(完整word版)一元一次不等式与不等式组经典讲义
2014初中数学基础知识讲义—一元一次不等式

用不等号连接起来的式子叫做不等式. 常见的不等号有五种: “≠”、 “>” 、 “<” 、 “≥”、 “≤”.a 的3倍与2的差不小于5,用不等式表示为 代数式113m --值为正数,m 的范围是 2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。
解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。
说明:不等式的解与一元一次方程的解是有区别的,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值.3.不等式的基本性质(重点)(1)若a <b ,则a +c c b +; (2)若a >b ,c >0则ac bc (或c a cb ); (3)若a >b ,c <0则ac bc (或c a cb). 说明:常见不等式所表示的基本语言与含义还有:①若a -b >0,则a 大于b ;②若a -b <0,则a 小于b ;③若a -b ≥0,则a 不小于b ;④若a -b ≤0,则a 不大于b ;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号。
任意两个实数a 、b 的大小关系:①a -b>O ⇔a>b ;②a -b=O ⇔a=b ;③a-b<O ⇔a<b .不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c 。
1、(2013四川南充市) 不等式x+2>6的解集为_______________ 2、(2013广州市)已知a >b,c 为任意实数,则下列不等式中总是成立的是( )<b+c B. a -c >b -c C. ac <bc D. ac >bc 1、(2013广东汕头)不等式3x ﹣9>0的解集是2、(2013广东肇庆)解不等式:04)3(2>-+x ,并把解集在数轴上表示出来.知识梳理:初中数学基础知识讲义—一元一次不等式(组)4.一元一次不等式(重点)只含有一个未知数,且未知数的次数是1.系数不等于0的不等式叫做一元一次不等式.注:其标准形式:ax+b<0或ax+b≤0,ax+b>0或ax+b≥0(a≠0).5.解一元一次不等式的一般步骤(重难点)(1)去分母;(2)去括号;(3)移项; (4)合并同类项;(5)化系数为1.说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.(2013呼和浩特)解不等式:5(x–2)+8<6(x–1)+71、(2013郴州)解不等式4(x﹣1)+3≥3x,并把解集在数轴上表示出来2、(2013巴中)解不等式:,并把解集表示在数轴上6.一元一次不等式组:几个合在一起就组成一个一元一次不等式组.一般地,几个不等式的解集的,叫做由它们组成的不等式组的解集.7.由两个一元一次不等式组成的不等式组的解集有四种情况:(已知a b<)(2013山西)不等式组的解集是8.易错知识辨析:(1)不等式的解集用数轴来表示时,注意“空心圆圈”和“实心点”的不同含义.(2)解字母系数的不等式时要讨论字母系数的正、负情况. 如不等式ax b>(或ax b<)(0a≠)的形式的解集:当0a>时,bxa>(或bxa<)当0a<时,bxa<(或bxa>)当0a<时,bxa<(或bxa>已知关于x的不等式2<xa)1(-的解集为x<a-12,则a的取值范围是_____1、(2013贵州六盘水)已知不等式10x-≥,此不等式的解集在数轴上表示为()2、(2013四川攀枝花)下列说法中,错误..的是()A. 不等式2<x的正整数解中有一个 B. 2-是不等式012<-x的一个解C. 不等式93>-x的解集是3->x D. 不等式10<x的解有无数个3、(2013乐山)若a>b,则下列不等式变形错误..的是() A.a+1 > b+1 B.a2>b2C. 3a-4 > 3b-4D.4-3a > 4-3b4、(2013湖南益阳)如图,数轴上表示的是下列哪个不等式组的解集()A.53xx≥-⎧⎨>-⎩B.53xx>-⎧⎨≥-⎩C.53xx<⎧⎨<-⎩D.53xx<⎧⎨>-⎩5、(2013贵州遵义)如图,数轴上表示某不等式组的解集,则这个不等式组可能是()A.B.C.D.6、(2013年吉林省)不等式2x-1>x的解集为_________7、(2013湖南湘潭)不等式组⎩⎨⎧<>-311xx的解集为8、(2013巴中)解不等式:,并把解集表示在数轴上8、(2013三明)(1)解不等式组并把解集在数轴上表示出来;9、(2013南平)解不等式组:10、(2013浙江省绍兴)解不等式组:254(2)213x xx x+<+⎧⎪⎨-<⎪⎩中考零距离训练【提高训练】 1、(2013铜仁)不等式2m-1≤6的正整数解是 2、(2013白银)不等式2x+9≥3(x+2)的正整数解是 . 3、(2013河南)不等式组⎩⎨⎧>+≤122x x 的最小整数解为( ) A . 1- B . 0 C . 1 D . 24、(2013雅安)不等式组213112x -<⎧⎪⎨-≤⎪⎩的整数解有( ) 个 A . 1 B . 2 C . 3 D . 45、(2013孝感)使不等式x ﹣1≥2与3x ﹣7<8同时成立的x 的整数值是( )A.3,4 B.4,5 C.3,4,5 D. 不存在6、(2013包头)不等式(x ﹣m )>3﹣m 的解集为x >1,则m 的值为7、(2013湖北随州)若不等式00x b x a -<⎧⎨+>⎩的解集为2<x<3,则a,b 的值分别为( )A .-2,3B .2,-3C .3,-2D .-3,28、(2013山东省荷泽市)若不等式组{3xx m>>的解集是x>3,则m 的取值范围是______ 9、(2013•荆门)若关于x 的一元一次不等式组 有解,则m 的取值范围为( )A.m>B.m ≤23 C.m<23D.m ≤10(2013湖北襄阳)若不等式组1+240x ax >⎧⎨-⎩≤有解,则a 的取值范围是( ) A .a ≤3B .a <3 C.a <2D .a ≤211、(2013鄂州)若不等式组的解集为3≤x ≤4,则不等式ax+b <0的解集为.12、(2013益阳)已知一次函数y=x ﹣2,当函数值y >0时,自变量x 的取值范围在数轴上表示正确的是( )A .B .C .D . 13、(2013日照)如果点P (2x +6,x -4)在平面直角坐标系的第四象限内,那么x 的取值范围在数轴上可表示为( )14、(2013玉林)不等式组⎪⎪⎩⎪⎪⎨⎧≤-≥-21211121x x 的整数解. 15、(2013菏泽),并指出它的所有非负整数解。
第11章 一元一次不等式-2023-2024学年苏科版数学七年级下册章节复习讲义(导图+(0001)

2023-2024学年苏科版数学七年级下册章节知识讲练1.理解不等式的有关概念,掌握不等式的三条基本性质;2.理解不等式的解(解集)的意义,掌握在数轴上表示不等式的解集的方法;3.会利用不等式的三个基本性质,熟练解一元一次不等式或不等式组;4.会根据题中的不等关系建立不等式(组),解决实际应用问题;5.通过对比方程与不等式、等式性质与不等式性质等一系列教学活动,理解类比的方法是学习数学的一种重要途径.知识点01:不等式【高频考点精讲】1.不等式:用符号“<”(或“≤”),“>”(或“≥”),≠连接的式子叫做不等式.【易错点剖析】(1)不等式的解:能使不等式成立的未知数的值叫做不等式的解.(2)不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.解集的表示方法一般有两种:一种是用最简的不等式表示,例如x a>,x a≤等;另一种是用数轴表示,如下图所示:(3)解不等式:求不等式的解集的过程叫做解不等式.2. 不等式的性质:不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).知识点02:一元一次不等式【高频考点精讲】1. 定义:不等式的左右两边都是整式,经过化简后只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫做一元一次不等式,【易错点剖析】ax+b>0或ax+b<0(a≠0)叫做一元一次不等式的标准形式.2.解法:解一元一次不等式步骤:去分母、去括号、移项、合并同类项、系数化为1.【易错点剖析】不等式解集的表示:在数轴上表示不等式的解集,要注意的是“三定”:一是定边界点,二是定方向,三是定空实.3.应用:列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即:(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式;(5)解:解出所列的不等式的解集;(6)答:检验是否符合题意,写出答案.【易错点剖析】列一元一次不等式解应用题时,经常用到“合算”、“至少”、“不足”、“不超过”、“不大于”、“不小于”等表示不等关系的关键词语,弄清它们的含义是列不等式解决问题的关键.知识点03:一元一次不等式组【高频考点精讲】关于同一未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.【易错点剖析】(1)不等式组的解集:不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集.(2)解不等式组:求不等式组解集的过程,叫做解不等式组.(3)一元一次不等式组的解法:分别解出各不等式,把解集表示在数轴上,取所有解集的公共部分,利用数轴可以直观地表示不等式组的解集.(4)一元一次不等式组的应用:①根据题意构建不等式组,解这个不等式组;②由不等式组的解集及实际意义确定问题的答案.检测时间:120分钟试题满分:100分难度系数:0.55一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2023秋•姑苏区期末)若a>b,则下列不等式变形错误的是()A.a﹣1>b﹣1 B.C.3a>3b D.1﹣a>1﹣b2.(2分)(2023秋•奉化区校级期中)若关于x的不等式组的整数解共有4个,则m的取值范围是()A.6<m<7 B.6≤m<7 C.6≤m≤7 D.6<m≤73.(2分)(2023秋•永州期末)已知关于x的不等式整数解共有2个,若m为整数,则m=()A.2 B.3 C.4 D.54.(2分)(2022秋•新化县期末)方程组的解满足不等式x﹣y<5,则a的范围是()A.a<1 B.a>1 C.a<2 D.a>25.(2分)(2022秋•新田县期末)若关于x的不等式组恰有3个整数解,则实数a的取值范围是()A.7<a<8 B.7≤a<8 C.7<a≤8 D.7≤a≤86.(2分)(2023秋•沙坪坝区校级期末)如果不等式(a﹣5)x<a﹣5的解集为x>1,则a必须满足的条件是()A.a>0 B.a>5 C.a≠5 D.a<57.(2分)(2023春•自贡期末)若关于x的不等式组有100个整数解,则a的取值范围是()A.﹣1449<a≤﹣1448 B.﹣1449≤a<﹣1448C.﹣1450≤a<﹣1449 D.﹣1450<a≤﹣14498.(2分)(2023春•那曲市期末)若关于x的一元一次不等式组有解,则k的取值范围是()A.k≤3 B.k<3 C.k<2 D.k≤29.(2分)(2023春•吕梁期末)若关于x的方程的解为正数,且a使得关于y的不等式组恰有两个整数解,则所有满足条件的整数a的值的和是()A.0 B.1 C.2 D.310.(2分)(2023秋•姑苏区校级期末)如果关于y的方程有非负整数解,且关于x的不等式组的解集为x≥1,则所有符合条件的整数a的和为()A.﹣5 B.﹣8 C.﹣9 D.﹣12二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2023秋•惠州期末)不等式组:的解集是.12.(2分)(2023春•集美区校级期中)若不等式(a﹣1)x>1﹣a的解集是x<﹣1,则a的取值范围是.13.(2分)(2023秋•海曙区期中)不等式组的解集为x>3,则k的取值范围为.14.(2分)(2023春•富锦市校级期末)已知关于x的不等式组的所有整数解的和为﹣9,m的取值范围是.15.(2分)(2023秋•新田县期末)关于x的不等式组恰有3个整数解,则a的取值范围是.16.(2分)(2023秋•鄞州区期中)若不等式(a﹣1)x<a﹣1的解集是x>1,则a的取值范围是.17.(2分)(2023春•渝中区校级期末)关于x的不等式组的解集为x≥3,且关于x的一次方程5x﹣a=x+3有非负整数解,则所有满足条件的整数a的和为.18.(2分)(2023春•重庆期中)若关于x的一元一次方程有正整数解,且使关于x的不等式组至少有4个整数解,求出满足条件的整数a的所有值的积为.19.(2分)(2022春•渝中区校级月考)清明将至,前去扫墓的人逐渐增多.某花店购进白菊,白百合,马蹄莲共计m捆.白菊每捆20支,白百合每捆12支,马蹄莲每捆10支.现取出白菊的,白百合的,马蹄莲的,全部用于扎成A、B两款花束销售.其中A款花束白菊2支,白百合3支,马蹄莲1支,B 款花束白菊5支,马蹄莲2支.如此取出后剩下的白百合支数不多于马蹄莲支数,则购进的白菊捆数与白百合捆数之比至少为.20.(2分)(2022春•梁园区期末)对于x,符号[x]表示不大于x的最大整数.如:[3.14]=3,[﹣7.59]=﹣8,则满足关系式的x的整数值有个.三.解答题(共8小题,满分60分)21.(6分)(2023秋•桐乡市期末)解不等式,并把解在数轴上表示出来.22.(6分)(2023秋•钢城区期末)解不等式组:,并求出它的非负整数解.23.(8分)(2023秋•邵阳期末)已知关于x的不等式组;(1)若该不等式组有且只有三个整数解,求a的取值范围;(2)若该不等式组有解,且它的解集中的任何一个值均不在x≥5的范围内,求a的取值范围.24.(8分)(2023春•大竹县校级期末)我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3;用<a>表示大于a的最小整数,例如:<2.5>=3,<3>=4,<﹣2.5>=﹣2.根据上述规定,解决下列问题:(1)[﹣4.5]=,<3.01>=;(2)若x为整数,且[x]+<x>=2017,求x的值;(3)若x、y满足方程组,求x、y的取值范围.25.(8分)(2024•邵阳模拟)某商场同时采购了A,B两种品牌的运动装,第一次采购A品牌运动装10件,B品牌运动装30件,采购费用为8600元;第二次只采购了B品牌运动装50件,采购费用为11000元.(1)求A,B两种品牌运动装的采购单价分别为多少元每件?(2)商家通过一段时间的营销后发现,B品牌运动装的销售明显比A品牌好,商家决定采购一批运动装,要求:①采购B品牌运动装的数量是A品牌运动装的2倍多10件,且A品牌的采购数量不低于18件;②采购两种品牌运动装的总费用不超过15000元,请问该商家有哪几种采购方案?26.(8分)(2023•曲靖一模)2022年1月7日,《云南省全民健身实施计划(2021﹣2025年)》新闻发布会顺利举行.会议上就“十四五”时期深化体育改革,推进新时代全民健身高质量发展作了全面部署和安排.其中,“强化供给,补齐全民健身设施建设短板”是《云南省全民健身实施计划(2021﹣2025年)》的主要任务之一.春城小区计划购买10台健身器材供小区居民锻炼使用,了解到购买1台B型健身器材比1台A型健身器材贵200元,购买2台A型健身器材和5台B型健身器材共花8000元.(1)A型健身器材和B型健身器材的单价是多少钱?(2)春城小区计划购买B型健身器材的数量不超过A型健身器材的数量的2倍,购买资金不低于10800元,请问共有哪几种购买方案,哪一种方案最省钱.27.(8分)(2023•金凤区校级二模)围棋起源于中国,古代称为“弈”,是棋类鼻祖,围棋距今已有4000多年的历史,中国象棋也是中华民族的文化瑰宝,它源远流长,趣味浓厚,基本规则简明易懂.某学校为活跃学生课余生活,欲购买一批象棋和围棋,已知购买3副象棋和1副围棋共需125元,购买2副象棋和3副围棋共需165元.(1)求每副象棋和围棋的价格;(2)若学校准备购买象棋和围棋总共100副,且总费用不超过3200元,则最多能购买多少副围棋?28.(8分)(2022秋•婺城区期末)为更好地推进生活垃圾分类工作,改善城市生态环境,某小区准备购买A、B两种型号的垃圾箱,通过对市场调研得知:购买3个A型垃圾箱和2个B型垃圾箱共需390元,购买2个A型垃圾箱比购买1个B型垃圾箱少用20元.(1)求每个A型垃圾箱和每个B型垃圾箱分别多少元?(2)该小区计划用不多于1500元的资金购买A、B两种型号的垃圾箱共20个,且A型号垃圾箱个数不多于B型垃圾箱个数的3倍,则该小区购买A、B两种型号垃圾箱的方案有哪些?。
(word完整版)苏教版八年级下数学知识点总结,文档

第七章一元一次不等式1 不等式: 用不等号表示不等关系的式子叫做不等式2 不等式的解: 能使不等式成立的未知数的值叫做不等式的解。
不等式的解集:一个含有未知数的不等式的解的全体叫做这个不等式的解集。
3 不等式的性质: ○1 不等式的两边都加上〔或减去〕同一个整式,不等号的方向不变。
○2不等式的两边都乘〔或除以〕一个正数,不等号的方向不变。
不等式的两边都乘〔或除以〕一个负数,不等号的方向改变。
4 解一元一次不等式的步骤与解一元一次方程近似。
但是,在不等式两边都乘〔或除以〕同一个不等于0 的数时,必定依照这个数是正数,还是负数,正确地运用不等式的性质 2,特别要注意在不等式两边都乘〔或除以〕同一个负数时,要改变不等号的方向。
5 用一元一次不等式解决问题步骤: 〔 1〕审:认真审题,分清量、未知量的及其关系,找出题中不等关系,要抓住题设中的要点字“眼〞 ,如“大于〞 、“小于〞、“不小于〞 、“不大于〞等的含义。
( 2〕设:设出合适的未知数。
( 3〕列:依照题中的不等关系,列出不等式。
( 4〕解:解出所列不等式的解集。
( 5〕答:写出答案,并检验答案可否吻合题意。
6 一元一次不等式组:由几个含有同一个未知数的一次不等式组成的不等式组叫做一元一次不等式组。
不等式组中所有不等式的解集的公共局部叫做这个不等式组的解集,求不等式组解集的过程叫解不等式 组。
一元一次不等式组解决实责问题的步骤:与一元一次不等式解决实责问题近似,不相同之处在与列出不等式组,并解出不等式组。
7 一元一次不等式与一元一次方程、一次函数当一次函数中的一个变量的值确准时,能够用一元一次方程确定另一个变量的值;当一次函数中的一个变量范围时,能够用一元一次不等式〔组〕确定另一个变量取值的范围。
第八章分式1 分式定义: 一般地,若是 A 、B 表示两个整式,而且B 中含有字母,那么代数式A叫做分式,其中A 是分B式的分子, B 是分式的分母。
一元一次不等式与不等式组_讲义

第7章 一元一次不等式与不等式组1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种: “≠”、 “>” 、 “<” 、 “≥”、 “≤”.2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是:①确定边界点。
解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;②确定方向:大向右,小向左。
说明:不等式的解与一元一次方程的解是有区别的,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值.3.不等式的基本性质(1)不等式的两边都加上(或减去)同一个数或同一个整式.不等号的方向不变.如果a >b ,那么a +c >b +c ,a -c >b -c .(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.如果a >b ,并且c >0,那么a c >b c (或___ab cc ) (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变. 如果a >b ,并且c <0,那么a c <b c (或___ab c c )不等式的对称性: 如果a>b ,那么b<a不等式同向传递性: 如果a>b ,b>c,那么a>c说明:常见不等式所表示的基本语言与含义还有:①若a -b >0,则a 大于b ; ②若a -b <0,则a 小于b ; ③若a -b ≥0,则a 不小于b ;④若a -b ≤0,则a 不大于b ; ⑤若ab >0或0a b>,则a 、b 同号; ⑥若ab <0或0ab <,则a 、b 异号。
任意两个实数a 、b 的大小关系:①a -b>O ⇔a>b ; ②a -b=O ⇔a=b ; ③a-b<O ⇔a<b .不等号具有方向性,其左右两边不能随意交换;但a <b 可转换为b >a ,c ≥d 可转换为d ≤c 。
《一元一次不等式》word教案 (公开课获奖)2022浙教版 (4)

3.3一元一次不等式教学目标1.介绍一元一次不等式的概念。
2.通过对一元一次方程的解法的复习和对不等式的性质的利用导入对解不等式的讨论。
3.引导学生体会通过综合利用不等式的概念和基本性质解不等式的方法。
4.指导学生将文字表达转化为数学语言,从而解决实际问题。
5.练习巩固,能将本节内容与上节内容联系起来。
教学重、难点重点1.掌握一元一次不等式的解法。
2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。
难点能将文字叙述转化为数学语言,从而完成对应用问题的解决。
教学流程设计一、导入新课(约分钟)教师活动学生活动1.引导学生回忆不等式的性质,并说出解不等式的关键在哪里。
2.总结学生的回答,指出一元一次不等式的概念,让学生举例。
3.导入:通过上节课的学习,我们已经掌握了解简单不等式的方法。
这节课我们来共同探讨解一元一次不等式的方法。
1.认真思考,用自己的语言描述不等式的性质,说出解不等式的关键在于将不等式化为x<a或x>a的形式。
2.举出一元一次不等式的例子:5x+6≤4,7x+10>5。
3.明确本课目标,进入对新课的学习。
二、探索一元一次不等式的解法(约分钟)教师活动学生活动1.引导学生观察课本第61页例3,教师给出(1)的解法,说明:解不等式就是利用不等式的三条基本性质对不等式进行变形的过程。
提醒学生注意解题的步骤,鼓励学生完成对(2)得解答,并找学生上讲台演示。
2.分析学生的解答,指出解一元一次不等式的步骤,并提醒学生在解不等式中常见的错误:不等式两边同乘(除)一个负数不等号反向。
3.鼓励学生讨论完成课本第61页的例4。
提示学生:首先将简单的文字表达转化成数学语言。
告诉学生判断一个不等式是否是一元一次不等式要先将不等式化成最简形式,1.仔细观察教师的示范,理解用不等式的性质解不等式的原理,并掌握用数轴表示不等式的解,完成例3(2):2(5x+3)≤x-3(1-2x)解:原不等式等价于:10x+6≤x-3+6x即:3x≤9x≤3。
(完整word)一元一次不等式知识点总结,推荐文档

一元一次不等式知识点一:不等式的概念1. 不等式:用“<”(或“≤”),“>”(或“≥”)等不等号表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1)不等号的类型:①“≠”读作“不等于”,它说明两个量之间的关系是不等的,但不能明确两个量谁大谁小;②“>”读作“大于”,它表示左边的数比右边的数大;③“<”读作“小于”,它表示左边的数比右边的数小;④“≥”读作“大于或等于”,它表示左边的数不小于右边的数;⑤“≤”读作“小于或等于”,它表示左边的数不大于右边的数;(2) 等式与不等式的关系:等式与不等式都用来表示现实世界中的数量关系,等式表示相等关系,不等式表示不等关系,但不论是等式还是不等式,都是同类量比较所得的关系,不是同类量不能比较。
(3) 要正确用不等式表示两个量的不等关系,就要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。
2.不等式的解:能使不等式成立的未知数的值,叫做不等式的解。
要点诠释:由不等式的解的定义可以知道,当对不等式中的未知数取一个数,若该数使不等式成立,则这个数就是不等式的一个解,我们可以和方程的解进行对比理解,要判断一个数是否为不等式的解,可将此数代入不等式的左边和右边利用不等式的概念进行判断。
3.不等式的解集:一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集。
求不等式的解集的过程叫做解不等式。
如:不等式x-4<1的解集是x<5. 不等式的解集与不等式的解的区别:解集是能使不等式成立的未知数的取值范围,是所有解的集合,而不等式的解是使不等式成立的未知数的值.二者的关系是:解集包括解,所有的解组成了解集。
要点诠释:不等式的解集必须符合两个条件:(1)解集中的每一个数值都能使不等式成立;(2)能够使不等式成立的所有的数值都在解集中。
知识点二:不等式的基本性质基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
八年级一元一次不等式(教师讲义带答案).
第四章一元一次不等式(组)考点一、不等式的概念(3分)1、不等式:用不等号表示不等关系的式子,叫做不等式。
2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
4、求不等式的解集的过程,叫做解不等式。
5、用数轴表示不等式的方法考点二、不等式基本性质(3-5分)1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。
②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;考点三、一元一次不等式(6--8分)1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1考点四、一元一次不等式组(8分)1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
3、求不等式组的解集的过程,叫做解不等式组。
4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
5、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
6、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。
人教版七年级数学下册第9章。一元一次不等式组 知识点专题复习讲义
人教版七年级数学下册第9章。
一元一次不等式组知识点专题复习讲义一元一次不等式组知识点专题复讲义一、知识梳理1.知识结构图概念基本性质不等式的解法不等式的定义不等式的解集一元一次不等式的解法实际应用一元一次不等式组的解法二、知识点回顾1.不等式不等式是由不等号连接起来的式子。
常见的不等号有五种:“≠”、“>”、“<”、“≥”、“≤”。
2.不等式的解与解集不等式的解是使不等式成立的未知数的值。
不等式的解集是一个含有未知数的不等式的解的全体。
解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。
解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。
3.不等式的基本性质1) 不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
4.一元一次不等式一元一次不等式只含有一个未知数,且未知数的次数是1.系数不等于的不等式叫做一元一次不等式。
其标准形式为:ax+b<或ax+b≤,ax+b>或ax+b≥0(a≠0)。
5.解一元一次不等式的一般步骤1) 去分母;2) 去括号;3) 移项;4) 合并同类项;5) 化系数为1.删除格式错误的段落。
对于每段话,进行小幅度的改写,使其更加通顺易懂。
解一元一次不等式和解一元一次方程类似。
不同的是,一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变。
这是解不等式时最容易出错的地方。
例如,解不等式:-2/3x-1≤1/3解:去分母,得(3x-1)-2(3x-1)≤2(不要漏乘!每一项都得乘)去括号,得3x-3-6x+2≤2(注意符号,不要漏乘!)移项,得3x-6x≤2+3-1(移项要变号)合并同类项,得-3x≤4(计算要正确)系数化为1,得x≥-4/3(同除负,不等号方向要改变,分子分母别颠倒了)一元一次不等式组是含有相同未知数的几个一元一次不等式所组成的不等式组。
初中数学讲义--第15讲 不等式组
全方位教学辅导教案1、一元一次不等式组把只含有一个相同未知数的几个一次不等式组成的不等式组,叫做一元一次不等组.2、一元一次不等式组的解集一元一次不等式组中各个不等式的解集的公共部分,叫做一元一次不等式组的解集. 求不等式组的解集的过程,叫做解不等式组.注意:如何利用数轴确定不等式组的解集呢?由两个一元一次不等式组成的不等式组其解集有四种情况. 如下表所示3、现实生活中,许多问题变化多端,仅利用方程的思想去解决现实生活中许多问题是远远不够的,往往经常需要考虑问题中的不等关系,运用不等式的思想来分析解决问题。
如经济建设中最佳决策,生产方案的设计、营销决策以及比赛结果的分析等等这些无不与不等式有着密切的关系.解决这类应用题有的需要列不等式或不等式组解决,有的则是列方程和列不等式的混合组解决。
经常使用逐一尝试的方法,去假存真,筛选需要的结果. 二、重难点知识概述不等式组的解法及实际应用问题 三、典型例题剖析例题1.(福州)不等式组12x x ≥-⎧⎨<⎩解集在数轴上表示正确的是( )A .B .C .D .变式练习.已知关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧<-+>-+x t x x x 235352恰有5个整数解,则t 的取值范围是( )A . ﹣6<t <211-B ﹣6≤t <211-C . ﹣6<t ≤211-D . ﹣6≤t ≤211-例题2.不等式组⎩⎨⎧->>-42301x x x 的非负整数解是 .变式练习.若关于x 的不等式组⎩⎨⎧>-≤-052a x x 无解,则a 的取值范围是 .例题3.某体育用品专卖店销售7个篮球和9个排球的总利润为355元,销售10个篮球和20个排球的总利润为650元.(1)求每个篮球和每个排球的销售利润;(2)已知每个篮球的进价为200元,每个排球的进价为160元,若该专卖店计划用不超过17400元购进篮球和排球共100个,且要求篮球数量不少于排球数量的一半,请你为专卖店设计符合要求的进货方案.变式练习:某商场销售A ,B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1)求商场销售A ,B 两种型号计算器的销售价格分别是多少元?(2)商场准备用不多于2500元的资金购进A ,B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台? .例题4.已知,关于x,y的方程组的解满足.(1)求a的取值范围;(2)化简.变式练习.已知方程组,当m为何值时,x>y.例题5:市为了更好地治理南湖水质,保护环境,市治污公司决定购买10台污水处理设备,现有A,B 两种型号的设备,其中每台的价格,同处理污水量如下表:A型B型价格(万元/台) a b处理污水量(吨/月)240 200经调查:购买一台A型号设备比购买一台B型号设备多2万元,购买2台A型设备比购买3台B型号设备少6万元.(1)求a ,b的值.(2)经预算:使治污公司购买污水处理设备的资金不超过105万元,若每月要求处理南湖的污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.变式练习.某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16 000元,每加工一个纸箱还需成本费2.4元.假设你是决策者,你认为应该选择哪种方案?并说明理由.解:设纸箱的个数为x个,则当两种方案费用一样时,4x=2.4x+16 000,解得x=10 000;当方案一费用低时,4x<2.4x+16 000,解得x<10 000;当方案二费用低时,4x>2.4x+16 000,解得x>10 000.答:当需要纸箱的个数为10 000时,两种方案都可以;当需要纸箱的个数小于10 000时,方案一便宜;当需要纸箱的个数大于10 000时,方案二便宜.课堂检测1.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计),某人从甲地到乙地经过的路程是x千米,出租车费为21.5元,那么x的最大值是()A.11 B.8 C.7 D.52.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有()A.103块B.104块C.105块D.106块3.甲在集市上先买了3只羊,平均每只a元,稍后又买了2只,平均每只羊b元,后来他以每只元的价格把羊全卖给了乙,结果发现赔了钱,赔钱的原因是()A.a>b B.a=b C.a<b D.与a、b大小无关4.小美将某服饰店的促销活动内容告诉小明后,小明假设某一商品的定价为x元,并列出关系式为0.3(2x-100)<1000,则下列何者可能是小美告诉小明的内容?()A.买两件等值的商品可减100元,再打3折,最后不到1000元B.买两件等值的商品可减100元,再打7折,最后不到1000元C.买两件等值的商品可打3折,再减100元,最后不到1000元D.买两件等值的商品可打7折,再减100元,最后不到1000元5.(2014·威海)已知点p(3-m,m-1)在第二象限,则m的取值范围在数轴上表示正确的是( )6.如果不等式组()2131,x xx m->-<⎧⎨⎩的解集是x<2,那么m的取值范围是( )A.m=2B.m>2C.m<2D.m≥27.不等式组324313x xxx<++-≤-⎧⎪⎨⎪⎩的解集在数轴上表示为( )8.(2014·株洲)一元一次不等式组21050xx+>-≤⎧⎨⎩的解集中,整数解的个数是( )A.4B.5C.6D.79.若不等式组210210x ax a+->--<⎧⎨⎩的解集为0<x<1,则a的值为( )A.1B.2C.3D.410.(2013·荆门)若关于x的一元一次不等式组20,2x mx m-<+>⎧⎨⎩有解,则m的取值范围为( )A.m>-23B.m≤23C.m>23D.m≤-2311.(2013·烟台)不等式组10,420xx-≥-<⎧⎨⎩的最小整数解是__________.12.(菏泽)若不等式组3xx m>>⎧⎨⎩,的解集是x>3,则m的取值范围是__________.13.(2013·曲靖)同时满足不等式123x+>x-1与x+3(x-1)<1的x的取值范围是__________.14.(2013·鄂州)若不等式组20,x bx a-≥+≤⎧⎨⎩的解集为3≤x≤4,则不等式ax+b<0的解集为__________.15.(2013·遂宁)解下列不等式组,并把它的解集在数轴上表示出来.(1)()328,143x x x x +>+-≥⎧⎪⎨⎪⎩①;② (2)233,311.362x x x x ++--⎪⎪⎩≥⎧⎨>①②16.若不等式组1,21x m x m <+>-⎧⎨⎩无解,求m 的取值范围.17(毕节)解不等式组()2532,1321,2x x xx +≤+⎧⎩+-⎪<⎪⎨①②把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.挑战自我18.(南通)若关于x 的不等式组()10,23354413x x x a x a ++>++⎧>+⎪⎩+⎪⎨①②恰有三个整数解,求实数a 的取值范围.(1)若该社团计划再采购这两种材质的象棋各5盒,则需要多少元?(2)若该社团准备购买这两种材质的象棋共50盒,且要求塑料象棋的数量不多于玻璃象棋数量的3倍,请设计出最省钱的购买方案,并说明理由.20.在纪念中国抗日战争胜利70周年之际,某公司决定组织员工观看抗日战争题材的影片,门票有甲乙两种,甲种票比乙种票每张贵6元;买甲种票10张,乙种票15张共用去660元.(1)求甲、乙两种门票每张各多少元?(2)如果公司准备购买35张门票且购票费用不超过1000元,那么最多可购买多少张甲种票?21.哈市某花卉种植基地欲购进甲、乙两种君子兰进行培育,若购进甲种2株,乙种3株,则共需要成本1700元;若购进甲种3株,乙种1株,则共需要成本1500元.(1)求甲乙两种君子兰每株成本分别为多少元?(2)该种植基地决定在成本不超过30000元的前提下购进甲、乙两种君子兰,若购进乙种君子兰的株数比甲种君子兰的3倍还多10株,求最多购进甲种君子兰多少株?课后作业1、若不等式组的解集为,则的取值范围为()A. B. C. D.2、若关于的不等式组有3个整数解,则的值可以是()A.-2B.-1C.0 D.13、不等式的解集是,则m的取值范围是()A.m≤2 B.m≥2 C.m≤l D.m>l4、某商品的进价为120元,现打8折出售,为了不亏损,该商品的标价至少应为()A.96元;B.130元;C.150元;D.160元.5、某商品原价800元,出售时,标价为1200元,要保持利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折6、小明和爸爸妈妈三人玩跷跷板,爸爸坐在跷跷板的一端,小明和妈妈一同坐在跷跷板的另一端,他们都不用力时,爸爸那端着地,已知爸爸的体重为70千克,妈妈的体重为50千克,那么小明的体重可能是()A.18千克B.22千克C.28千克D.30千克7、某旅行社某天有空房10间,当天接待了一个旅游团,当每个房间只住3人时,有一个房间住宿情况是不满也不空,若旅游团的人数为偶数,求旅游团共有多少人()A. 27B. 28C.29D.308、一家服装商场,以1 000元/件的价格进了一批高档服装,出售时标价为1 500元/件,后来由于换季,需要清仓处理,因此商场准备打折出售,但仍希望保持利润率不低于5%,那么该商场至多可以打________折.A.9B.8C.7D.69.在平面直角坐标系内,点P(x-2,x+1)在第二象限,则x的取值范围是__________10.解不等式组2≤3x﹣4<8的解集为.11.已知x>﹣4,则x可取的负整数的和是.12.的整数解为13.如果关于x的不等式组无解,则a的取值范围是__________14.若不等式组的解集为-1<x<1,那么(a-3)(b+3)的值等于.三解答题:15.解不等式或不等式组:(1)(2)16、若不等式组的解集为,求的值.17、当实数为何取范围值时?不等式组恰有两个整数解。
北师大数学八年级下册第二章-含参数一元一次不等式(组)经典讲义
第03讲_含参数一元一次不等式(组)知识图谱含参数一元一次不等式(组)知识精讲含字母的一元一次不等式(组)未知数的系数含有字母或常数项含有字母的一元一次不等式(组) 未知数的系数含有字母若0a >,axb >的解为b x a >; 若0a <,ax b >的解为bx a<;若0a =,则当0b ≥时,ax b >无解, 当0b <时,ax b >的解为任何实数已知23a ≠,解关于x 的不等式()()14321a x a x ++<-- 原不等式化为:()()13214a x a x +--<--()325a x -<-(1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a >-参数取值范围首先把不等式的解集用含有字母的代数式表示出来,然后把它与已知解集联系起来求解,在求解过程中可以利用数轴进行分析.五.易错点1.注意参数取值范围导致的变号问题.2.分清参数和未知数,不要混淆.3.解连续不等式时要注意拆分为不等式组.三点剖析一.考点:含参的一元一次方程(组).二.重难点:参数与解集之间的关系,整数解问题,不等式与方程综合. 三.易错点:注意参数取值范围导致的变号问题.解含参一元一次不等式(组)例题1、 解关于x 的不等式:ax ﹣x ﹣2>0. 【答案】 当a ﹣1=0,则ax ﹣x ﹣2>0为空集,当a ﹣1>0,则x >21a -,当a ﹣1<0,则x <21a -【解析】 ax ﹣x ﹣2>0. (a ﹣1)x >2,当a ﹣1=0,则ax ﹣x ﹣2>0为空集,当a ﹣1>0,则x >21a -,当a ﹣1<0,则x <21a -.例题2、 已知a 、b 为常数,解关于x 的不等式22ax x b ->+ 【答案】 2a >时,()212b x a +>- 2a <时,()212b x a +<-2a =时,①如果10b +≥,不等式无解;②如果10b +<,则不等式的解为任何实数 【解析】 原不等式可化为()()221a x b ->+,(1)当20a ->,即2a >时,不等式的解为()212b x a +>-; (2)当20a -<,即2a <时,不等式的解为()212b x a +<-;(3)当20a -=,即2a =时,有 ①:如果10b +≥,不等式无解;②如果10b +<,则不等式的解为任何实数.例题3、 已知a 、b 为常数,若0ax b +>的解集为23x >,则0bx a -<的解集是( ) A.32x >B.32x <C.32x >-D.32x <-【答案】 C 【解析】 该题考查的是解不等式.0ax b +>的解集为23x >,化简得2=3b a - 且a>00bx a -<的解集为a x b >,32x >-.所以该题的答案是C .例题4、 已知23a ≠,解关于x 的不等式()()14321a x a x ++<--【答案】 当23a >时,不等式的解为523x a <-;当23a <时,不等式的解为523x a >-【解析】 原不等式化为:()()13214a x a x +--<-- ()325a x -<-,因为23a ≠,所以320a -≠,即32a -为正数或负数.(1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a>-例题5、 已知关于x 的不等式22m mx ->12x ﹣1.(1)当m=1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.【答案】 (1)x <2(2)当m≠﹣1时,不等式有解,当m >﹣1时,不等式解集为x <2;当x <﹣1时,不等式的解集为x >2【解析】 (1)当m=1时,不等式为22x ->2x﹣1,去分母得:2﹣x >x ﹣2, 解得:x <2;(2)不等式去分母得:2m ﹣mx >x ﹣2, 移项合并得:(m+1)x <2(m+1), 当m≠﹣1时,不等式有解,当m >﹣1时,不等式解集为x <2; 当m <﹣1时,不等式的解集为x >2.随练1、 解关于x 的不等式22241x x a a a-≥+.【答案】当2a >-且0a ≠时,有2x a ≤-;当2a =-时,x 为任意数不等式都成立; 当2a <-时,有2x a ≥-【解析】 因为0a ≠,所以20a >,将原不等式去分母,整理得()224a x a +≤-.当2a >-且0a ≠时,有2x a ≤-;当2a =-时,x 为任意数不等式都成立;当2a <-时,有2x a ≥-.随练2、 已知23a ≠,解关于x 的不等式()()14321a x a x ++<--.【答案】 当23a >时,不等式的解为523x a <-;当23a <时,不等式的解为523x a >-【解析】 原不等式化为:()325a x -<-,因为23a ≠,所以320a -≠,即32a -为正数或负数. (1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a >-随练3、 解下列关于x 的不等式组:()23262111x a x x x +⎧->⎪⎨⎪+>-⎩;【答案】 13a >时,32x a >+;13a ≤时,3x >【解析】 原不等式组可化为323x a x >+⎧⎨>⎩.当323a +>,即13a >时,不等式组的解集为32x a >+.当323a +≤,即13a ≤时,不等式组的解集为3x >随练4、 已知a ,b 为实数,若不等式ax +b <0的解集为12x >,则不等式b (x -1)-a <0的解集为( )A.x >-1B.x <-1C.a b x b +>D.a b x b+< 【答案】 B【解析】 暂无解析随练5、已知关于x 的不等式()2340a b x a b -+->的解集是1x >.则关于x 的不等式()4230a b x a b -+->的解集是____________.【答案】 13x <-【解析】 ()2340a b x a b -+->, 移项得:()232a b x a b ->-,由已知解集为1x >,得到20a b ->,变形得:322a bx a b ->-,可得:3212a ba b-=-,整理得:a b =, ()4230a a x a a ∴-+->,即0a >,∴不等式()4230a b x a b -+->可化为()4230a a x a a -+->. 两边同时除以a 得:31x ->,解得:13x <-.随练6、 已知实数a 是不等于3的常数,解不等式组2x 3311x 2a x 022-+-⎧⎪⎨-+⎪⎩≥()< ,并依据a 的取值情况写出其解集. 【答案】 当a >3时,不等式组的解集为x ≤3,当a <3时,不等式组的解集为x <a【解析】 2x 3311x 2a x 022-+-⎧⎪⎨-+⎪⎩≥(①②)<, 解①得:x ≤3,解①得:x <a ,∵实数a 是不等于3的常数,∴当a >3时,不等式组的解集为x ≤3, 当a <3时,不等式组的解集为x <a .随练7、 关于x 的不等式组2131x a x +>⎧⎨->⎩.(1)若不等式组的解集是1<x <2,求a 的值;(2)若不等式组无解,求a 的取值范围. 【答案】 (1)a=3;(2)a≤2【解析】 (1)解不等式2x+1>3得:x >1, 解不等式a ﹣x >1得:x <a ﹣1, ∵不等式组的解集是1<x <2,∴a ﹣1=2, 解得:a=3;(2)∵不等式组无解, ∴a ﹣1≤1, 解得:a≤2.参数与解集之间的关系例题1、 若关于x 的一元一次不等式组011x a x x ->⎧⎨->-⎩无解,则a 的取值范围是 .【答案】 a≥2.【解析】 由x ﹣a >0得,x >a ;由1﹣x >x ﹣1得,x <1, ∵此不等式组的解集是空集, ∴a≥1.例题2、 已知关于x 的不等式组301(2)342x a x x -≥⎧⎪⎨->+⎪⎩有解,求实数a 的取值范围,并写出该不等式组的解集.【答案】 a <﹣6,3a≤x <﹣2.【解析】 解不等式3x ﹣a≥0,得:x≥3a,解不等式12(x ﹣2)>3x+4,得:x <﹣2,由题意得:3a<﹣2,解得:a <﹣6,∴不等式组的解集为3a≤x <﹣2.例题3、 如果关于x 的不等式(a+1)x >a+1的解集为x <1,那么a 的取值范围是( ) A.a <﹣1 B.a <0 C.a >﹣1 D.a >0或a <﹣1 【答案】 A【解析】 (a+1)x >a+1, 当a+1>0时,x >1, 当a+1<0时,x <1, ∵解集为x <1, ∴a+1<0, a <﹣1. 故选:A .例题4、 当1≤x≤4时,mx ﹣4<0,则m 的取值范围是( ) A.m >1 B.m <1 C.m >4 D.m <4 【答案】 B【解析】 设y=mx ﹣4,由题意得,当x=1时,y <0,即m ﹣4<0, 解得m <4,当x=4时,y <0,即4m ﹣4<0, 解得,m <1,则m 的取值范围是m <1,例题5、 若不等式(a ﹣3)x >1的解集为x <13a -,则a 的取值范围是 .【答案】 a <3.【解析】 ∵(a ﹣3)x >1的解集为x <13a -, ∴不等式两边同时除以(a ﹣3)时不等号的方向改变, ∴a ﹣3<0, ∴a <3.故答案为:a <3.例题6、 如果关于x 的不等式()122a x a +>+的解集是2x <,则a 的取值范围是( ) A.0a < B.1a <-C.1a >D.1a >-【答案】 B【解析】 将原不等式与其解集进行比较,在不等式的变形过程中利用了不等式的性质三,因此有10a +<,故1a <-例题7、 若不等式组()322110b x x a -<--⎧⎨->⎩的解集为﹣2<x <4,求出a 、b 的值.【答案】 a=﹣10,b=3.【解析】 解不等式10﹣x <﹣(a ﹣2),得:x >a+8,解不等式3b ﹣2x >1,得:x <312b -,∵解集为﹣2<x <4, ∴314282a b ⎧⎪⎨-=+=-⎪⎩,解得:a=﹣10,b=3.随练1、 已知关于x 的不等式(m -2)x >2m -4的解集为x <2,则m 的取值范围是________. 【答案】 m <2【解析】 不等式(m -2)x >2m -4的解集为x <2, ∴m -2<0,m <2.随练2、 关于x 的不等式组()3141x x x m ⎧->-⎪⎨<⎪⎩的解集为x <3,那么m 的取值范围是 .【答案】 m≥3【解析】 ()3141x x x m ->-⋅⋅⋅⎧⎪⎨<⋅⋅⋅⎪⎩①②,解①得x <3,∵不等式组的解集是x <3, ∴m≥3.故答案是:m≥3.随练3、 若关于x 的一元一次不等式组202x m x m -<⎧⎨+>⎩有解,则m 的取值范围为( )A.23m >-B.23m ≤C.23m >D.23m ≤-【答案】 C【解析】 202x m x m -<⎧⎨+>⎩①②,解不等式①得,x <2m , 解不等式②得,x >2-m , ∵不等式组有解, ∴2m >2-m ,∴23m >.随练4、 若不等式组0422x a x x +⎧⎨->-⎩≥有解,则实数a 的取值范围是( )A.a≥-2B.a <-2C.a≤-2D.a >-2【答案】 D【解析】 0422x a x x +⎧⎨->-⎩≥,解不等式x +a≥0得,x≥-a ,由不等式4-2x >x -2得,x <2,∵不等式组:不等式组0422x a x x +⎧⎨->-⎩≥有解,∴a >-2,随练5、 已知不等式31(x ﹣m )>2﹣m . (1)若上面不等式的解集为x >3,求m 的值.(2)若满足x >3的每一个数都能使上面的不等式成立,求m 的取值范围. 【答案】 (1)23(2)m≥23 【解析】 (1)解不等式可得x >6﹣2m ,∵不等式的解集为x >3, ∴6﹣2m=3,解得m=23;(2)∵原不等式可化为x >6﹣2m ,满足x >3的每一个数都能使不等式成立, ∴6﹣2m≤3,解得m≥23.整数解问题例题1、 关于x 的不等式-1<x≤a 有3个正整数解,则a 的取值范围是________. 【答案】 3≤a <4【解析】 ∵不等式-1<x≤a 有3个正整数解, ∴这3个整数解为1、2、3, 则3≤a <4.例题2、 关于x 的不等式0x b ->恰有两个负整数解,则b 的取值范围是( ) A.32?b -<<- B.32?b -<≤- C.32b -≤≤- D.32b -≤<- 【答案】 D【解析】 本题主要考查一元一次不等式及其解法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、知识总结
(一)不等式及其性质
1、不等式:
(1)定义用“<”(或“≤”),“>”(或“≥”)等不等号表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.
(2)不等式的解:能使不等式成立的未知数的值,叫做不等式的解。
(3)不等式的解集:一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集。求不等式的解集的过程叫做解不等式。
9.编出解集为 的一元一次不等式为______________________.
二、选择题:
11.下列不等式中,是一元一次不等式的是( )
A.2x-1>0 B.-1<2 C.3x-2y<-1 D.y2+3>5
12.不等式 的解集是( )
A.x≤ B.x ≥ C.x≤ D.x ≥
13.一元一次不等式组 的解集是 ( )
不等式的解集与不等式的解的区别:解集是能使不等式成立的未知数的取值范围,是所有解的集合,而不等式的解是使不等式成立的未知数的值。
二者的关系是:解集包括解,所有的解组成了解集。
(4)解不等式:求不等式解的过程叫做解不等式。
2、不等式的基本性质
性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
大大小小则无解
(四)一元一次不等式(组)解决实际问题
解题的步骤:
⑴审题,找出不等关系→ ⑵设未知数→ ⑶列出不等式(组)→
⑷求出不等式的解集→ ⑸找出符合题意的值→ ⑹作答。
一、填空题:
1.用不等式表示:① a大于0_______; ② 是负数________; ③ 5与x的和比x的3倍小___________.
3.不等式的解集在数轴上表示:
(1)边界:有等号的是实心圆圈,无等号的是空心圆圈;(2)方向:大向右,小向左
(三)一元一次不等式组
1、定义:有几个含有同一个未知数的一元一次不等式组成的不等式组,叫做一元一次不等式组
2、(一元一次)不等式组的解集:这几个不等式解集的公共部分,叫做这个(一元一次)不等式组的解集。
1、定义:含有一个未知数,未知数的次数是1,且不等号两边都是整式的不等式,
叫做一元一次不等式。
2.一元一次不等式的解法:
根据是不等式的基本性质;一般步骤为:(1)去分母;(2)去括号;(3)移项;
(4)合并同类项;(5)系数化为1.
解不等式应注意:①去分母时,每一项都要乘同一个数,尤其不要漏乘常数项;②移项时不要忘记变号;③去括号时,若括号前面是负号,括号里的每一项都要变号;④在不等式两边都乘(或除以)同一个负数时,不等号的方向要改变。
3、解不等式组:求不等式组解集的过程,叫做解不等式组。
4、一元一次不等式组的解法
1)分别求出不等式组中各个不等式的解集
2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
由两个一元一次不等式组成的不等式组的解集可归纳为下面四种情况:
不等式组
解集
口诀记忆
同大取大
同小取小
大小小大中间找
无解
2.不等式 的解集是__________________.
3.用不等号填空:若 .
4.当x_________时,代数代 的值是正数.
5.不等式组 的解集是__________________.
6.不等式 的正整数解是_______________________.
7. 的最小值是a, 的最大值是b,则
A.-2<x<3 B.-3<x<2 C.x<-3 D.x<2
14.如图1,在数轴上所表示的是哪一个不等式的解集( )
A. B. C.x+1≥-1 D.-2x>4
15.如果两个不等式的解集相同,那么这两个不等式叫做同解不等式。下列两个不等式是同解不等式的是( )
A. 与 B. 与
C. 与 D. 与
16.解下列不等式组,结果正确的是( )
三、解一元一次不等式(或不等式组),并把它们的解集在数轴上表示出来.
20.
A.不等式组 的解集是x>3 B.不等式组 的解集是-3<x<-2
C.不等式组 的解集是x<-1 D.不等式组 的解集是-4<x<2
17.若 ,则a只能是( )
A.a≤-1 B.a<0 C.a≥-1 D.a≤0
18.关于x的方程 的解是非负数,那么a满足的条件是( )
A.a>3 B.a≤3 C.a<3 D.a≥3
即:如果 ,那么 .
性质2:不等式的两边都乘上(或除以)同一个正数,不等号的方向不变。
即:如果 ,并且 ,那么 ; .
性质3:不等式的两边都乘上(或除以)同一个负数,不等号的方向改变。
即:如果 ,并且 ,那么 ; .
性质4:如果 ,那么 .(对称性)
性质5:如果 , ,那么 .(传递性)
(二)一元一次不等式