212x y −+=D .()2212x y ++=15.已知圆221:1C x y +=与圆()()()2222:221C x y r r −+−=>有两个交点,则r 的取值范围是( )A .()1 B .()1,1C .(1⎤⎦D .1,1⎡⎤⎣⎦16.在平面直角坐标系xOy 中,圆221:1C x y +=与圆222:6890C x y x y +−++=,则两圆的位置关系是( ) A .外离B .外切C .相交D .内切17.关于x 、y 的方程220Ax Bxy Cy Dx Ey F +++++=表示一个圆的充要条件是( ). A .0B =,且0A C =≠ B .1B =,且2240D E AF +−>C .0B =,且0A C =≠,2240DE AF +−≥ D .0B =,且0A C =≠,2240D E AF +−> 18.圆222410x y x y +−++=的半径为( )A .1BC .2D .419.已知圆的一条直径的端点分别为()12,5P ,()24,3P ,则此圆的标准方程是( ) A .()()22348x y +++= B .()()22348x y −+−= C .()()22342x y +++=D .()()22342x y −+−=20.已知圆C :22430x y y +−+=,则圆C 的圆心和半径为( ) A .圆心(0,2),半径1r = B .圆心(2,0),半径1r = C .圆心(0,2),半径2r =D .圆心(2,0),半径2r =第II 卷(非选择题)二、填空题21.直线l 1:10x y +−=与直线l 2:30x y ++=间的距离是___________. 22.直线l 过点()2,1,若l 的斜率为3,则直线l 的一般式方程为______. 23.圆225x y +=的过点(2,1)M 的切线方程为___________.24.圆()()22:211C x y −+−=关于直线1y x =+对称的圆C '的标准方程为______. 25.赵州桥又名安济桥,是一座位于河北省石家庄市赵县城南洨河之上的石拱桥,因赵县古称赵州而得名.赵州桥始建于隋代,是世界上现存年代最久远、跨度最大、保存最完整的单孔石拱桥.小明家附近的一座桥是仿赵州桥建造的一座圆拱桥,已知在某个时间段这座桥的水面跨度是40米,拱顶离水面5米;当水面上涨4米后,桥在水面的跨度为______米;三、解答题26.已知直线l :3450x y +−=,点()1,1P −. (1)求过点P 且与l 平行的直线方程; (2)求过点P 且与l 垂直的直线方程. 27.a 为何值时,(1)直线1:210l x ay +−=与直线()2:3110l a x ay −−−=平行? (2)直线3:22l x ay +=与直线4:21l ax y +=垂直?28.已知三角形ABC 的顶点坐标为()1,5A −,()2,1B −−,()4,3C ,M 是BC 边上的中点.(1)求AB 边所在的直线方程; (2)求中线AM 的方程.29.求直线l :3x +y -6=0被圆C: x 2+y 2-2y -4=0截得的弦长.30.圆C 的圆心为()2,0C ,且过点32A ⎛ ⎝⎭.(1)求圆C 的标准方程;(2)直线:10l kx y ++=与圆C 交,M N 两点,且MN =k .参考答案:1.C 2.D 3.A 4.C 5.D 6.C 7.B 8.B 9.C 10.B 11.D 12.D 13.D 14.A 15.B 16.B 17.D 18.C 19.D 20.A21.22.350x y −−= 23.250x y +−= 24.()2231x y +−=25.26.(1)3410x y +−= (2)4370x y −+=.27.(1)当16a =或0时,两直线平行 (2)当a =0时,两直线垂直28.(1)6110x y −+= (2)230x y +−=2930.(1)()2221x y −+= (2)1k =−或17−。

直线与圆的方程单元测试卷含答案.docx

直线与圆的方程单元测试卷-O选择题1.方程x2+y2+2ax-by+c=0表示圆心为C (2, 2),半径为2的圆,则a、c的值依次为(B )(A)2、4、4;(B)・2、4、4;(C) 2、-4、4;(D) 2、-4、-42.点(1,1)在圆匕-0)2 +(y + d)2 =4的内部,则d的取值范围是(A )(A)-1< a <1(B) 0<a<l(C) a v-1或« > 1 (D) a = ±l3.自点4(一1,4)作圆(x-2)2 +(>'-3)2 = 1的切线,则切线长为(B )(A) 45(B)3 (C) 71(7 (D)54.已知M (-2,0), N (2,0),则以MN为斜边的直角三角形直角顶点P的轨迹方程是(D )(A) x2 +)“ = 2(B)x2 + j2 = 4(C)x2 + y2 = 2(x H ±2) (D) x2 + y2 = 4(x 工±2)5.若圆x2 + y2+(/l-l)x + 2/ly + A = 0的圆心在直线兀=丄左边区域,则2的取值范围是2(C )A. (0,+oo)B. (l,+oo)C. (0,丄2(1,+ °°)D. R6..对于圆x2+(y-l)2=l上任意一点P(x, y),不等式x+y + m> 0恒成立,则m的取值范围是BA. (A/2— b+oo)B. |~>/2 — 1,+oojC. (—l,+oo)D. [—l,+oo)7.如下图,在同一直角坐标系中表示直线y=cix ^y=x+a,正确的是(C )8—束光线从点A(—1,1)出发,经x轴反射到圆C:(x-2)2+(y-3)2=l 上的最短路径是9•直线V3x+y-2V3 = 0截圆x 2+y 2=4得的劣弧所对的圆心角是(C )71D 、一2=#+@—4)卄4—2$的值总大于0,则才的取值范围为()解析 y= 2 (日)=(/—2) a+ (#—4/+4),答案B11.设Q0, 〃>o,若心是:r 与3〃的等比小项,贝IJ-+7的最小值为()B. 4C. 1解析 Va>0, b>0,3"=3, A a+b=l 91 , 1 a+b , a+b . b a. 、 尹旷丁+〒=1+:+計1刃+2答案B(12)已知实数兀』满足x 2 + y 2 = 1,则(l-xy)(l + xy )有()(A)最小值一和最人值12 1 3(C) 最小值丄和最人值?2 4 3(B) 最小值2和最大值13(D)最小值1,无最人值二、填空题13.在平面直角坐标系xoy 中,已知圆x 2 + y 2 =4上有且仅有四个点到直线12x-5y + c = 0的距离为A. 4B. 5c. 3V2-1 D. 2>/671"兀A^ — B 、一6 410.对任意的曰w[ —1,1],函数f(x)=A. (1,3)B. (—8, 1) U (3, +8)C. ( — r 1)D. (3, +-)x=2时,y=0,所以%H2•只需>0,A. 81,则实数c的取值范围是____ (-13,⑶14.圆:兀2 +),2_4兀+ 6),= 0和圆:X2+/-6X =0交于A,B两点,则4B的垂直平分线的方秽:是—3x-y-9 = 0 ____________15•已知点A(4,1), B(0, 4),在直线L: y=3x-l ±找一点P,求使|PA卜|PB|最大时P的坐标是____________ (2,5)r2 4- r 4- 116函数/⑴=兀兀的值域为 ___________________________ .x三.解答题17.求与x轴切于点(5,0),并口在〉,轴上截得弦长为10的圆的方程.17.答案:(兀一5)2 +(y±5©)2 =50・18.已知圆0:(兀一3)2+0 — 4)2=4和直线/:也一〉,一4比 + 3 = 0(1)求证:不论k取什么值,直线和圆总相交;(2)求R取何值时,圆被直线截得的弦最短,并求最短弦的长.18.解:(1)证明:由直线/的方程可得,y - 3 =狀兀-4),则直线I恒通过点(4,3),把(4,3)代入圆C的方程,得(4-3尸+(3-4)2 =2v4,所以点(4,3)在圆的内部,又因为直线/恒过点(4,3),所以直线/与圆C总相交.(2)设鬪心到直线/的距离为d,则|3k —4 —4"3| 伙 + 1|d = ---- ] -- = -------732 +42 52又设弦长为厶,则(-)2+J2=r2,即(-)2=4-◎丄.2 2 25•:当£ = -1 时,(^)2min = 4 => 厶min = 4所以圆被直线截得最短的弦长为4.19 (本小题满分12分)己知直线/过点C(4,1),(I )若直线/过点£>(1,4),求直线/的方程;(II)若直线/在两处标轴上截距相等,求总线/的方程.19 解:(I )兀+ y・ 5= 0.(II)若直线/过原点,设其方程为:y = kx,乂直线/过点C(4,l),则4 k = \,k=丄,・・・y二丄兀,4 4即X —4y = 0 .x v 4 1若直线Z不过原点,设其方程为:人+〉=1, •・•直线/过点C(4,l),・•・+ =14 = 5.a a a a直线/的方程为x + y-5 = 0 ;综上,l的方程为兀一4y = 0或兀+y-5 = 0 .20.(本小题满分12分)已知不等式x2-x-zn + l>0.(I )当m = 3吋解此不等式;(II)若对于任意的实数兀,此不等式x2-x-m + l>0^.成立,求实数加的取值范围.320.(1)(—oo, — l)U(2,+oo); (II) (-00,-).421.设圆C满足:①截),轴所得弦长为2;②被x轴分成两段圆弧,其弧长Z比为3: 1;③圆心到直线l:x-2y = 0的距离为』5 ,求圆C的方程.21解.设圆心为(a,b),半径为r,由条件①:r2 =672 +1,由条件②:r2 = 2b2,从而冇:2夕-亍=1 .由条件③:⑺严=並=>| Q _ 2b |= 1,解方程组『少~6/2=1可得V5 5 [\a-2b\=l [归a ——]{厂,所以r2=2b2 = 2 .故所求圆的方程是(兀一l)2+(y_I)? =2或b = -\(x+l)2+(y + l)2=2.22.己知过点M (-3,-3)的直线/与鬪兀2 + b + 4), _ 21 = 0相交于A, B两点,(1)若弦A3的长为2届,求肓线/的方程;(2)设弦A3的中点为P ,求动点P的轨迹方程.22解:(1)若直线/的斜率不存在,贝叫的方程为x = -3,此时有),+4y — 12 = 0,弦I AB\=\ y A-y B \= 2-(-6) = 8 ,所以不合题意.故设直线/的方程为y + 3 = £(x + 3),即kx-y + 3k-3 = 0.将圆的方程写成标准式得X+(y + 2)2=25,所以圆心(0,-2),半径厂=5.= 25,即伙+ 3『=0,所以k = —3.所求在线I的方程为3x + y +12 = 0 .(2)设“兀丿),圆心0,(0,-2),连接Of,则0/丄AB .当兀H0且尢工一3时,k0P• k AB =-1,又^AB =k植p当兀=0或x = -3时,P点的坐标为(0,-2),(0,-3),(—3厂2),(-3厂3)都是方程(1)的解,所以弦中点P的轨迹方程为(3? < 5)X d -- +y+三1 2丿< 2丿52圆心(0,-2)到直线/的距离〃=|3R —1|W+1因为弦心距、半径、弦长的一半构成肓•角三角形,二y_(_3)~x-(-3)则有皆)』(-3)兀一(一3)(1)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
周练(1)--圆与方程
命题人:王超 审题人:宋晓东
姓名 班级
一、 选择题(本大题共6小题,每小题6分,共36分)
1.方程x2+y2+2ax-by+c=0表示圆心为C(2,2),半径为2的圆,则a、b、c的值
依次为( )
A.2、4、4; B.-2、4、4; C.2、-4、4; D.2、-4、-4
2. x2+y2-2x-4y+m=0表示的图形是圆,则m范围是( )
A. m<5 B. m<2 C.m>5 D. m>2
3.已知M (-2,0), N (2,0), 则以MN为斜边的直角三角形直角顶点P的轨迹方程是( )

A.222yx B. 422yx

C. )2(222xyx D. )2(422xyx
4.直线0323yx截圆x2+y2=4得的劣弧所对的圆心角是 ( )
A、6 B、4 C、3 D、2
5.若a2+b2=c2,则直线ax+by+c=0被圆x2+y2=2所截得的弦长为( )
A、1 B、2 C、3 D、23
6.M(x0,y0)为圆x2+y2=a2(a>0)内异于圆心的一点,则直线x0x+y0y=a2与该圆的位置关系是( )
A、相切 B、相交 C、相离 D、相切或相交
二、填空题(本大题共4小题,每小题6分,共24分)

7. 过点A(-1,5),B(5,5),C(6,-2)三点圆的方程是________________
8.过点P(-1,6)且与圆4)2()3(22yx相切的直线方程是________________.

9.设A为圆1)2()2(22yx上一动点,则A到直线05yx的最大距离为______.
10.对于任意实数k,直线(32)20kxky与圆222220xyxy的位置关系
是_________
一.选择题

二.填空题
7. ______________ __ 8. _______ _________
9. ______________ __ 10. _______ _________

题号 1 2 3 4 5 6
答案
2

三.解答题(本大题共2小题,每小题20分,共40分)
11.1)已知一圆经过点A(2,-3)和B(-2,-5),且圆心C在直线l:230xy上,
求此圆的方程.
2)自点A(-3,3)发射的光线l射到x轴上,被x轴反射,其反射光线所在的直线与圆
x2+y2-4x-4y+7=0相切,求反射光线所在直线的方程

的值。求为坐标原点且两点,相交于与圆直线mOQOPOQPmyxyx,,01.1222
(附加题)(20分)
13.已知圆C的方程25)2()1(22yx,直线047)1()12(:mymxml
1)求证:直线l恒过定点。
2)判断直线l被圆C截得的弦长何时最长,何时最短?并求弦长最短时m的值.
3

《圆与方程》参考答案
一. 选择题


1 2 3 4 5 6 7 8 9 10 11 12



D C D D A A B B C C D C

二. 填空题
13.2x+3y=0 14.)56,58( 15. )914,0,0(
16.4x-3y-1=0或3x-4y-6=0 17. 25)2()2(22yx 18.
22
三.解答题
19.1)x= -3或3x+4y=15=0
2)最长弦所在直线方程:x-2y=0或4x+2y+15=0

20. 2)1()1(2)1()1(2222yxyx或
21.1)x-3y-3=0 2)设直线方程x-3y+b=0,圆心到直线的距离
10310
)1(33bbmmd

与m无关,半径又是定值,所以弦长都相

等。
4

22.1)5614 2)53,53 3)71138,71138[]
23. 1))1,0()0,1( 2) 33k

相关文档
最新文档