八年级数学下《数据的分析》练习题
人教版初中数学八年级数学下册第五单元《数据的分析》测试(答案解析)

一、选择题1.数据2-,1-,0,1,2的方差是( )A .0BC .2D .42.某校以“我和我的祖国”为主题的演讲比赛中,共有10位评委分别给出某选手的原始评分,在评定该选手成绩时,则从10个原始评分中去掉1个最高分和1个最低分,得到8个有效评分. 8个有效评分与10个原始评分相比,不变的是 ( ) A .平均数 B .极差 C .中位数 D .方差 3.若一组数据2468x ,,,,的方差比另一组数据5791113,,,,的方差大,则 x 的值可以为( ) A .12 B .10 C .2 D .0 4.一组数据:1、2、3、4、1,这组数据的众数与中位数分别为( ) A .1、3B .2、2.5C .1、2D .2、25.下面说法正确的个数有( )(1)二元一次方程组的两个方程的所有解,叫做二元一次方程组的解; (2)如果a b >,则ac bc >;(3)三角形的外角等于与它不相邻的两个内角的和; (4)多边形内角和等于360︒; (5)一组数据1,2,3,4,5的众数是0 A .0个B .1个C .2个D .3个6.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为( ) A .8.5,9B .8.5,8C .8,8D .8,97.一组数据,,,,,,a b c d e f g 的平均数是m ,极差是k ,方差是n ,则23,23,23,23,23,23------a b d e f g 的平均数、极差、和方差分别是( )A .222、、m k nB .23232m k n --、、C .232-、、4m k nD .2323--、、4m k n 8.已知数据x ,4,0,3,-1的平均数是1,那么它的众数是( )A .4B .0C .3D .-19.在学校举行的“我为祖国献首歌”的合唱比赛中,六位评委给初三某班的评分分别是:87、90、83、87、87、83,这组数据的众数和中位数分别是( ) A .87,87B .87,85C .83,87D .83,8510.为参加全市中学生足球赛.某中学从全校学生中选拔22名足球运动员组建校足球队,这22名运动员的年龄(岁)如下表所示,该足球队队员的平均年龄是( )A .12岁B .13岁C .14岁D .15岁11.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择( ) A .甲B .乙C .丙D .丁12.甲、乙两位射击运动员参加射击训练,各射击20次,成绩如下表所示:设甲、乙两位运动员射击成绩的方差分别为S 2甲和S 2乙,则下列说法正确的是( ) A .S 2甲<S 2乙 B .S 2甲=S 2乙C .S 2甲>S 2乙D .无法比较S 2甲和S 2乙的大小二、填空题13.将一组数据中的每一数减去40后,所得新的一组数据的平均数是2,则原来那组数据的平均数_______________.14.某中学篮球队12名队员的年龄情况如下: 年龄(单位:岁) 14 15 16 17 18 人数14322则这个队队员年龄的众数和中位数分别是_____岁、_____岁.15.已知一组数据a ,b ,c 的方差为2,那么数据3a +,3b +,3+c 的方差是________.16.烹饪大赛的菜品的评价按味道、外形、色泽三个方面进行评价(评价的满分均为100分),三个方面的重要性之比依次为7:2:1.某位厨师的菜所得的分数依次为92分、88分、80分,那么这位厨师的最后得分是_______________.17.若一组数据4,x ,5,7,9的众数为5,则这组数据的方差为_____.18.某校在“爱护地球,绿化祖国“的创建活动中,组织了100名学生开展植数造林活动,其植树情况整理如下表: 植树棵数(单位:棵) 4 5 6 8 10 人数(人)302225158则这100名学生所植树棵数的中位数为_____.19.已知一组数据为:5,3,3,6,3则这组数据的方差是______. 20.已知一组数据123x x x ,,,平均数和方差分别是322,,那么另一组数据1232x 12x 12x 1---,,的平均数和方差分别是______.三、解答题21.为了倡导“节约用水,从我做起”的活动,某市政府决定对市直机关500户家庭的用水情况作一次调查,调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨).并将调查结果制成了如图所示的条形统计图.(1)这100个样本数据的平均数是 、众数是 和中位数是 ;(2)根据样本数据,估计该市直机关500户家庭中月平均用水量不超过12吨的约有多少户?22.某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:完成作业 单元测试 期末考试 小张 70 90 80小王6075(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;(2)若按完成作业、单元检测、期末考试三项成绩按1:2:7的权重来确定期末评价成绩. ①请计算小张的期末评价成绩为多少分?②小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?23.某校在一次广播操比赛中,初二 (1)班、初二(2)班、初二(3)班的各项得分如下:服装统一 动作整齐 动作准确初二(1)班 80 84 87 初二(2)班977880初二(3)班907885(1)填空:根据表中提供的信息,在服装统一方面,三个班得分的平均数是________;在动作整齐方面三个班得分的众数是________;在动作准确方面最有优势的是________班.(2)如果服装统一、动作整齐、动作准确三个方面的重要性之比为2:3:5,那么这三个班的排名顺序怎样?为什么?(3)在(2)的条件下,你对三个班级中排名最靠后的班级有何建议?24.为选拔优秀选手参加瑶海区第八届德育文化艺术节“诵经典”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示(1)根据图示填写下表班级平均数(分)中位数(分)众数(分)九(1)8585九(2)80(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)计算两班复赛成绩的方差,并说明哪个班五名选手的成绩较稳定.25.为增强学生垃圾分类意识,推动垃圾分类进校园.某初中学校组织全校1200名学生参加了“垃圾分类知识竞赛”,为了解学生的答题情况,学校考虑采用简单随机抽样的方法抽取部分学生的成绩进行调查分析.(1)学校设计了以下三种抽样调查方案:方案一:从初一、初二、初三年级中指定部分学生成绩作为样本进行调查分析;方案二:从初一、初二年级中随机抽取部分男生成绩及在初三年级中随机抽取部分女生成绩进行调查分析;方案三:从三个年级全体学生中随机抽取部分学生成绩进行调查分析.其中抽取的样本具有代表性的方案是__________.(填“方案一”、“方案二”或“方案三”)(2)学校根据样本数据,绘制成下表(90分及以上为“优秀”,60分及以上为“及格”):样本容量平均分及格率优秀率最高分最低分100 93.5 100% 70% 100 80分数段统计(学生成绩记为x ) 分数段 080x ≤<8085x ≤<8590x ≤<9095x ≤<95100x ≤≤频数5253040请结合表中信息解答下列问题:①估计该校1200名学生竞赛成绩的中位数落在哪个分数段内; ②估计该校1200名学生中达到“优秀”的学生总人数.26.某校为了分析九年级学生艺术考试的成绩,随机抽查了两个班级的各5名学生的成绩,它们分别是:九(1)班:96,92,94,97,96 九(2)班:90,98,97,98,92 通过数据分析,列表如下:(1)__________;__________a b ==(2)计算两个班级所抽取的学生艺术成绩的方差,判断哪个班学生艺术成绩比较稳定.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先计算平均数,再计算方差.方差的定义一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,x =1n (x 1+x 2+…+x n ),则方差S 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]. 【详解】解:平均数x =15(-2-1+0+1+2)=0, 则方差S 2=15[(-2-0)2+(-1-0)2+(0-0)2+(1-0)2+(2-0)2]=2. 故选:C .【点睛】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x,x=1 n(x1+x2+…+x n),则方差S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.2.C解析:C【分析】根据题意,由数据的数字特征的定义,分析可得答案.【详解】根据题意,从10个原始评分中去掉1个最高分、1个最低分,得到8个有效评分,8个有效评分与10个原始评分相比,最中间的两个数不变,即中位数不变,故选C.【点睛】本题考查数据的数字特征,关键是掌握数据的平均数、中位数、方差、极差的定义以及计算方法.3.A解析:A【解析】∵5791113,,,,的平均数是9,方差是8,一组数据2,4,6,8,x的方差比数据5791113,,,,的方差大,∴这组数据可能是x(x<0),2,4,6,8或2,4,6,8,x(x>10),观察只有A选项符合,故选A.4.C解析:C【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】数据1出现了2次,次数最多,所以众数是1;数据按从小到大排列:1,1,2,3,4,所以中位数是2.故选C.【点睛】本题考查了确定一组数据的中位数和众数的能力.要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.5.B解析:B【分析】利用二元一次方程组的解的定义、不等式的性质、三角形的内角的性质及众数的定义分别判断后即可确定正确的选项.【详解】解:(1)二元一次方程组的两个方程的所有公共解,叫做二元一次方程组的解,故原命题错误,不符合题意;(2)如果a>b,则当c<0时,ac>bc,故原命题错误,不符合题意;(3)三角形的外角等于与它不相邻的两个内角的和,正确,符合题意;(4)多边形内角和等于(n-2)×180°,故原命题错误,不符合题意;(5)数据1,2,3,4,5没有众数,故错误,不符合题意,正确的个数为1个,故选:B.【点睛】本题考查了二元一次方程组的解的定义、不等式的性质、三角形的内角的性质及众数的定义,属于基础知识,比较简单.6.C解析:C【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】这组数据中出现次数最多的一个数是8,所以这组数据的众数是8环;22是偶数,按大小顺序排列后中间两个数是8和8,所以这组数据的中位数是8(环).故选:C.【点睛】此题考查众数和中位数.注意掌握中位数和众数的定义是解题关键.7.C解析:C【分析】根据平均数、极差和方差的变化规律即可得出答案.【详解】∵数据a、b、c、d、e、f、g的平均数是m,∴2a−3、2b−3、2c−3、2d−3、2e−3、2f−3、2g−3的平均数是2m−3;∵数据a、b、c、d、e、f、g的极数是k,∴2a−3、2b−3、2c−3、2d−3、2e−3、2f−3、2g−3的平均数是2k;∵数据a、b、c、d、e、f、g的方差是n,∴数据2a−3、2b−3、2c−3、2d−3、2e−3、2f−3、2g−3的方差是224n n;【点睛】此题考查方差、极差、算术平均数,解题关键在于掌握方差、极差、算术平均数变化规律即可.8.D解析:D 【分析】先根据平均数的定义求出x .这组数据中出现次数最多的数是众数. 【详解】∵x ,4,0,3,-1的平均数是1, ∴403115x +++-=⨯ ∴1x =-∴这组数据是14031--,,,, ∴众数是1- 故选:D . 【点睛】本题考查了平均数的定义和确定一组数据的众数的能力.要明确定义,找到这组数据中出现次数最多的数.9.A解析:A 【分析】首先对这组数据进行排序,根据中位数和众数的定义回答即可. 【详解】∵这组数据排序后为83,83,87,87,87,90,∴这组数据的众数是87,这组数据的中位数是87872+=87. 故选A . 【点睛】本题考查了中位数和众数的定义.注意找中位数的时候一定要先排好顺序,然后再根据数据个数确定中位数:如果数据有奇数个,则正中间的数字即为所求;如果是偶数个则找中间两位数的平均数.10.B解析:B 【解析】 【分析】直接利用加权平均数的定义计算可得. 【详解】解:该足球队队员的平均年龄是127131014315222⨯+⨯+⨯+⨯=13(岁),故选:B .本题考查了加权平均数,解题的关键是掌握加权平均数的定义.11.C解析:C【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,选出方差最小,而且平均数较大的同学参加数学比赛.【详解】∵3.6<7.4<8.1,∴甲和丙的最近几次数学考试成绩的方差最小,发挥稳定,∵95>92,∴丙同学最近几次数学考试成绩的平均数高,∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择丙.故选C.【点睛】此题主要考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.12.C解析:C【解析】【分析】先计算两组数据的平均数,再计算它们的方差,选择正确的答案即可.【详解】甲的平均数为:120×5×(7+8+9+10)=172乙的平均数为:120×(4×7+6×8+6×9+4×10)=172S甲2=120×{5×[(7-172)2+(8-172)2+(9-172)2+(10-172)2]}=14×[94+14+14+94]=54;S乙2=120×[4×[(7-172)2+6×(8-172)2+6×(9-172)2+4×(10-172)2]=120×[9+64+64+9]=21 20;∵54>2120∴S甲2>S乙2故选C.【点睛】此题主要考查了平均数及方差的知识.方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.二、填空题13.42【分析】根据所有数据均减去40后平均数也减去40从而得出答案【详解】解:一组数据中的每一个数减去40后的平均数是2则原数据的平均数是42;故答案为:42【点睛】本题考查了算术平均数解决本题的关键解析:42【分析】根据所有数据均减去40后平均数也减去40,从而得出答案.【详解】解:一组数据中的每一个数减去40后的平均数是2,则原数据的平均数是42;故答案为:42.【点睛】本题考查了算术平均数,解决本题的关键是牢记“一组数据减去同一个数后,平均数也减去这个数”.14.1615【分析】根据中位数和众数的定义求解【详解】解:从小到大排列此数据数据15出现了四次最多为众数16和16处在第5位和第六位它两个数的平均数为16为中位数故答案为:1615【点睛】本题属于基础题解析:16 15【分析】根据中位数和众数的定义求解.【详解】解:从小到大排列此数据,数据15出现了四次最多为众数,16和16处在第5位和第六位,它两个数的平均数为16为中位数.故答案为:16,15.【点睛】本题属于基础题,考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.15.2【分析】根据方差是用来衡量一组数据波动大小的量每个数都加3所以波动不会变方差不变【详解】解:设abc 的平均数是d 所以方差不变故答案为:2【点睛】本题主要考查了方差的公式解题的关键是当数据都加上一个解析:2 【分析】根据方差是用来衡量一组数据波动大小的量,每个数都加3,所以波动不会变,方差不变. 【详解】解:设a 、b 、c 的平均数是d,()222211S =()()23a d b d c d ⎡⎤-+-+-=⎢⎥⎣⎦ , ()222221S =33(33)(33)23a d b d c d ⎡⎤+-+++-+++-+=⎢⎥⎣⎦ , ()222221S =()()23a d b d c d ⎡⎤-+-+-=⎢⎥⎣⎦, 所以方差不变. 故答案为:2. 【点睛】本题主要考查了方差的公式,解题的关键是当数据都加上一个数时,方差不变.16.90分【分析】根据加权平均数的计算方法即可得出答案【详解】解:这位厨师的最后得分为:(分)故答案为:90分【点睛】本题考查了加权平均数的计算掌握计算加权平均数的方法是解题的关键解析:90分 【分析】根据加权平均数的计算方法即可得出答案. 【详解】解:这位厨师的最后得分为:927+882+801=907+2+1⨯⨯⨯(分).故答案为:90分. 【点睛】本题考查了加权平均数的计算,掌握计算加权平均数的方法是解题的关键.17.【分析】根据众数的定义先判断出x 是5再根据平均数的计算公式求出平均数为6然后代入方差公式即可得出答案【详解】解:∵数据4x579的众数为5∴x =5S2=(4﹣6)2+2×(5﹣6)2+(7﹣6)2+解析:16 5【分析】根据众数的定义先判断出x是5,再根据平均数的计算公式求出平均数为6,然后代入方差公式即可得出答案.【详解】解:∵数据4,x,5,7,9的众数为5,∴x=5,1(45579)65x=+++++=,S2=15[(4﹣6)2+2×(5﹣6)2+(7﹣6)2+(9﹣6)2]=165,故答案为165.【点睛】此题主要考查了平均数、众数、方差的统计意义.众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.熟练掌握方差的计算公式是解答本题的关键.18.5【解析】【分析】直接利用中位数定义求解【详解】第50个数和第55个数都是5所以这100名学生所植树棵数的中位数为5(棵)故答案为5【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排解析:5【解析】【分析】直接利用中位数定义求解.【详解】第50个数和第55个数都是5,所以这100名学生所植树棵数的中位数为5(棵).故答案为5.【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.19.【解析】【分析】先求出平均数再根据方差的公式计算即可【详解】这组数据的平均数是:则这组数据的方差是;故答案为【点睛】此题考查了方差:一般地设n个数据的平均数为则方差它反映了一组数据的波动大小方差越大解析:1.6【解析】【分析】先求出平均数,再根据方差的公式计算即可. 【详解】这组数据的平均数是:()5336354++++÷=, 则这组数据的方差是(22221S [(54)3(34)64) 1.65⎤=-+⨯-+-=⎦; 故答案为1.6. 【点睛】此题考查了方差:一般地设n 个数据,1x ,2x ,n x ⋯的平均数为x ,则方差(222212n 1S [(x x)(x x)x x)n⎤=-+-+⋯+-⎦,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.20.【解析】分析:如果一组的数据的每一个数都扩大或缩小相同的倍数则平均数也扩大或缩小相同的倍数方差则扩大或缩小平方倍;如果一组的数据的每一个数都增加或减少相同的数则平均数也增加或减少相同的数方差不变详解解析:36,【解析】分析:如果一组的数据的每一个数都扩大或缩小相同的倍数,则平均数也扩大或缩小相同的倍数,方差则扩大或缩小平方倍;如果一组的数据的每一个数都增加或减少相同的数,则平均数也增加或减少相同的数,方差不变.详解:根据题意可知:这组数据的平均数为:2×2-1=3;方差为:23262⨯=. 点睛:本题主要考查的是数据的平均数和方差的变化规律,属于中等难度题型.解决这个问题的关键就是要明确变化规律,根据规律进行解答.三、解答题21.(1)11.6吨,11吨,11吨;(2)约有350户. 【分析】(1)根据平均数的计算公式、众数与中位数的定义即可得;(2)先求出月平均用水量不超过12吨的户数占比,再乘以500即可得. 【详解】(1)这100个样本数据的平均数是1020114012101320141011.6100⨯+⨯+⨯+⨯+⨯=(吨),因为11吨出现的次数最多, 所以众数是11吨,由中位数的定义得:将这100个样本数据按从小到大进行排序后,第50个和第51个数据的平均数即为中位数,则中位数是1111112+=(吨),故答案为:11.6吨,11吨,11吨;(2)月平均用水量不超过12吨的户数占比为204010100%70% 100++⨯=,则70%500350⨯=(户),答:500户家庭中月平均用水量不超过12吨的约有350户.【点睛】本题考查了平均数的计算公式、众数与中位数的定义、用样本估计总体,熟练掌握数据分析的相关知识是解题关键.22.(1)80;(2)①81;②85.【分析】(1)直接利用算术平均数的定义求解可得;(2)根据加权平均数的定义计算可得.【详解】解:(1)小张的期末评价成绩为709080803++=(分);(2)①小张的期末评价成绩为70190280781127⨯+⨯+⨯=++(分);②设小王期末考试成绩为x分,根据题意,得:601752780127x⨯+⨯+++,解得84.2x,∴小王在期末(期末成绩为整数)应该最少考85分才能达到优秀.【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.23.(1)89分,78分,初二(1);(2) 排名最好的是初二一班,最差的是初二(2)班,理由见解析;(3)见解析【分析】(1)用算术平均数的计算方法求得三个班的服装统一的平均数,找到动作整齐的众数即可;(2)利用加权平均数分别计算三个班的得分后即可排序;(3)根据成绩提出提高成绩的合理意见即可;【详解】(1)服装统一方面的平均分为:8097903++=89分;动作整齐方面的众数为78分;动作准确方面最有优势的是初二(1)班;(2)∵初二(1)班的平均分为:802843875235⨯+⨯+⨯++ =84.7分;初二(2)班的平均分为:972783805235⨯+⨯+⨯++=82.8分;初二(3)班的平均分为:902783855235⨯+⨯+⨯++ =83.9;∴排名最好的是初二一班,最差的是初二(2)班; (3)加强动作整齐方面的训练,才是提高成绩的基础. 【点睛】考查了平均数和加权平均数的计算.要注意,当所给数据有单位时,所求得的平均数与原数据的单位相同,不要漏单位. 24.(1)(3)九(1)班五名选手的成绩较稳定. 【分析】(1)观察图分别写出九(1)班和九(2)班5名选手的复赛成绩,然后根据中位数的定义和平均数的求法以及众数的定义求解即可; (2)在平均数相同的情况下,中位数高的成绩较好;(3)根据方差公式计算即可:()()()2222121x x x nn S x x x ⎡⎤=--++-⎢⎥⎣+⎦(可简单记忆为“等于差方的平均数”). 【详解】解:(1)由图可知九(1)班5名选手的复赛成绩为:75、80、85、85、100, ∴九(1)的中位数为85,把九(2)的成绩按从小到大的顺序排列为:70、75、80、100、100, ∴九(2)的平均数为(70+75+80+100+100)÷5=85, 九(2)班的众数是100;(3)215S =一班[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,21=5S 二班[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160.∵22S S 一班二班,∴九(1)班五名选手的成绩较稳定.【点睛】本题考查了中位数、众数以及平均数的求法,同时也考查了方差公式,解题的关键是牢记定义并能熟练运用公式.25.(1)方案三;(2)①该校1200名学生竞赛成绩的中位数落在9095x ≤<分数段内;②该校1200名学生中达到“优秀”的学生总人数为840人 【分析】(1)抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的.(2)①根据中位数的定义,即可求出这次竞赛成绩的中位数所落的分数段; ②用优秀率乘以该校共有的学生数,即可求出答案. 【详解】解:(1)要调查学生的答题情况,需要考虑样本具有广泛性与代表性,就是抽取的样本必须是随机的,则抽取的样本具有代表性的方案是方案三. 答案是:方案三;(2)①∵由表可知样本共有100名学生,∴这次竞赛成绩的中位数是第50和51个数的平均数, ∴这次竞赛成绩的中位数落在落在9095x ≤<分数段内; ∴该校1200名学生竞赛成绩的中位数落在9095x ≤<分数段内; ②由题意得:120070%840⨯=(人).∴该校1200名学生中达到“优秀”的学生总人数为840人. 【点睛】解决此题,需要能从统计表中获取必要的信息,根据题意列出算式是本题的关键,用到的知识点是抽样的可靠性,中位数的定义,用样本估计总体等. 26.(1)96;98;(2)九(1)班的学生的艺术成绩比较稳定. 【分析】(1)根据中位数和众数的定义求解可得;(2)根据方差公式计算,再依据方差越小成绩越稳定可得答案. 【详解】(1)九(1)班成绩重新排列为92,94,96,96,97, 则中位数a=96,九(2)班成绩的众数为b=98; 故答案为:96,98; (2)S 2(1)班=15×[(96-95)2+(92-95)2+(94-95)2+(97-95)2+(96-95)2]=3.2,S2(2)班=15×[(90-95)2+(98-95)2+(97-95)2+(98-95)2+(92-95)2]=11.2,∵S2(1)班<S2(2)班,∴九(1)班学生的艺术成绩比较稳定.【点睛】此题考查中位数、众数和方差的意义,解题关键在于掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.。
人教版初中八年级数学下册第二十章《数据的分析》经典练习(含答案解析)

一、选择题1.反映一组数据变化范围的是( ) A .极差B .方差C .众数D .平均数2.已知5个数1a 、2a 、3a 、4a 、5a 的平均数是a ,则数据11a +、22a +、33a +、44a +、55a +的平均数为( )A .aB .3a +C .56a D .15a +3.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是( )A .21,21B .21,21.5C .21,22D .22,224.小亮同学想知道自己的体重在班级中是否属于中等水平,则需了解全班同学体重的( ) A .平均数B .中位数C .众数D .极差5.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班的学生成绩统计如下: 成绩(分) 60 70 80 90 100 人 数4812115则该办学生成绩的众数和中位数分别是( ) A .70分,80分 B .80分,80分 C .90分,80分D .80分,90分6.某学习小组的5名同学在一次数学文化节竞赛活动中的成绩分别是:92分,96分,90分,92分,85分,则下列结论正确的是( ) A .平均数是92B .中位数是90C .众数是92D .极差是77.甲、乙、丙、丁四位同学五次数学测验成绩统计如右表所示,如果从这四位同学中,选出一位同学参加数学竞赛,那么应选___________去.甲乙丙丁平均分85909085方差50425042A.甲B.乙C.丙D.丁8.2017年世界未来委员会与联合国防治荒漠化公约授予我国“未来政策奖”,以表彰我国在防治土地荒漠化方面的突出成就.如图是我国荒漠化土地面积统计图,则荒漠化土地面积是五次统计数据的中位数的年份是( )A.1999年B.2004年C.2009年D.2014年9.某校篮球队10名队员的年龄情况如下,则篮球队队员年龄的众数和中位数分别是( )年龄13141516人数2341A.15,15 B.14,15 C.14,14.5 D.15,14.510.样本数据4,m,5,n,9的平均数是6,众数是9,则这组数据的中位数是( ) A.3 B.4 C.5 D.911.如图是根据我市某天七个整点时的气温绘制成的统计图,则下列说法正确的是()A.这组数据的众数是14B.这组数据的中位数是31C.这组数据的标准差是4D.这组是数据的极差是912.某班七个兴趣小组人数如下:5,6,6,x,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是( ) A .6B .6.5C .7D .813.某校八年级(1)班全体学生进行了第一次体育中考模拟测试,成绩统计如下表: 成绩(分) 24 25 26 27 28 29 30 人数(人)6558774根据上表中的信息判断,下列结论中错误的是( ) A .该班一共有42名同学B .该班学生这次考试成绩的众数是8C .该班学生这次考试成绩的平均数是27D .该班学生这次考试成绩的中位数是27分14.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是( ) A .甲、乙两队身高一样整齐 B .甲队身高更整齐C .乙队身高更整齐D .无法确定甲、乙两队身高谁更整齐 15.一组数据3,4,4,5,若添加一个数4,则发生变化的统计量是( )A .平均数B .众数C .中位数D .方差二、填空题16.已知一组样本数据1x ,2x ,3x ,⋅⋅⋅,n x 的平均数为2,方差为3,则数据12+5x ,22+5x ,325x +,⋅⋅⋅,2+5n x 的平均数为__________,方差为__________.17.图中显示的是某商场日用品柜台10名售货员4月份完成销售额(单位:千元)的情况,根据统计图,我们可以计算出该柜台的人均销售额为___________千元.18.数据﹣2、﹣1、0、1、2的方差是_____.19.某同学记录了自己一周每天的零花钱(单位:元),分别如下:5,4.5,5,5.5,5.5,5,4.5这组数据的众数和平均数分别是_______和_______.20.某组数据的方差计算公式为S 2=18[(x 1﹣2)2+(x 2﹣2)2+…+(x 8﹣2)2],则该组数据的样本容量是_____,该组数据的平均数是_____.21.若5个正整数从小到大排序,其中中位数是4,如果这组数据的唯一众数是5,当这5个正整数的和为最大值时,这组数据的方差为______.22.若样本数据1,2,3,2的平均数是a ,中位数是b ,众数是c ,则数据a ,b ,c 的方差是___.23.一组数2、a 、4、6、8的平均数是5,这组数的中位数是______.24.某中学人数相等的甲、乙两班学生参加了同一次数学测验,两班平均分和方差分别为⎺x 甲=82分,⎺x 乙=82分,S 2甲=245,S 2乙=190.那么成绩较为整齐的是__________班 25.现有甲、乙两个合唱队队员的平均身高均为170cm ,方差分别是2S 甲,2S 乙,且22S S <甲乙,则两个队的队员的身高较整齐的是______.26.已知一组数据123x x x ,,,平均数和方差分别是322,,那么另一组数据1232x 12x 12x 1---,,的平均数和方差分别是______.三、解答题27.小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下:a .小云所住小区5月1日至30日的厨余垃圾分出量统计图:b .小云所住小区5月1日至30日分时段的厨余垃圾分出量的平均数如下: 时段 1日至10日 11日至20日 21日至30日 平均数100170250(2)已知该小区4月的厨余垃圾分出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的多少倍(结果保留小数点后一位);(3)记该小区5月1日至10日的厨余垃圾分出量的方差为s 12,5月11日至20日的厨余垃圾分出量的方差为s 22,5月21日至30日的厨余垃圾分出量的方差为s 32.直接写出s 12,s 22,s 32的大小关系.28.嘉淇同学利用业余时间进行射击训练,一共射击 7 次,经过统计,制成如图所示的折线统计图.(1)这组成绩的众数是 ;中位数是 ; (2)求这组成绩的方差;29.为了了解某学校八年级学生每周平均体育锻炼时间的情况,随机抽查了该年级的部分学生,对其每周锻炼时间进行统计,根据统计数据绘制成图1和图2两个不完整的统计图.请你根据统计图提供的信息,回答下列问题:(1)本次共抽取了学生人,并请将图1条形统计图补充完整;(2)这组数据的中位数是,求出这组数据的平均数;(3)若八年级有学生1800人,请你估计体育锻炼时间为3小时的学生有多少人?30.八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(单位:分):甲789710109101010乙10879810109109)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4 分2,则成绩较为整齐的是队.。
人教版初中数学八年级数学下册第五单元《数据的分析》测试(有答案解析)(1)

一、选择题1.已知5个数1a 、2a 、3a 、4a 、5a 的平均数是a ,则数据11a +、22a +、33a +、44a +、55a +的平均数为( )A .aB .3a +C .56a D .15a +2.某校规定学生的学期学业成绩由三部分组成:平时成绩占20%,期中成绩占30%,期末成绩占50%,小颖的平时、期中、期末成绩分别为85分、90分、92分,则她本学期的学业成绩为( ) A .85B .90C .92D .893.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.2环,方差分别是20.56S =甲,20.45S =乙,20.50S =丙,20.60S =丁;则成绩最稳定的是( )A .甲B .乙C .丙D .丁4.如果将所给定的数据组中的每个数都减去一个非零常数,那么该数组的 ( ) A .平均数改变,方差不变 B .平均数改变,方差改变C .平均数不变,方差改变D .平均数不变,方差不变5.下列说法正确的是( )A .为了解我国中学生课外阅读的情况,应采取全面调查的方式B .一组数据1、2、5、5、5、3、3的中位数和众数都是5C .若甲组数据的方差是003,乙组数据的方差是0.1,则甲组数据比乙组数据稳定D .抛掷一枚硬币100次,一定有50次“正面朝上”6.在学校举行的“我为祖国献首歌”的合唱比赛中,六位评委给初三某班的评分分别是:87、90、83、87、87、83,这组数据的众数和中位数分别是( ) A .87,87B .87,85C .83,87D .83,857.已知一组数据a ,b ,c 的平均数为5,方差为4,那么数据22a -,22b -,22c -的平均数和方差分别是( ) A .8,16B .10,6C .3,2D .8,88.如图是根据我市某天七个整点时的气温绘制成的统计图,则下列说法正确的是( )A .这组数据的众数是14B .这组数据的中位数是31C .这组数据的标准差是4D .这组是数据的极差是99.有甲乙两个箱子,其中甲箱内有98颗球,分别标记号码1~98,且号码不重复的整数,乙箱内没有球。
2023人教版下册 数据的分析 单元练习卷(原卷版)

专题13 第20章《数据的分析》单元练习卷一.选择题(共10小题,共30分)1.(3分)国际数学奥林匹克竞赛旨在激发全球青年人的数学才能,中国代表队近六届竞赛的金牌数(单位:枚)分别为6,6,4,5,4,4,关于这组数据,下列说法正确的是()A.方差是0.5B.众数是6 C.中位数是4.5D.平均数是4.82.(3分)下列为某班级研究性学习小组学员出勤次数如表所示,则小组学员出勤次数的众数和中位数分别是()出勤次数45678学员人数26543A.5,6B.5,5C.6,5D.8,63.(3分)已知一组数据的方差为,则()A.这组数据有10个B.这组数据的平均数是5C.方差是一个非负数D.每个数据加3,方差的值增加34.(3分)思政课上,某小组的2023全国“两会”知识测试成绩统计如表(满分10分):成绩78910频数1342则该组测试成绩的平均数为()(单位:分)A.8.2B.8.3C.8.7D.8.95.(3分)温州银泰商场某店一天中卖出某种品牌的休闲鞋16双,它们的尺码与销售量如表所示:鞋的尺码/cm2525.52626.527销售量/双23443则这16双鞋的尺码组成的数据中,中位数()A.25.5B.26C.26.5D.276.(3分)一组数据5,8,8,10,1■中,最后一个两位数的个位数字被墨迹覆盖,则这组数据不受影响的统计量是()A.平均数B.中位数C.众数D.极差7.(3分)一位卖“运动鞋”的经销商到一所学校对200名学生的鞋号进行了抽样调查,经销商最感兴趣的是这组鞋号的()A.众数B.平均数C.中位数D.方差8.(3分)某班一合作学习小组有6人,初三上期数学期末考试成绩数据分别为114、86、95、77、110、93,则这组数据的中位数是()A.86B.95C.77D.949.(3分)为响应“双减”政策,进一步落实“立德树人、五育并举”的思想主张,深圳某学校积极推进学生综合素质评价改革,小芳在本学期德、智、体、美、劳的评价得分如图所示,其各项的得分分别为9,8,10,8,7,则该同学这五项评价得分的众数,中位数,平均数分别为()A.8,8,8B.7,8,7.8C.8,8,8.7D.8,8,8.410.(3分)某校举行“喜迎中国共产党建党100周年”党史知识竞赛,如图是10名决赛选手的成绩.对于这10名选手的成绩,下列说法中正确的是()A.众数是5B.中位数是90C.平均数是93D.方差是0二.填空题(共6小题,共30分)11.(5分)已知一组数据﹣1,﹣3,5,7,这组数据的极差是.12.(5分)在对某样本进行方差计算时,计算的公式是:,该样本的样本容量是.13.(5分)如图是甲、乙两人5次投篮成绩统计图(每人每次投球10个),则s甲2s乙2(填“>”,“=”或“<”).14.(5分)小丽计算数据方差时,使用公式S2=,则公式中=.15.(5分)我市某电视台招募主持人,甲侯选人的综合专业索质、普通话、才艺展示成绩如表所示.测试项目综合专业索质普通话才艺展示测试成绩908692根据实际需求,该电视台规定综合专业素质、普通话和才艺展示三项测试得分按5:3:2 的比例确定最终成绩,则甲候选人的最终成绩为分.16.(5分)现有1,2,3,…,9九个数字,甲、乙两位同学轮流从中选出一个数字,从左至右依次填入下面所示的表格中(表中已出现的数字不再重复使用),每次填数时,甲会选择填入后使表中现有数据平均数最小的数字,乙会选择填入后使表中现有数据中位数最大的数字.如图,若表中第一个数字是6,甲先填,(1)请你在表中空白处填出一种符合要求的填数结果;(2)满足条件的填法有种.6三.解答题(共7小题,共50分)17.(6分)学校组织“中国传统文化”知识竞赛,每班都有20名同学参加,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分,90分,80分,70分(90分及以上属于优秀),学校将七年一班和二班的成绩整理如下:(1)填写以下表格;班级平均数众数中位数优秀率七年一班分90分分七年二班92分分90分80%(2)结合以上统计量,你认为哪个班级的竞赛成绩更加优秀?请简述理由.18.(8分)为了解决杨树花絮污染环境的难题,某公司引进优秀专利品种,建立新树种实验基地,研究组在甲、乙两个实验基地同时播下新树种,同时随机各抽取20株树苗,记录下每株树苗的长度(单位:cm),进行整理、描述和分析(用x表示树苗长度,数据分成5组:A.20≤x<30;B.30≤x<40;C.40≤x <50;D.50≤x<60;E.x≥60,50cm及以上为优等),下面给出了部分信息:【数据收集】甲实验基地抽取的20株树苗的长度:28,29,32,34,38,40,42,45,46,51,51,52,54,55,55,55,55,57,60,61.乙实验基地抽取的20株树苗中,A、B、E三个等级的数据个数相同,C组的所有数据是:42,43,46,49,49.【数据整理】甲实验基地抽取的树苗长度统计表x频数频率A20.1B a0.15C40.2D90.45E20.1【数据分析】基地平均数众数中位数E组所占百分比甲47b5110%乙4756c m%根据以上信息,解答下列问题:(1)填空:a=,b=,c=,m=;(2)根据上述数据分析,你认为甲、乙两基地哪个基地的树苗好?请说明理由(写出一条理由即可);(3)请估计2000棵乙基地的树苗为优等的树苗有多少棵?19.(8分)争创全国文明城市,从我做起.某中学开设了文明礼仪校本课程,为了解学生的学习情况,学校组织七八年级学生进行文明礼仪知识测试,两个年级均有300名学生,从七八年级各随机抽取了10名学生的测试成绩,满分100分,整理分析如下:七年级:99 98 98 98 95 93 91 90 89 79八年级:99 99 99 91 96 90 93 87 91 85整理分析上面的数据,得到如下表格:平均数中位数众数方差统计量年级七年级9394a33.7八年级93b9923.4根据以上信息,解答下列问题.(1)填空:a=,b=;(2)根据统计结果,年级的成绩更整齐;(3)七年级甲同学和八年级乙同学成绩均为93分,根据上面统计情况估计同学的成绩在本年级的排名更靠前;(4)如果在收集七年级数据的过程中将抽取的“89”误写成了“79”,七年级数据的平均数、中位数、众数中发生变化的是;(5)若成绩不低于95分的可以获奖,估计两个年级获奖的共有人.20.(8分)中国共产主义青年团是中国共产党用来团结教育青年一代的群众组织,也是党联系青年的桥梁和纽带,2022年是共青团成立100周年,某校为了解学生对共青团的认识,组织七、八年资全体团员学生进行了“团史知识竞赛”,为了解竞赛成绩,抽样调查了七、八年级部分学生的分数,过程如下:【收集数据】从该校七、八年级学生中各随机抽取20名学生的分数,其中八年级学生的分数如下:75,90,55,60,85,85,95,100,80,85,80,85,90,75,65,60,80,95,70,75,【整理、过述数据】按如下表分数段整理、描述这两组样本数据:分数(分)x<6060≤x<7070≤x<8080≤x<9090≤x≤100七年级(人)23654八年级(人)1m475【分析数据】两组样本数据的平均数、中位数、众数如表所示:年级平均数中位数众数七年级77.57585八年级79.25b c根据以上提供的信息,回答下列问题:(1)填空:m=,b=,c=;(2)该校八年级学生有560人,假设全部参加此次竞赛,请估计八年级成绩超过平均数79.25分的人数;(3)在这次竞赛中,七八年级参加人数相同,七年级学生小明与八年级学生小亮的成绩都是75分,于是小明说:“我在年级的名次有可能高于小亮在年级里的名次”,你同意小明的说法吗?并说明理由.21.(10分)某学校从九年级学生中任意选取40人,随机分成甲、乙两个小组进行“引体向上”体能测试,根据测试成绩绘制出统计表和如图所示的统计图(成绩均为整数,满分为10分)甲组成绩统计表成绩/分78910人数/人1955(1)m=,甲组成绩的众数乙组成绩的众数(填“>”“<”或“=”);(2)求甲组的平均成绩;(3)这40个学生成绩的中位数是;(4)计算出甲组成绩的方差为0.81,乙组成绩的方差为0.75,则成绩更加稳定的是组(填“甲”或“乙”).22.(10分)为了解某校八年级男生在体能测试中引体向上项目的情况,随机抽查了部分男生引体向上项目的测试成绩,绘制如图统计图,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的男生人数为,图①中m的值为;本次调查获取的样本数据的平均数为,中位数为.(2)若规定引体向上6次及以上为该项目良好,根据样本数据,估计该校320名男生中该项目良好的人数.(3)根据良好人数,为了中招体育测试能有更多人得到高分,请你给该校男生提出一些相关建议(最少两条).23.(10分)为了解学生每天的睡眠情况,某初中学校从全校2400名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:7,9,9,8,10.5,8,10,9.5,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,8,9,7,9.5,8.5,9,7,9,9,8.5,7.5,8.5,9,8,7.5,9.5,10,9,8,9,9.5,8.5.记者:胡浩教育部印发《关于进一步加强中小学生睡眠管理工作的通知》,明确了中小学生必要睡眠时间,小学生每天睡眠时间应达到10h,初中生应达到9h,高中生应达到8h.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表组别睡眠时间分组人数(频数)一7≤t<87二8≤t<9a三9≤t<1018四10≤t<11b请根据以上信息,解答下列问题:(1)a=,b=,m=,n=;(2)抽取的这40名学生平均每天睡眠时间的中位数落在组;(填组别)(3)如果按照要求,学生平均每天的睡眼时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数;(4)请对该校学生“睡眠时间”的情况作出合理的评价.。
初中数学《八下》 第二十章 数据的分析-数据的集中趋势 考试练习题

初中数学《八下》第二十章数据的分析-数据的集中趋势考试练习题姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分评卷人得分1、某农业科技部门为了解甲、乙两种新品西瓜的品质(大小、甜度等),进行了抽样调查.在相同条件下,随机抽取了两种西瓜各7 份样品,对西瓜的品质进行评分(百分制),并对数据进行收集、整理,下面给出两种西瓜得分的统计图表.甲、乙两种西瓜得分表甲、乙两种西瓜得分统计表(1 )___________ ,___________ ;(2 )从方差的角度看, ___________ 种西瓜的得分较稳定(填“ 甲” 或“ 乙” );(3 )小明认为甲种西瓜的品质较好些,小军认为乙种西瓜的品质较好些.请结合统计图表中的信息分别写出他们的理由.知识点:数据的集中趋势【答案】(1 )a =88 ,b =90 ;(2 )乙;(3 )见解析【分析】(1 )根据中位数、众数的意义求解即可;(2 )根据数据大小波动情况,直观可得答案;(3 )从方差、中位数、众数的比较得出答案.【详解】解:(1 )甲品种西瓜测评得分从小到大排列处在中间位置的一个数是 88 ,所以中位数是 88 ,即a =88 ,将乙品种西瓜的测评得分出现次数最多的是90 分,因此众数是 90 ,即b =90 ,故答案为:a =88 ,b =90 ;(2 )由甲、乙两种西瓜的测评得分的大小波动情况,直观可得S 乙2<S 甲2,故答案为:乙;(3 )小明认为甲种西瓜的品质较好些,是因为甲的得分众数比乙的得分众数高;小军认为乙种西瓜的品质较好些,是因为乙的得分方差小和得分中位数比甲的高.【点睛】本题考查统计表,中位数、众数、平均数,理解中位数、众数、平均数的意义和计算方法是正确解答的前提.2、现有一组数据4 、 5 、 5 、 6 、 5 、 7 ,这组数据的众数是 ___ .知识点:数据的集中趋势【答案】5【分析】根据众数的意义求解即可.【详解】这组数据中出现次数最多的是5 ,共出现 3 次,因此众数是 5 ,故答案为: 5 .【点睛】本题考查的是众数:一组数中出现次数最多的数,熟练掌握众数的意义是解决本题的关键.3、一组数据:5,7,10,5,7,5,6. 这组数据的中位数和众数()A . 7 和 10B . 7 和 5C . 7 和 6D . 6 和 5知识点:数据的集中趋势【答案】D【分析】将这组数据排序后处于中间位置的数就是这组数据的中位数,出现次数最多的数为这组数据的众数.【详解】将这组数据重新排列为5 、 5 、 5 、 6 、 7 、 7 、 10 ,所以这组数据的众数为5 、中位数为 6 ,故选D .【点睛】本题考查了中位数,众数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.4、在5 月 31 日世界禁烟日到来之际,某校为了提高禁烟意识,在七、八年级举办了“ 关爱健康,远离香烟” 的知识竞赛,两个年级分别有 500 人为了了解本次竞赛成绩情况,现从中各随机抽取了部分同学的测试成绩x(得分均为整数,满分为100 分)进行调查分析,过程如下:第一步:收集数据七年级:68 88 100 100 79 94 89 85 100 88 81 69 98 7977 94 96 75 92 67八年级:69 97 78 89 98 100 99 100 95 99 99 69 75 1 00 99 78 79 87 85 79第二步:整理、描述数据第三步:分析数据第四步:应用数据(1 )直接写出a的值和八年级抽取了多少个同学的成绩进行分析(2 )在此次测试中,七年级甲学生的成绩为 89 分,八年级乙学生成绩为 90 分,甲、乙两人的成绩在各自年级中哪一个更靠前?请说明理由.(3 )若成绩在 90 分至 99 分之间(含 90 分, 99 分)的学生为二等奖,请估计七、八年级一共获得二等奖的学生总人数.知识点:数据的集中趋势【答案】(1 )a=99 ,八年级抽取了 20 个同学的成绩进行分析;(2 )甲的成绩在自己年级中更靠前;(3 )七、八年级一共获得二等奖的学生总人数为 300 人.【分析】(1 )根据众数的定义分别进行解答即可;(2 )把甲、乙两人的成绩与各自年级的中位数比较即可得到结论;(3 )七、八年级的总人数乘以 90 分至 99 分之间(含 90 分, 99 分)的学生数所占的百分比即可的结论.【详解】(1 )a=99 ,八年级抽取了 20 个同学的成绩进行分析;(2 )∵七年级同学的成绩的中位数是 88 ,八年级同学的成绩的中位数是 92 ,∴甲的成绩在自己年级中更靠前;(3 ) 1000×=300 人,答:七、八年级一共获得二等奖的学生总人数为300 人【点睛】本题主要考查了平均数、众数、中位数在实际问题中的正确应用,熟练掌握定义和计算公式是解题的关键.5、北京市6 月某日 10 个区县的最高气温如下表: ( 单位:℃)则这10 个区县该日最高气温的中位数是() .A . 32B . 31C . 30D . 29知识点:数据的集中趋势【答案】A【详解】∵从小到大排列后,排在中间位置的两个数都是 32 ,∴中位数是 32.故选A.6、某小组个人在一次数学小测试中,有个人的平均成绩为,其余个人的平均成绩为,则这个小组的本次测试的平均成绩为 ________.知识点:数据的集中趋势【答案】89【分析】先求出总成绩,再运用求平均数公式即可求出平均成绩.【详解】∵有 3 个人的平均成绩为 96 ,其余 7 个人的平均成绩为 86 ,∴这个小组的本次测试的总成绩为: 3×96+7×86=890 ,∴这个小组的本次测试的平均成绩为: 890÷10=89 .【点睛】本题主要考查的是平均数的求法,属于基础题型.熟记计算公式是解决本题的关键.7、甲、乙、丙、丁四人10 次随堂测验的成绩如图所示,从图中可以看出这 10 次测验平均成绩较高且较稳定的是()A .甲B .乙C .丙D .丁知识点:数据的集中趋势【答案】C【分析】利用平均数和方差的意义进行判断.【详解】解:由折线统计图得:丙、丁的成绩在92 附近波动,甲、乙的成绩在 91 附近波动,∴丙、丁的平均成绩高于甲、乙,由折线统计图得:丙成绩的波动幅度小于丁成绩的波动幅度,∴这四人中丙的平均成绩好又发挥稳定,故选:C .【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,与平均值的离散程度越差,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了折线统计图.8、某校开展了以“爱我家乡”为主题的艺术活动,从九年级 5 个班收集到的艺术作品数量(单位:件)分别为 48 , 50 , 47 , 44 , 50 ,则这组数据的中位数是()A . 44B . 47C . 48D . 50知识点:数据的集中趋势【答案】C【分析】根据中位数的意义,排序后处在中间位置的数即可.【详解】解:将这五个数据从小到大排列后处在第3 位的数是 48 ,因此中位数是 48 ;故选:C.【点睛】本题考查中位数的意义,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数是中位数.9、在庆祝中国共产党成立100 周年的“红色记忆”校园歌咏比赛中, 15 个参赛班级按照成绩(成绩各不相同)取前 7 名进入决赛,小红知道了自己班级的比赛成绩,如果要判断自己的班级能否进入决赛,还需要知道这 15 个参赛班级成绩的()A .平均数B .中位数C .众数D .方差知识点:数据的集中趋势【答案】B【分析】由于比赛取前7 名参加决赛,共有 15 名选手参加,根据中位数的意义分析即可.【详解】解:15 个不同的成绩按从小到大排序后,中位数之后的共有 7 个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选:B .【点睛】本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.10、已知一组数据,,的平均数为5 ,方差为 4 ,那么数据,,的平均数和方差分别为__ .知识点:数据的集中趋势【答案】3 , 4【分析】根据平均数,方差定义进行解答即可.【详解】解:数据,,的平均数为5 ,,,数据,,的平均数是3 ;数据,,的方差为4 ,,,,的方差.故答案为:3 , 4 .【点睛】本题考查了平均数和方差,解题的关键是灵活运用平均数和方差.11、为了纪念建党100 周年,学校组织了“建党 100 周年党史知识竞赛”,张同学根据评分为小李的分数制作了如下表格:如果去掉一个最高分和最低分,那么下列哪个数据不会发生变化()A .众数B .平均数C .中位数D .方差知识点:数据的集中趋势【答案】C【分析】根据中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案.【详解】解:如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是中位数,故选C .【点睛】本题主要考查了中位数,解决本题的关键是掌握中位数定义.12、已知一组数据,,,,的平均数是4 ,方差是 5 ,将这组数据中的每个数据都减去 2 ,得到一组新数据,则这组新数据的方差是 ______ .知识点:数据的集中趋势【答案】5【分析】根据一组数据的平均数与方差的定义和性质即可求解.【详解】解:由题意得:数据,,,,的平均数是4 ,方差是 5 ,新数据是,,,,,所以新数据的平均数是4-2=2 ,方差是:==5 .故答案为:5 .【点睛】本题考查了平均数和方差,解题的关键是掌握平均数和方差的变换特点.13、如图,小强同学根据乐清市某天上午和下午各四个整点时间的气温绘制成的折线统计图.(1 )根据图中信息分别求出上午和下午四个整点时间的平均气温.(2 )请你根据所学统计学知识,从四个整点时间温度猜测,这天上午和下午的气温哪个更稳定,并说明理由.知识点:数据的集中趋势【答案】(1 ) 24 , 24 ;(2 )上午的气温更加稳定,理由见解析.【分析】(1 )根据平均数的定义进行求解即可;(2 )分别求出上午和下午四个整点时间的方差然后进行比较即可.【详解】解:(1 )∴∴上午的气温更加稳定.【点睛】本题主要考查了平均数与方差,解题的关键在于能够熟练掌握相关知识进行求解.14、车间有22 名工人,某一天他们生产的零件个数统计如下:(1 )求这一天 22 名工人生产零件的平均个数.(2 )为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,请你确定这个“定额”,并说明理由.知识点:数据的集中趋势【答案】(1 ) 13 个;(2 )如果我是管理者,会将 13 个作为“定额”,因为平均数、众数、中位数都是 13 ,选 13 为定额,确保了大多数人能完成定额,有 7 人超产有奖,能起到较好的激励作用.(表达合理即可)【分析】(1 )根据平均数的计算方法进行计算即可;(2 )求出中位数、众数、平均数,从大多数员工能够完成任务为标准“定额”.【详解】解:(1 )(个)∴这一天 22 名工人生产零件的平均个数为 13 个.(2 )如果我是管理者,会将 13 个作为“定额”.因为平均数、众数、中位数都是13 ,选 13 为定额,确保了大多数人能完成定额,有 7 人超产有奖,能起到较好的激励作用.(表达合理即可)【点睛】本题考查平均数、中位数、众数,理解中位数、众数、平均数的意义和计算方法是正确解答的关键.15、开学前,根据学校防疫要求,小芸同学连续14 天进行了体温测量,结果统计如下表:这14 天中,小芸体温的众数是 ____________.知识点:数据的集中趋势【答案】36.6【分析】根据众数的定义就可解决问题.【详解】根据表格数据可知众数是36.6℃,故答案为:36.6 .【点睛】本题主要考查了众数的求解,正确理解众数的意义是解决本题的关键.16、东方红学校举行“学党史,听党话,跟党走”讲故事比赛,七位评委对其中一位选手的评分分别为: 85 , 87 , 89 , 91 , 85 , 92 , 90 .则这组数据的中位数为 ______ .知识点:数据的集中趋势【答案】89【分析】根据中位数的定义即可得.解:将这组数据按从小到大进行排序为,则中位数为89 ,故答案为:89 .【点睛】本题考查了中位数,熟记定义是解题关键.17、“最美鄂州,从我做起”.“五四”青年节当天,马桥村青年志愿小组到胡林社区参加美化社区活动. 6 名志愿者参加劳动的时间(单位:小时)分别为: 3 , 2 , 2 , 3 , 1 , 2 ,这组数据的中位数是 ______ .知识点:数据的集中趋势【答案】2【分析】根据中位数的求解方法求解即可.【详解】解:将所给6 个数据从小到大排列: 1 , 2 , 2 , 2 , 3 , 3 ,则中位数为=2 ,故答案为:2 .【点睛】本题考查中位数,熟练掌握中位数的求解方法是解答的关键.18、在2021 年初中毕业生体育测试中,某校随机抽取了 10 名男生的引体向上成绩,将这组数据整理后制成如下统计表:关于这组数据的结论不正确的是()A .中位数是 10.5B .平均数是 10.3C .众数是 10D .方差是 0.81知识点:数据的集中趋势【答案】A【分析】先将数据按照从小到大排列,再依次按照中位数的定义、平均数计算公式、众数定义、方差计算公式依次进行判断即可.【详解】解:将该组数据从小到大排列依次为:9 , 9 , 10 , 10 , 10 , 10 , 11 , 11 , 11 , 12 ;位于最中间的两个数是10 , 10 ,它们的平均数是 10 ,所以该组数据中位数是10 ,故 A 选项符合题意;该组数据平均数为:,故B 选项不符合题意;该组数据10 出现次数最多,因此众数是 10 ,故 C 选项不符合题意;该组数据方差为:,故D 选项不符合题意;故选:A .【点睛】本题考查了中位数和众数的定义以及方差和平均数的计算公式,解决本题的关键是牢记相关概念与公式等,本题的易错点是容易将表格中的数据混淆,同时计算容易出现错误,因此需要学生有一定的计算能力.19、某学校八年级(2 )班有 20 名学生参加学校举行的“学党史、看红书”知识竞赛,成绩统计如图.这个班参赛学生的平均成绩是 ___ .知识点:数据的集中趋势【答案】95.5【分析】利用加权平均数的定义计算即可.【详解】解:由题意可得:=95.5 ,故答案为:95.5 .【点睛】本题考查了加权平均数的求法,解题的关键是结合统计图,掌握运算法则.20、如图所示是某校初中数学兴趣小组年龄结构条形统计图,该小组年龄最小为11 岁,最大为 15 岁,根据统计图所提供的数据,该小组组员年龄的中位数为 ________ 岁.知识点:数据的集中趋势【答案】13【分析】直接根据中位数定义求解即可.【详解】解:根据题意排列得:11 , 11 , 12 , 12 , 12 , 13 , 13 ,13 , 13 , 13 , 14 , 14 , 14 , 14 , 15 , 15 , 15 , 15 ,个数为偶数,中间的两个数为:13 , 13 ,∴中位数为 13 ,故答案为:13【点睛】本题主要考查中位数的定义,将一组数据按照从小到大( 或从大到小 ) 的顺序排列,如果这组数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.。
人教版初中数学八年级数学下册第五单元《数据的分析》检测卷(有答案解析)

一、选择题1.某校规定学生的学期学业成绩由三部分组成:平时成绩占20%,期中成绩占30%,期末成绩占50%,小颖的平时、期中、期末成绩分别为85分、90分、92分,则她本学期的学业成绩为()A.85B.90C.92D.892.八年级某班五个合作学习小组人数如下:5,7,6,x,7.已知这组数据的平均数是6,则x的值为()A.7 B.6 C.5 D.43.小亮同学想知道自己的体重在班级中是否属于中等水平,则需了解全班同学体重的()A.平均数B.中位数C.众数D.极差4.甲、乙两班举行电脑汉字输入比赛,参赛学生每分输入汉字的个数统计结果如下表:某同学分析上表后得到如下结论:①甲、乙两班学生平均成绩相同;为优秀)②乙班优秀的人数多于甲班优秀的人数(每分输入汉字个数150③甲班成绩的波动比乙班大.上述结论中正确的是()A.①②③B.①②C.①③D.②③5.某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选()A.丁B.丙C.乙D.甲6.一组数据3,4,6,8,8,9的中位数和众数分别是()A .7,8B .7,8,5C .5,8D .7,5,7 7.样本数据4,m ,5,n ,9的平均数是6,众数是9,则这组数据的中位数是( ) A .3B .4C .5D .98.已知一组数据a ,b ,c 的平均数为5,方差为4,那么数据22a -,22b -,22c -的平均数和方差分别是( ) A .8,16 B .10,6C .3,2D .8,89.若a 、b 、c 这三个数的平均数为2,方差为S 2,则a+2,b+2,c+2的平均数和方差分别是( ) A .2,S 2B .4,S 2C .2,S 2+2D .4,S 2+410.某校八年级有八个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是( )A .将八个班级各自的平均成绩之和除以8,就得到全年级学生的平均成绩B .全年级学生的平均成绩一定在这八个班级各自的平均成绩的最小值与最大值之间C .这八个班级各自的平均成绩的中位数就是全年级学生的平均成绩D .这八个班级各自的平均成绩的众数不可能是全年级学生的平均成绩 11.八(1)班45名同学一天的生活费用统计如下表: 生活费(元) 1015 2025 30学生人数(人)3915126A .15B .20C .21D .2512.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,值周班长小兵每周对各小组合作学习的情况进行综合评分,下表是其中一周的评分结果“分值”这组数据的中位数和众数分别是( ) A .89,90B .90,90C .88,95D .90,95二、填空题13.已知一组数据a ,b ,c 的方差为2,那么数据a +3,b +3,c +3的方差是_____. 14.一组数据1x ,2x ,3x ,4x ,5x 的平均数是5,方差是3,则143x -,243x -,343x -,443x -,543x -的平均数是________,方差是________.15.在一次数学测验中,甲组4名同学的平均成绩是70分,乙组6名同学的平均成绩是80分,则这10名同学的平均成绩是______________.16.一组数据:1,2,x ,y ,4,6,其中x <y ,中位数是2.5,众数是2.则这组数据的平均数是______;方差是______.17.某组数据的方差计算公式为S2=18[(x1﹣2)2+(x2﹣2)2+…+(x8﹣2)2],则该组数据的样本容量是_____,该组数据的平均数是_____.18.李老师为了了解学生的数学周考成绩,在班级随机抽查了10名学生的成绩,其统计数据如下表:则这10名学生的数学周考成绩的中位数是________分.19.设甲组数据:6,6,6,6,的方差为2s甲,乙组数据:1,1,2的方差为2s乙,则2s甲与2s乙的大小关系是________.20.已知5个数据的平均数是7,另外还有3个数据的平均数是k,则这 8个数据的平均数是_______(用关于 k 的代数式表示).参考答案三、解答题21.学校广播站要招聘一名播音员,考查形象、知识面、普通话三个项目(每个项目按百分制计分).若按形象占10%,知识面占40%,普通话占50%计算加权平均数,作为最后评定的总成绩.李颖和张明两位同学的各项成绩如表所示:(2)若张明同学要在总成绩上超过李颖同学,求x的范围.22.某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:平均数 方差 中位数 甲 7 ① . 7 乙② .5.4③ .(1)请将右上表补充完整:(参考公式:方差2222121[()()()]n S x x x x x x n=-+-++-)(2)请从下列三个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看,__________的成绩好些;②从平均数和中位数相结合看,___________的成绩好些; (3)若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.23.在全民读书月活动中,某校随机调查了部分同学,本学期计划购买课外书的费用情况,并将结果绘制成如图所示的统计图.根据相关信息,解答下列问题. (1)这次调查获取的样本容量是 .(直接写出结果)(2)这次调查获取的样本数据的众数是 ,中位数是 .(直接写出结果) (3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.24.在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是________,这组数据的众数为________元;(2)求这组数据的平均数;(3)该校共有600学生参与捐款,请你估计该校学生的捐款总数.25.疫情期间福州一中初中部举行了“宅家运动会”.该学校七、八年级各有300名学生参加了这次“宅家运动会”,现从七、八年级各随机抽取20名学生宅家运动会的成绩进行抽样调查.收集数据如下:74979672989972737674七年级:7469768978749997989976889689789489949550八年级:89686589778689889291整理数据如下:x90100xx8089x60695059x7079七年级01101a八年级12386分析数据如下:年级平均数中位数众数方差七年级84.27774138.56八年级84b89129.7根据以上信息,回答下列问题:(1)a=___________,b=___________;(2)你认为哪个年级“宅家运动会”的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合理性)(3)学校对“宅家运动会”成绩不低于80分的学生颁发优胜奖,请你估计学校七、八年级所有学生中获得优胜奖的大约有___________人.26.今年5月12日是我国第11个全国防灾减灾日,重庆某中学为普及推广全民防灾减灾知识和避灾自救技能,开展了“提高灾害防治能力,构筑生命安全防线”知识竞赛活动.初一、初二年级各500人,为了调查竞赛情况,学校进行了抽样调查,过程如下,请根据表格回答问题.收集数据:从初一、初二年级各抽取20名同学的测试成绩(单位:分),记录如下:初一:68、79、100、98、98、86、88、99、100、93、90、100、80、76、84、98、99、86、98、90初二:92、89、100、99、98、94、100、62、100、86、75、98、89、100、100、68、79、100、92、89整理数据:表一分析数据:表二得出结论:(1)在表中:m=_______,n=_______,x=_______,y=_______;(2)得分情况较稳定的是___________(填初一或初二);(3)估计该校初一、初二年级学生本次测试成绩中可以得满分的人数共有多少人?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据加权平均数的计算方法可以得解.【详解】解:由题意得,小颖本学期的学业成绩为:⨯+⨯+⨯=++=(分),8520%9030%9250%17274690故选B.【点睛】本题考查加权平均数的计算,熟练掌握加权平均法的计算方法是解题关键.2.C解析:C【分析】根据平均数的计算公式列出算式,再进行计算即可得出x的值.【详解】解:∵5,7,6,x,7的平均数是6,∴1(5+7+6+x+7)=6,5解得:x=5;故选:C.【点睛】本题考查了算术平均数的知识,解题的关键是根据算术平均数求出数据总和.3.B解析:B【分析】根据中位数的定义进行解答即可.【详解】∵小亮同学想知道自己的体重在班级中是否属于中等水平,∴需了解全班同学体重数据的中间的数据,即中位数,故选:B.【点睛】本题主要考查统计的有关知识,中位数是一组数据中,最中间的数据;对统计量进行合理的选择和恰当的运用是解题关键.4.A解析:A【分析】平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小.【详解】从表中可知,平均字数都是135,①正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,②正确;甲班的方差大于乙班的,又说明甲班的波动情况大,所以③也正确.①②③都正确.故选:A.【点睛】此题考查平均数,中位数,方差的意义.解题关键在于掌握平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.5.B解析:B【分析】先比较平均数得到甲和丙成绩较好,然后比较方差得到丙的状态稳定,即可决定选丙去参赛.【详解】∵甲、丙的平均数比乙、丁大,∴甲和丙成绩较好,∵丙的方差比甲的小,∴丙的成绩比较稳定,∴丙的成绩较好且状态稳定,应选的是丙,故选:B.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.6.A解析:A【分析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,据此可得答案.【详解】解:将数据从小到大排列为3、4、6、8、8、9,则这组数据的中位数为(6+8)÷2=7,众数为8.故选:A.【点睛】本题考查众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.7.C解析:C 【分析】先判断出m ,n 中至少有一个是9,再用平均数求出12m n +=,即可求出这两个数,由中位数的定义排序后求中位数即可. 【详解】解:∵一组数据4,m ,5,n ,9的众数为9, ∴m ,n 中至少有一个是9,∵一组数据4,m ,5,n ,9的平均数为6,45965m n ++++=∴12m n +=∴m ,n 中一个是9,另一个是3 ∴这组数按从小到大排列为:3,4,5,9,9. ∴这组数的中位数为:5. 故选:C. 【点睛】本题考查了众数、平均数和中位数的知识.能结合平均数和众数的定义对这组数据正确分析是解决此题的关键.8.A解析:A 【分析】如果一组的数据的每一个数都扩大或缩小相同的倍数,则平均数也扩大或缩小相同的倍数,方差则扩大或缩小平方倍;如果一组的数据的每一个数都增加或减少相同的数,则平均数也增加或减少相同的数,方差不变. 【详解】根据题意可知:这组数据的平均数为:2×5-2=8;方差为:24216⨯=. 故选:A 【点睛】本题主要考查的是数据的平均数和方差的变化规律,属于中等难度题型.解决这个问题的关键就是要明确变化规律,根据规律进行解答.9.B解析:B 【分析】方差是用来衡量一组数据波动大小的量,每个数都加了2,所以波动不会变,方差不变,平均数增加2. 【详解】由题意知,原来的平均数为2,每个数据都加上2,则平均数变为4;原来的方差221=(2)(2)(2)3S a b c ⎡⎤---⎣⎦22++现在的方差:222222111=(24)(24)(24)=(2)(2)(2)33S a b c a b c S ⎡⎤⎡⎤+-+-+-=---=⎣⎦⎣⎦22++++ 方差不变. 故选:B. 【点睛】本题考查了方差和平均数,当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.10.B解析:B 【分析】A 、由于这八个班的人数不一定相等,故全年级学生的平均成绩应等于所有学生成绩的和除以学生人数;B 、由于全年级学生的平均成绩等于所有学生成绩的和除以学生人数,故全年级学生的平均成绩一定在这八个平均成绩的最小值与最大值之间;C 、由于这八个班的人数不一定相等,故这10个平均成绩的中位数不一定是全年级学生的平均成绩;D 、众数是一组数据中出现次数最多的数,能反映数据的集中程度,平均数也能反映数据的集中程度,是有可能相等的. 【详解】A 、全年级学生的平均成绩应等于所有学生成绩的和除以学生人数,而这八个班的人数不一定相等,故错误;B 、由于全年级学生的平均成绩等于所有学生成绩的和除以学生人数,故全年级学生的平均成绩一定在这八个平均成绩的最小值与最大值之间,故正确;C 、中位数不一定与平均数相等,故错误;D 、众数与平均数有可能相等,故错误. 故选B . 【点睛】本题考查了平均数、中位数、众数的关系,它们有可能相等,也可能不相等.11.C解析:C 【分析】根据加权平均数公式列出算式求解即可. 【详解】解:这45名同学一天的生活费用的平均数=103159201525123062145⨯+⨯+⨯+⨯+⨯=.故答案为C. 【点睛】本题考查了加权平均数的计算,读懂题意,正确的运用公式是解题的关键12.B解析:B【解析】【分析】根据中位数和众数的定义找出从小到大排列后最中间的数和出现次数最多的数即可.【详解】把这组数据从小到大排列:84,89,90,90,90,91,96,最中间的数是90,则中位数是90;90出现了3次,出现的次数最多,则众数是90;故选B .【点睛】此题考查了中位数和众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.二、填空题13.2【分析】根据数据abc 的方差为2由方差为2可得出数据a+3b+3c+3的方差【详解】解:∵数据abc 的方差为2设平均数为m 则则数据a+3b+3c+3的平均数是m+3∴方差为:故答案为:2【点睛】本解析:2【分析】根据数据a ,b ,c 的方差为2,由方差为2可得出数据a+3,b+3,c+3的方差.【详解】解:∵数据a ,b ,c 的方差为2,设平均数为m , 则2222()()()23a mb mc m S -+-+-==, 则数据a +3,b +3,c +3的平均数是m+3, ∴方差为:2222(33)(33)(33)3a m b m c m S +--++--++--= 222()()()23a mb mc m -+-+-==, 故答案为:2.【点睛】本题考查的是方差,熟记方差的定义是解答此题的关键.14.1748【分析】根据平均数和方差公式的变形即可得到结果【详解】一组数据x1x2x3x4x5的平均数是5则4x1-34x2-34x3-34x4-34x5-3的平均数是4(x1+x2+x3+x4+x5)解析:17 48【分析】根据平均数和方差公式的变形即可得到结果.【详解】一组数据x1,x2,x3,x4,x5的平均数是5,则4x1-3,4x2-3,4x3-3,4x4-3,4x5-3的平均数是15[4(x1+x2+x3+x4+x5)-15]=17,∵新数据是原数据的4倍减3;∴方差变为原来数据的16倍,即48.故答案为:17;48.【点睛】本题考查方差的计算公式的运用:一般地设有n个数据,x1,x2,…x n,若每个数据都放大或缩小相同的倍数后再同加或同减去一个数,其平均数也有相对应的变化,方差则变为这个倍数的平方倍.15.76分;【解析】【分析】根据加权平均数的计算方法:先求出这10名同学的总成绩再除以10即可得出答案【详解】这10名同学的平均成绩为:=76(分)故答案为:76分【点睛】本题考查的是加权平均数的求法本解析:76分;【解析】【分析】根据加权平均数的计算方法:先求出这10名同学的总成绩,再除以10,即可得出答案.【详解】这10名同学的平均成绩为:7048106⨯+⨯=76(分),故答案为:76分.【点睛】本题考查的是加权平均数的求法.本题易出现的错误是对加权平均数的理解不正确,而求70、80这两个数的平均数.16.3【解析】【分析】由中位数及众数的定义和给定的条件求出xy的值然后根据平均数的定义求出平均数即可;利用方差公式计算即可求出方差【详解】由一组数据12xy46的中位数是25众数是2则有x=2y=3∴这解析:3 8 3【解析】【分析】由中位数及众数的定义和给定的条件求出x,y的值,然后根据平均数的定义求出平均数即可;利用方差公式计算即可求出方差.【详解】由一组数据1,2,x,y,4,6的中位数是2.5,众数是2,则有x=2,y=3,,∴这组数据的平均数为:12234636+++++=. ∴这组数据的平均数为3; 这组数据的方差为:22222218(13)(23)(23)(33)(43)(63)63⎡⎤-+-+-+-+-+-=⎣⎦. ∴这组数据的方差为83. 故答案为3;83. 【点睛】本题考查数据的平均数、中数、方差,掌握平均数、中数、方差的的定义是解题的关键. 17.82【分析】样本方差S2=(x1-)2+(x2-)2+…+(xn-)2其中n 是这个样本的容量是样本的平均数利用此公式直接求解【详解】由于S2=(x1-2)2+(x2-2)2+…+(x8-2)2所以该解析:8 2【分析】样本方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中n 是这个样本的容量,x 是样本的平均数.利用此公式直接求解. 【详解】由于S 2=18[(x 1-2)2+(x 2-2)2+…+(x 8-2)2], 所以该组数据的样本容量是8,该组数据的平均数是2.故答案为8,2.【点睛】此题考查方差的有关计算,解答此题的关键是熟练记住公式:S 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]中各个字母所代表的含义.18.134【解析】【分析】根据表格中的数据可以求得这10名学生的数学周考成绩的中位数【详解】由表格可得这10名学生的数学周考成绩的中位数是:(132+136)÷2=134(分)故答案为:134【点睛】本解析:134【解析】【分析】根据表格中的数据可以求得这10名学生的数学周考成绩的中位数.【详解】由表格可得,这10名学生的数学周考成绩的中位数是:(132+136)÷2=134(分),故答案为:134.【点睛】本题考查中位数,解答本题的关键是明确中位数的含义,会求一组数据的中位数. 19.与【分析】根据方差的意义进行判断【详解】解:因为甲组的数据都相等没有波动而乙组数有波动所以s 甲2<s 乙2故答案为s 甲2<s 乙2【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量方差越大则平 解析:2s 甲与2s 乙【分析】根据方差的意义进行判断.【详解】解:因为甲组的数据都相等,没有波动,而乙组数有波动,所以s 甲2<s 乙2.故答案为s 甲2<s 乙2.【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好. 20.【解析】【详解】根据平均数的概念和公式可知5个数据的和为5×7=353个数据的和为3k 因此这8个数的和为35+3k 因此其平均数为(35+3k )÷8即故答案为: 解析:35+38k 【解析】【详解】根据平均数的概念和公式,可知5个数据的和为5×7=35,3个数据的和为3k ,因此这8个数的和为35+3k ,因此其平均数为(35+3k )÷8,即35+38k . 故答案为:35+38k . 三、解答题21.(1)83;(2)90<x ≤100【分析】(1)按照各项目所占比求得总成绩;(2)各项目所占比求得总成绩大于83分即可,列出不等式求解.【详解】(1)70×10%+80×40%+88×50%=83(分);(2)80×10%+75×40%+50%•x >83,∴x >90.∵每个项目按百分制计分∴90<x≤100∴李颖同学的总成绩是83分,张明同学要在总成绩上超过李颖同学,则他的普通话成绩应90<x≤100.【点睛】本题综合考查平均数的运用.解题的关键是正确理解题目的含义.22.(1)①1.2;②7;③7.5;(2)①甲;②乙;(3)乙,理由见解析【分析】(1)根据方差公式直接计算即可得出甲的方差,然后根据折线图信息进一步分析即可求出乙的平均数以及中位数;(2)①甲乙平均数相同,而甲的方差要小,所以甲的成绩更加稳定,从而得出甲的成绩好一些;②甲乙平均数相同,而乙的中位数较大,即乙的成绩的中间量较大,所以得出乙的成绩好一些;(3)根据甲乙二人成绩的相关数据结合实际进一步分析比较即可.【详解】(1)①甲的方差为:2222221[(97)(57)4(77)2(87)2(67)] 1.210S =-+-+⨯-+⨯-+⨯-=, ②乙的平均数为:()24687789910107+++++++++÷=,③乙的中位数为:()7827.5+÷=,故答案为:①1.2;②7;③7.5;(2)①甲乙平均数相同,而甲的方差要小,所以甲的成绩更加稳定,从而得出甲的成绩好一些;②甲乙平均数相同,而乙的中位数较大,即乙的成绩的中间量较大,所以得出乙的成绩好一些;故答案为:①甲;②乙;(3)选乙,理由如下:综合看,甲发挥更稳定,但射击精准度差;乙发挥虽然不稳定,但击中高靶环次数更多,成绩逐步上升,提高潜力大,更具有培养价值,所以应选乙.【点睛】本题考查了折线统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,折线统计图能清楚地看出数据的变化情况.23.(1)40;(2)30,50;(3)50500元【分析】(1)根据条形统计图中的数据可以求得这次调查获取的样本容量;(2)根据条形统计图中的数据可以得到这次调查获取的样本数据的众数和中位数;(3)根据条形统计图中的数据可以得到该校本学期计划购买课外书的总花费.【详解】解:(1)样本容量是:6+12+10+8+4=40,(2)由统计图可得,这次调查获取的样本数据的众数是30,中位数是50;(3)2063012501080810046121084⨯+⨯+⨯+⨯+⨯++++×1000=50500(元), 答:该校本学期计划购买课外书的总花费是50500元.故答案为(1)40;(2)30,50;(3)50500元.【点睛】 本题考查众数、中位数、加权平均数、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.24.(1)30,10;(2)平均数为12元;(3)学生的捐款总数为7200元.【分析】(1)由题意得出本次调查的样本容量是6118530+++=,由众数的定义即可得出结果;(2)由加权平均数公式即可得出结果;(3)由总人数乘以平均数即可得出答案.【详解】(1)本次调查的样本容量是6118530+++=,这组数据的众数为10元;故答案为30,10;(2)这组数据的平均数为6511108155201230⨯+⨯+⨯+⨯=(元); (3)估计该校学生的捐款总数为600127200⨯=(元).【点睛】此题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.本题也考查了平均数、中位数、众数的定义以及利用样本估计总体的思想.25.(1) 8a =,89=b ;(2) 八年级成绩较好,理由①:八年级成绩的众数、中位数比七年级成绩相应的众数、中位数都要大,说明八年级成绩的集中趋势要高;理由②:方差八年级较小,说明八年级的成绩比较稳定;(3) 345(人).【分析】(1)从调查的7年级的总人数20人中减去前几组的人数即可;将8年级20名学生的成绩排序后找到最中间的第10个和第11个数的平均是即可求出中位数;(2)从中位数、众数、方差等方面进行分析即可;(3)用各个年级的总人数乘以样本中大于等于80分所占的百分比即可.【详解】解:(1)由题意有:2011018=---=a将8年级的20名学生成绩排序后最中间两个数据为:89和89,故中位数为89; 故答案为:8a =,89=b .(2) 八年级成绩较好,八年级成绩的众数、中位数比七年级成绩相应的众数、中位数都要大,说明八年级成绩的集中趋势要高,方差八年级较小,说明八年级的成绩比较稳定;(3)七年级优胜奖所占的比例为:1+89=2020, 故其300人中能获得优胜奖的有:9300=13520⨯(人), 八年级优胜奖所占的比例为:6+87=2010, 故其300人中能获得优胜奖的有:7300=21010⨯(人), ∴所有能获得优胜奖的学生人数为:135+210=345(人).故答案为:345(人).【点睛】 本题考查频数分布表、众数、中位数、平均数、方差的意义及计算方法,明确各自的意义和计算方法是解决问题的前提.26.(1)2,5,93,98;(2)初一;(3)225【分析】(1)根据给出的初一20名同学测试成绩,成绩在7080x ≤<范围内的共有2名,可知m 值,成绩在8090x ≤<范围内的有5名,可得n 值,再根据中位数、众数的定义即可得出x 、y ;(2)判断哪个年级得分情况较稳定,根据方差的意义即可得出答案;(3)先求出各年级满分的人数所占的百分比,用该校各年级的总人数分别乘以得满分的人数所占的百分比,即可得出答案.【详解】(1)根据给出的数据可得:∵成绩在7080x ≤<范围内的共有2名,∴m=2∵成绩在8090x ≤<范围内的有5名,∴n=5把初二成绩从小到大排列,则中位数x=92942+=93, ∵初一成绩中出现次数最多的是98∴y=98;故答案为:2,5,93,98;(2)∵根据表二可得初一的方差是84.75,初二的方差是123.05∴初一的方差小于初二的方差∴得分情况较稳定的是初一故答案为:初一(3)根据20名初一同学测试成绩,取得100分的同学有3个,占320根据20名初二同学测试成绩,取得100分的同学有6个,占6 20则该校初一、初二年级学生本次测试成绩中可以得满分的人数共有:500×320+500×620=225(人)该校初一、初二年级学生本次测试成绩中可以得满分的人数共有225人.故答案为:225【点睛】本题考查了中位数、众数的定义,已知一组数求中位数和众数;考查了方差的意义,在考虑稳定性时,利用方差来判断;会用样本估算总体.。
人教版初中数学八年级数学下册第五单元《数据的分析》测试题(包含答案解析)
一、选择题1.为评估一种农作物的种植效果,选了8块地作试验田,这8块地的亩产量(单位:kg )分别为1x ,2x ,…,8x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A .1x ,2x ,…,8x 的平均数B .1x ,2x ,…,8x 的方差C .1x ,2x ,…,8x 的中位数D .1x ,2x ,…,8x 的众数2.小王在清点本班为偏远贫困地区的捐款时发现,全班同学捐款的钞票情况如下:100元的3 张,50元的9张,10元的23张,5元的10张.在这些不同面额的钞票中,众数是( )A .10B .23C .50D .1003.小亮同学想知道自己的体重在班级中是否属于中等水平,则需了解全班同学体重的( ) A .平均数B .中位数C .众数D .极差4.某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是( ) A .88.5 B .86.5 C .90 D .90.5 5.若一组数据2468x ,,,,的方差比另一组数据5791113,,,,的方差大,则 x 的值可以为( )A .12B .10C .2D .06.给出下列命题:①三角形的三条高相交于一点;②如果一组数据中有一个数据变动,那么它的平均数、众数、中位数都随之变动; ③如果不等式()33m x m ->-的解集为1x <,那么3m <;④如果三角形的一个外角等于与它相邻的一个内角则这个三角形是直角三角形; 其中正确的命题有( ) A .1个 B .2个 C .3个 D .4个 7.一组数据,6、4、a 、3、2的平均数是5,这组数据的方差为( )A .8B .5C .6D .38.今年上半年,我市某俱乐部举行山地越野车大赛,其中8名选手某项得分如下表: 得分 82 85 88 90 人数1232则这8名选手得分的平均数是( ) A .88B .87C .86D .859.有一组数据:1,1,1,1,m .若这组数据的方差是0,则m 为( )A .4-B .1-C .0D .110.某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为( ) A .40,37B .40,39C .39,40D .40,3811.测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时出现了一处错误:将最高成绩写得更高了,则计算结果不受影响的是( ) A .中位数B .平均数C .方差D .极差12.某中学九年级二班的8名女同学在一次仰卧起坐测试中的成绩如下(单位:个),135 138 142 144 140 147 145 145;则这组数据的中位数、平均数分别是( ) A .142,142B .143,142C .143,143D .144,143二、填空题13.我市5月份某一周每天的最高气温统计如下:则这组数据(最高气温)的众数与中位数分别是_____、_____.14.某中学八年级人数相等的甲、乙两个班级参加了同一次数学测验,两班平均分和方差分别为x 甲=79,x 乙=79,2S 甲=101,2S 乙=235,则成绩较为整齐的是_________(填“甲班”或“乙班”).15.数据﹣2、﹣1、0、1、2的方差是_____. 16.一组数据1,0,2,1的方差S 2=_____.17.组数据2,x ,1,3,5,4,若这组数据的中位数是3,则x 的值是______. 18.若样本数据1,2,3,2的平均数是a ,中位数是b ,众数是c ,则数据a ,b ,c 的方差是___.19.某校准备从甲、乙、丙、丁四个科创小组中选出一组,参加区青少年科技创新大赛,表格反映的是各组平时成绩的平均数x (单位:分)及方差S 2,如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是_____.20.已知一组数据123x x x ,,,平均数和方差分别是322,,那么另一组数据1232x 12x 12x 1---,,的平均数和方差分别是______.三、解答题21.甲、乙两人在相同条件下各立定跳远5次,距离如下(单位:cm ): 甲:225,230,240,230,225; 乙:220,235,225,240,230. (1)计算这两组数据的方差; (2)谁的跳远技术较稳定?为什么?22.在全民读书月活动中,某校随机抽样调查了一部分学生本学期计划购买课外书的费用情况,根据图中的相关信息,解答下面问题;(1)这次调查获取的样本容量是________;(2)由统计图可知,这次调查获取的样本数据的众数是________;中位数是________; (3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.23.如图1,A ,B ,C 是郑州市二七区三个垃圾存放点,点B ,C 分别位于点A 的正北和正东方向,40AC =米.八位环卫工人分别测得的BC 长度如下表:甲 丁 丙 丁 戊 戌 申 辰 BC (单位:m )8476788270848680他们又调查了各点的垃圾量,并绘制了下列间不完整的统计图2.(1)表中的中位数是 、众数是 ; (2)求表中BC 长度的平均数x ;(3)求A处的垃圾量,并将图2补充完整;(4)用(2)中的x作为BC的长度,要将A处的垃圾沿道路AB都运到B处,已知运送1千克垃圾每米的费用为0.005元,求运垃圾所需的费用.24.某校举办了一次知识竞赛,满分10分,学生得分均为整数.这次竞赛中甲、乙两组学生统计如下:分数3分5分6分7分8分9分10分甲组1051111(人)乙组0212410(人)(1)计算甲、乙两组的平均分.(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名中游偏上!”观察上表可知,小明是那一组的学生?请说明理由.25.图甲和图乙分别是A,B两家酒店去年下半年的月营业额(单位:百万元)统计图.(1)求A酒店12月份的营业额a的值.(2)已知B酒店去年下半年的月平均营业额为2.3百万元,求8月份的月营业额,并补全折线统计图.(3)完成下面的表格(单位:百万元)(4)综合以上分析,你认为哪一些数据更能较为准确的反映酒店的经营业绩?你认为哪家酒店的经营状况较好?请简述理由.26.下表是随机抽取的某公司部分员工的月收入资料.月收入/45000180001000055005000340030002000元(1)请计算样本的平均数和中位数;(2)甲乙两人分别用样本平均数和中位数来估计推断公司全体员工月收入水平,请你写出甲乙两人的推断结论;并指出谁的推断比较科学合理,能直实地反映公司全体员工月收入水平.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据方差的意义即可判断.【详解】解:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.故选:B.【点睛】本题考查方差,平均数,中位数,众数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2.A解析:A【分析】根据众数就是一组数据中,出现次数最多的数,即可得出答案.【详解】∵100元的有3 张,50元的有9张,10元的有23张,5元的有10张,其中10元的最多,∴众数是10元.故答案为A.【点睛】本题考查众数的概念.,一组数据中出现次数做多的数叫做众数.3.B解析:B【分析】根据中位数的定义进行解答即可.【详解】∵小亮同学想知道自己的体重在班级中是否属于中等水平, ∴需了解全班同学体重数据的中间的数据,即中位数, 故选:B . 【点睛】本题主要考查统计的有关知识,中位数是一组数据中,最中间的数据;对统计量进行合理的选择和恰当的运用是解题关键.4.A解析:A 【分析】根据加权平均数的计算公式,用95分,90分,85分别乘以它们的百分比,再求和即可. 【详解】根据题意得:95×20%+90×30%+85×50%=88.5(分), 即小彤这学期的体育成绩为88.5分. 故选A . 【点睛】本题考查了加权平均数的计算,熟练掌握公式是解题关键.5.A解析:A 【解析】∵5791113,,,,的平均数是9,方差是8,一组数据2,4,6,8,x 的方差比数据5791113,,,,的方差大, ∴这组数据可能是x (x<0),2,4,6,8或2,4,6,8,x (x>10), 观察只有A 选项符合, 故选A .6.B解析:B 【分析】根据三角形的高、平均数、众数、中位数的定义、不等式的基本性质和邻补角的定义逐一判断即可. 【详解】①钝角三角形的三条高不相交(三条高所在的直线交于一点),故错误;②如果一组数据中有一个数据变动,那么它的平均数会随之变动,但众数和中位数不一定变动,故错误;③如果不等式()33m x m ->-的解集为1x <,可得m -3<0,那么3m <,故正确; ④如果三角形的一个外角等于与它相邻的一个内角,根据邻补角的定义可得这个外角和与它相邻的一个内角之和为180°, ∴三角形的这个内角为180°÷2=90°则这个三角形是直角三角形,故正确.综上:正确的有2个故选B.【点睛】此题考查的是三角形的相关性质、定义、数据的平均数、众数、中位数的定义和不等式的基本性质,掌握三角形的相关性质、定义、数据的平均数、众数、中位数的定义和不等式的基本性质是解决此题的关键.7.A解析:A【分析】先由平均数的公式计算出a的值,再根据方差的公式计算即可.【详解】∵数据6、4、a、3、2平均数为5,∴(6+4+2+3+a)÷5=5,解得:a=10,∴这组数据的方差是15[(6-5)2+(4-5)2+(10-5)2+(2-5)2+(3-5)2]=8.故选:A.【点睛】此题考查平均数,方差,解题关键在于掌握它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.8.B解析:B【分析】由表可知,得分82的有1人,得分85的有2人,得分88的有3人,得分90的有2人.再根据平均数概念求解;【详解】解:(82×1+85×2+88×3+90×2)÷8= 87(分),所以平均数是87分.故选:B.【点睛】本题考查加权平均数的概念和计算方法,解题关键是熟练掌握加权平均数的计算公式. 9.D解析:D【分析】方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.【详解】依题意可得,平均数:45mx∴224441555m mm解得m=1,故选D.【点睛】本题考查了方差,熟练运用方差公式是解题的关键.10.B解析:B【分析】根据众数和中位数的概念求解可得.【详解】将数据重新排列为37,37,38,39,40,40,40所以这组数据的众数为40,中位数为39,故选B.【点睛】本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.11.A解析:A【分析】根据中位数的定义解答可得.【详解】解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不受极端值影响,所以将最高成绩写得更高了,计算结果不受影响的是中位数,故选A.【点睛】本题主要考查方差、极差、中位数和平均数,解题的关键是掌握中位数的定义.12.B解析:B【解析】【分析】把数据从小到大排序,第4,5个数的平均数是中位数;根据平均数的公式求值.【详解】中位数:142144=1432+平均数:135138142144140147145145=1428+++++++故选B【点睛】考核知识点:中位数,算术平均数.理解定义是关键.二、填空题13.3030【分析】根据众数和中位数的定义进行求解即可得【详解】在这一组数据中30是出现次数最多的故众数是30;处于这组数据中间位置的那个数是30那么由中位数的定义可知这组数据的中位数是30故这组数据的解析:30 30【分析】根据众数和中位数的定义进行求解即可得.【详解】在这一组数据中30是出现次数最多的,故众数是30;处于这组数据中间位置的那个数是30,那么由中位数的定义可知,这组数据的中位数是30,故这组数据的中位数与众数分别是30,30,故答案为:30,30.【点睛】本题考查了众数与中位数的意义,读懂表格,熟练掌握众数、中位数的定义及求解方法是解题的关键.14.甲班【分析】根据方差的意义(方差越小数据越稳定)进行判断【详解】∵=101=235∴<∴成绩较为整齐的是:甲班故答案是:甲班【点睛】本题考查了方差的意义方差是用来衡量一组数据波动大小的量方差越大表明解析:甲班【分析】根据方差的意义(方差越小数据越稳定)进行判断.【详解】∵2S甲=101,2S乙=235,∴2S甲<2S乙,∴成绩较为整齐的是:甲班.故答案是:甲班.【点睛】本题考查了方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.2【分析】根据题目中的数据可以求得这组数据的平均数然后根据方差的计算方法可以求得这组数据的方差【详解】由题意可得这组数据的平均数是:x==0∴这组数据的方差是:故答案为2【点睛】此题考查方差解题关键解析:2 【分析】根据题目中的数据可以求得这组数据的平均数,然后根据方差的计算方法可以求得这组数据的方差. 【详解】 由题意可得,这组数据的平均数是:x=()210125-+-+++ =0,∴这组数据的方差是:()()()()()222222201000102025s --+--+-+-+-== ,故答案为2. 【点睛】此题考查方差,解题关键在于掌握运算法则16.05【分析】利用方差的计算公式计算即可【详解】解:则故答案为05【点睛】本题考查的是方差的计算掌握方差的计算公式是解题的关键解析:0.5 【分析】利用方差的计算公式计算即可. 【详解】 解:1x (1021)14=+++=, 则222221(11)(01)(21)(11)0.54S ⎡⎤=-+-+-+-=⎣⎦, 故答案为0.5. 【点睛】本题考查的是方差的计算,掌握方差的计算公式()()()2222121n S x x x x x x n ⎡⎤=-+-+⋯+-⎣⎦是解题的关键. 17.3【解析】【分析】利用中位数的定义只有x 和3的平均数可能为3从而得到x 的值【详解】解:除x 外5个数由小到大排列为12345因为原数据有6个数所以最中间的两个数的平均数为3所以只有x+3=2×3即x=解析:3 【解析】 【分析】利用中位数的定义,只有x 和3的平均数可能为3,从而得到x 的值.【详解】解:除x 外5个数由小到大排列为1、2、3、4、5,因为原数据有6个数,所以最中间的两个数的平均数为3,所以只有x+3=2×3,即x=3.故答案为3.【点睛】本题考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.18.0【解析】【分析】先确定出abc 后根据方差的公式计算abc 的方差【详解】解:平均数;中位数;众数;bc 的方差故答案是:0【点睛】考查了平均数中位数众数和方差的意义解题的关键是正确理解各概念的含义解析:0.【解析】【分析】先确定出a ,b ,c 后,根据方差的公式计算a ,b ,c 的方差.【详解】解:平均数()123242a =+++÷=;中位数()2222b =+÷=;众数2c =;a ∴,b ,c 的方差(222[(22)(22)22)30⎤=-+-+-÷=⎦.故答案是:0.【点睛】考查了平均数、中位数、众数和方差的意义,解题的关键是正确理解各概念的含义. 19.丙【分析】先比较平均数得到乙组和丙组成绩较好然后比较方差得到丙组的状态稳定于是可决定选丙组去参赛【详解】因为乙组丙组的平均数比甲组丁组大而丙组的方差比乙组的小所以丙组的成绩比较稳定所以丙组的成绩较好 解析:丙【分析】先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛.【详解】因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组.故答案为丙.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.20.【解析】分析:如果一组的数据的每一个数都扩大或缩小相同的倍数则平均数也扩大或缩小相同的倍数方差则扩大或缩小平方倍;如果一组的数据的每一个数都增加或减少相同的数则平均数也增加或减少相同的数方差不变详解解析:36,【解析】分析:如果一组的数据的每一个数都扩大或缩小相同的倍数,则平均数也扩大或缩小相同的倍数,方差则扩大或缩小平方倍;如果一组的数据的每一个数都增加或减少相同的数,则平均数也增加或减少相同的数,方差不变.详解:根据题意可知:这组数据的平均数为:2×2-1=3;方差为:23262⨯=. 点睛:本题主要考查的是数据的平均数和方差的变化规律,属于中等难度题型.解决这个问题的关键就是要明确变化规律,根据规律进行解答.三、解答题21.(1)30;50(2)甲稳定;见解析.【分析】(1)根据平均数的计算公式先求出甲和乙的平均数,再代入方差公式()()()2221221=.....n S x x x x x x n ⎡⎤-+-++-⎢⎥⎣⎦,进行计算即可得出答案; (2)根据方差的意义,方差越小数据越稳定,即可得出答案.【详解】解:(1)甲的平均数是:()1225+230+240+230+225=2305cm ⨯, 乙的平均数是:()1220+235+240+230+225=2305cm ⨯, 甲的方差是:()()()()()22222221=225230230230240230230230225230305S cm ⎡⎤⨯-+-+-+-+-=⎣⎦, 乙的方差是:()()()()()22222221=220230235230240230230230225230505S cm ⎡⎤⨯-+-+-+-+-=⎣⎦;(2)由(1)知,S 甲2<S 乙2,∴甲的跳远技术较稳定.【点睛】本题主要考查平均数与方差,熟练掌握方差及平均数的运算公式是解题的关键. 22.(1)40;(2)30元,50元;(3)50500元.【分析】(1)根据条形统计图的信息把计划购买课外书的不同费用的人数相加计算即可; (2)根据众数的定义,中位数的定义,逐一进行求解即可;(3)先根据条形统计图展现的数据,计算样本中每个学生平均花费,再用全校总人数×每个学生平均花费,即可估算全校购买课外书的总花费.【详解】解:(1)6121084=40++++(2)购买30元课外书的人数最多,所以这次抽样的众数是30元;购买课外书排第20,第21的费用均为50元,所以这次抽样的中位数是50元; (3)样本中平均每个学生的费用是620123010508804100=50.56121084⨯+⨯+⨯+⨯+⨯++++(元) 因此该校1000学生购买课外书的总花费约为100050.5=50500⨯(元)答:该校本学期计划购买课外书的总花费约为50500元.【点睛】本题主要考查抽样调查中样本容量,众数,中位数的定义及由样本数据估算总体数量的知识.23.(1)81米,84米;(2)80米;(3)80千克,图详见解析;(4)运垃圾所需的费用为【分析】(1)根据中位数和众数的定义即可得;(2)根据平均数的计算公式121()n x x x x n =+++即可得;(3)先根据C 处垃圾量的扇形统计图和条形统计图信息求出三处垃圾总量,再减去B 、C 两处的垃圾量可得A 处的垃圾量,然后补全条形统计图即可;(4)先利用勾股定理求出AB 的长,再根据“运送1千克垃圾每米的费用为0.005元”列出式子求解即可得.【详解】(1)由众数的定义得:众数是84米由中位数的定义,先将表中的数据从小到大进行顺序为70,76,78,80,82,84,84,86,则中位数是8082812+=(米) 故答案为:81米,84米;(2)由平均数的计算公式得:8476788270848680808x +++++++==(米) 答:表中BC 长度的平均数x 为80米; (3)A 、B 、C 三处垃圾总量为32050%640÷=(千克)则A 处的垃圾总量是:64032024080--=(千克)补全条形统计图如下:(4)在直角ABC 中,22228040403AB BC AC -=-=∵运送1千克垃圾每米的费用为0.005元∴运垃圾所需的费用为403800.005163⨯=答:运垃圾所需的费用为163【点睛】本题考查了中位数、众数、平均数的定义,条形统计图和扇形统计图的信息关联等知识点,掌握并理解统计调查的相关概念是解题关键.24.(1)甲组平均分为6.7分,乙组平均分为7.1分;(2)甲组,理由见解析【分析】(1)根据平均数的计算公式即可; (2)根据中位数的意义即可判断.【详解】解:(1)31506571819110167 6.715111110x ⨯+⨯+⨯+⨯+⨯+⨯+⨯===+++++甲(分) 305261728491100717.12124110x ⨯+⨯+⨯+⨯+⨯+⨯+⨯===++++乙(分) (2)∵甲的中位数是6,乙的中位数是8,小明7分中等偏上,∴是甲组的.【点睛】 本题考查了加权平均数以及中位数的意义,解题的关键熟记平均数的计算公式以及中位数的意义.25.(1)4百万元;(2)3百万元,见解析;(3)2.5,见解析;(4)平均数,中位数反映酒店的经营业绩,A 酒店的经营状况较好,见解析(1)想办法求出12月份的扇形图中的圆心角,构建方程即可解决问题;(2)根据平均数的定义即可解决问题;(3)根据平均数,中位数,众数的定义计算即可;(4)平均数,中位数反映酒店的经营业绩,A酒店的经营状况较好.【详解】解:(1)设7、8、9、10所占的圆心角为x.则有:2.4 2.2 2.2 1.2x+++=372,解得x=192°,∴12月份的圆心角为360°-192°-72°=96°,则有:a96=372,∴a=4百万元,(2)由题意,8月份的月营业额为3百万元.作图:(3)A酒店的平均数=3 2.4 2.2 2.2 1.246+++++=2.5,B酒店的中位数为1.9,众数为1.7,故答案为2.5,1.9,1.7.(4)平均数,中位数反映酒店的经营业绩,A酒店的经营状况较好.理由:平均数.中位数比较大.【点睛】此题考查折线统计图、扇形统计图、中位数、平均数、众数,解题的关键是熟练掌握基本知识.26.(1)平均数:6150元;中位数:3200元;(2)乙推断比较科学合理,答案见解析.【分析】(1)要求平均数只要求出各个数据之和再除以数据个数即可;对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可;(2)甲从员工平均工资水平的角度推断公司员工月收入,乙从员工中间工资水平的角度推断公司员工的收入;解:(1)平均数:450001180001100001550035000634001300011200026150111361112⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=+++++++(元)中位数:这组数据共有26个,第13 、14个数据分别为3400,3000, 所以样本的中位数为:3400300032002+=(元) (2)甲:由样本平均数为6150元,估计全体员工的月平均收入大约为6150元;乙:由样本中位数为3200元,估计全体大约有一半的员工月收入超过3200元,有一半员工月收入不足3200元,乙推断比较科学合理.由题意可知,样本中的26名员工,只有3位员工的收入在6150以上,原因是该样本数据极差较大,所以平均数不能真实的反映实际情况.【点睛】本题考查的知识点是平均数与中位数,掌握平均数与中位数的求法是解此题的关键.。
人教版初中数学八年级数学下册第五单元《数据的分析》测试卷(答案解析)
一、选择题1.已知5个数1a 、2a 、3a 、4a 、5a 的平均数是a ,则数据11a +、22a +、33a +、44a +、55a +的平均数为( )A .aB .3a +C .56a D .15a +2.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是( ) A .众数是5B .中位数是5C .平均数是6D .方差是3.63.某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,8,9,16,12,7,10,这组数据的中位数和众数分别是( ) A .10,12B .12,11C .11,12D .12,124.某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是( ) A .88.5B .86.5C .90D .90.55.如果将所给定的数据组中的每个数都减去一个非零常数,那么该数组的 ( ) A .平均数改变,方差不变 B .平均数改变,方差改变C .平均数不变,方差改变D .平均数不变,方差不变6.为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是( )①每人乘坐地铁的月均花费最集中的区域在80~100元范围内; ②每人乘坐地铁的月均花费的平均数范围是40~60元范围内; ③每人乘坐地铁的月均花费的中位数在60~100元范围内; ④乘坐地铁的月均花费达到80元以上的人可以享受折扣. A .①②④ B .①③④C .③④D .①②7.某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出,他们的成绩如表:甲 乙 丙 丁平均分 8.5 8.2 8.5 8.2 方差 1.81.21.21.1最高分9.89.89.89.7如果要选出一个成绩较好且状态稳定的同学去参加市级比赛,应选( ) A .丁B .丙C .乙D .甲8.通过统计甲、乙、丙、丁四名同学某学期的四次数学测试成绩,得到甲、乙、丙、丁三明同学四次数学测试成绩的方差分别为S 甲2=17,S 乙2=36,S 丙2=14,丁同学四次数学测试成绩(单位:分).如下表: 第一次 第二次 第三次 第四次 丁同学80809090则这四名同学四次数学测试成绩最稳定的是( ) A .甲B .乙C .丙D .丁9.为参加全市中学生足球赛.某中学从全校学生中选拔22名足球运动员组建校足球队,这22名运动员的年龄(岁)如下表所示,该足球队队员的平均年龄是( ) 年龄(岁) 12 13 14 15 人数71032A .12岁B .13岁C .14岁D .15岁10.随着时代的进步,人们对 2.5PM (空气中直径小于等于2.5微米的颗粒)的关注日益密切.某市一天中 2.5PM 的值1y (3/ug m )随时间t (h )的变化如图所示,设2y 表示0时到t 时 2.5PM 的值的极差(即0时到t 时 2.5PM 的最大值与最小值的差),则2y 与t的函数关系大致是( )A.B.C.D.11.某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是()A.众数是8 B.中位数是8 C.平均数是8.2 D.方差是1.212.某班体育委员记录了第一小组七位同学定点投篮(每人投10次)的情况,投进篮筐的个数为6,9,5,3,4,8,4,这组数据的众数是()A.3 B.4 C.5 D.8二、填空题13.烹饪大赛的菜品的评价按味道、外形、色泽三个方面进行评价(评价的满分均为100分),三个方面的重要性之比依次为7:2:1.某位厨师的菜所得的分数依次为92分、88分、80分,那么这位厨师的最后得分是_______________.14.若5个正整数从小到大排序,其中中位数是4,如果这组数据的唯一众数是5,当这5个正整数的和为最大值时,这组数据的方差为______.15.某中学人数相等的甲、乙两班学生参加了同一次数学测验,两班平均分和方差分别为⎺x甲=82分,⎺x乙=82分,S2甲=245,S2乙=190.那么成绩较为整齐的是__________班16.设甲组数据:6,6,6,6,的方差为2s甲,乙组数据:1,1,2的方差为2s乙,则2s甲与2s乙的大小关系是________.17.一组数据5,8,x,10,4的平均数是2x,则这组数据的方差是___________.18.已知一组数据的方差s2=14[(x1﹣6)2+(x2﹣6)2+(x3﹣6)2+(x4﹣6)2],那么这组数据的总和为_____.19.某校准备从甲、乙、丙、丁四个科创小组中选出一组,参加区青少年科技创新大赛,表格反映的是各组平时成绩的平均数x(单位:分)及方差S2,如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是_____.20.一组数据3,2,3,4,x的平均数是3,则它的方差是_____.三、解答题21.某校举办了一次趣味数学竞赛,满分100分,学生得分均为整数,达到成绩60分及以上为合格,达到90分及以上为优秀,这次竞赛中,甲、乙两组学生成绩如下(单位:分)甲组:30,60,60,60,60,60,70,90,90,100;乙组:50,60,60,60,70,70,70,70,80,90.(1)以上成绩统计分析表如表:则表中a=,b=,c=.(2)如果你是该校数学竞赛的教练员,现在需要你根据成绩的稳定性选一组同学代表学校参加复赛,你会选择哪一组?并说明理由.22.已知一组数据x1,x2,x3,…,x n的平均数为5,求数据x1+5,x2+5,x3+5,…,x n+5的平均数23.某校在一次广播操比赛中,初二(1)班、初二(2)班、初二(3)班的各项得分如下:(1)填空:根据表中提供的信息,在服装统一方面,三个班得分的平均数是________;在动作整齐方面三个班得分的众数是________;在动作准确方面最有优势的是________班. (2)如果服装统一、动作整齐、动作准确三个方面的重要性之比为2:3:5,那么这三个班的排名顺序怎样?为什么?(3)在(2)的条件下,你对三个班级中排名最靠后的班级有何建议?24.为宣传6月6日世界海洋日,某校九年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表(表1)和统计图(如图).表1知识竞赛成绩分组统计表 组别分数/分 频数A6070x ≤< aB7080x ≤< 10 C8090x ≤< 14 D90100x ≤<18请根据图表信息解答以下问题:(1)本次调查一共随机抽取了________个参赛学生的成绩,表1中a =________; (2)所抽取的参赛学生的成绩的中位数落在的“组别”是________;(3)请你估计,该校九年级竞赛成绩达到80分以上(含80分)的学生约多少人? 25.为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表: 甲乙射击成绩统计表平均数 中位数 方差 命中10环的次数 甲 7乙7.5 5.41甲乙射击成绩折线图(1)请补全上述图表(请直接在统计表中填空和补全折线图);(2)如果规定成绩较稳定者胜出,则_____胜出,理由是____________________; (3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?说明理由.26.为了了解某校初三学生每周平均阅读时间的情况,随机抽查了该校初三m 名学生,对其每周平均课外阅读时间进行统计,绘制了条形统计图和扇形统计图.根据以上信息回答下列问题: (1)求m 的值;(2)求扇形统计图中阅读时间为3小时的扇形圆心角的度数; (3)求出这组数据的平均数.(精确到0.1)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据数据11a +、22a +、33a +、44a +、55a +比数据1a 、2a 、3a 、4a 、5a 的和多15,可得数据11a +、22a +、33a +、44a +、55a +的平均数比a 多3,据此求解即可 【详解】解:a+()()24512345132+4+51+3+-+a a a a a a a a a a ++++++++⎡⎤⎣⎦ ÷5=a+[1+2+3+4+5] ÷5 =a+15÷5 =a+3 故选:B 【点睛】此题主要考察了算术平均数的含义和求法,解题关键是判断出:数据11a +、22a +、33a +、44a +、55a +比数据1a 、2a 、3a 、4a 、5a 的平均数多3.2.D解析:D 【分析】根据平均数、中位数、众数以及方差的定义判断各选项正误即可. 【详解】A 、数据中5出现2次,所以众数为5,此选项正确;B 、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;C 、平均数为(7+5+3+5+10)÷5=6,此选项正确;D 、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误; 故选D . 【点睛】本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.3.C解析:C 【分析】先把原数据按由小到大排列,然后根据中位数和众数的定义求解. 【详解】原数据按由小到大排列为:7,8,9,10,12,12,14,16, 所以这组数据的中位数=12(10+12)=11, 众数为12. 故选:C . 【点睛】此题考查众数,中位数的定义,解题关键在于掌握一组数据中出现次数最多的数据叫做众数.4.A解析:A 【分析】根据加权平均数的计算公式,用95分,90分,85分别乘以它们的百分比,再求和即可. 【详解】根据题意得:95×20%+90×30%+85×50%=88.5(分),即小彤这学期的体育成绩为88.5分.故选A.【点睛】本题考查了加权平均数的计算,熟练掌握公式是解题关键.5.A解析:A【解析】试题分析:根据平均数、方差的计算公式即可判断.由题意得该数组的平均数改变,方差不变,故选A.考点:本题考查的是平均数,方差点评:数学公式的计算与应用是初中数学学习中的一个基本能力,此类问题往往考查学生对数学公式的理解能力,难度不大.6.C解析:C【分析】根据频数分布直方图中的数据,求得众数,平均数,中位数,即可得出结论.【详解】解:①根据频数分布直方图,可得众数为60−80元范围,故每人乘坐地铁的月均花费最集中的区域在60−80元范围内,故①不正确;②每人乘坐地铁的月均花费的平均数=876001000=87.6=87.6元,所以每人乘坐地铁的月均花费的平均数范围是80~100元,故②错误;③每人乘坐地铁的月均花费的中位数约为80元,在60~100元范围内,故③正确;④为了让市民享受到更多的优惠,若使50%左右的人获得折扣优惠,则乘坐地铁的月均花费达到80元以上的人可以享受折扣,故④正确.故选:C【点睛】本题主要考查了频数分布直方图,平均数以及中位数的应用,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.B解析:B【分析】先比较平均数得到甲和丙成绩较好,然后比较方差得到丙的状态稳定,即可决定选丙去参赛.【详解】∵甲、丙的平均数比乙、丁大,∴甲和丙成绩较好, ∵丙的方差比甲的小, ∴丙的成绩比较稳定,∴丙的成绩较好且状态稳定,应选的是丙, 故选:B . 【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.8.C解析:C 【分析】求得丁同学的方差后与前三个同学的方差比较,方差最小的成绩最稳定. 【详解】丁同学的平均成绩为:14⨯(80+80+90+90)=85; 方差为S 丁214=[2×(80﹣85)2+2×(90﹣85)2]=25, 所以四个人中丙的方差最小,成绩最稳定. 故选C . 【点睛】本题考查了方差的意义及方差的计算公式,解题的关键是牢记方差的公式,难度不大.9.B解析:B 【解析】 【分析】直接利用加权平均数的定义计算可得. 【详解】解:该足球队队员的平均年龄是127131014315222⨯+⨯+⨯+⨯=13(岁),故选:B .【点睛】本题考查了加权平均数,解题的关键是掌握加权平均数的定义.10.B解析:B 【分析】根据极差的定义,分别从0t =、010t <≤、1020t <≤及2024t <≤时,极差2y 随t 的变化而变化的情况,从而得出答案. 【详解】当0t =时,极差285850y =-=,当010t <≤时,极差2y 随t 的增大而增大,最大值为43; 当1020t <≤时,极差2y 随t 的增大保持43不变; 当2024t <≤时,极差2y 随t 的增大而增大,最大值为98; 故选B . 【点睛】本题主要考查极差,解题的关键是掌握极差的定义及函数图象定义与画法.11.D解析:D 【分析】首先根据图形数出各环数出现的次数,在进行计算众数、中位数、平均数、方差. 【详解】根据图表可得10环的2次,9环的2次,8环的3次,7环的2次,6环的1次.所以可得众数是8,中位数是8,平均数是102+92+83+72+61=8.210⨯⨯⨯⨯⨯方差是222222(108.2)2(98.2)3(88.2)2(78.2)(68.2) 1.5610⨯-+⨯-+⨯-+⨯-+-=故选D 【点睛】本题主要考查统计的基本知识,关键在于众数、中位数、平均数和方差的概念.特别是方差的公式.12.B解析:B 【解析】 【分析】众数是出现次数最多的数,据此求解即可. 【详解】∵数据4出现了2次,最多, ∴众数为4, 故选:B . 【点睛】本题考查了众数的知识,解题的关键是了解有关的定义,属于基础题,难度不大.二、填空题13.90分【分析】根据加权平均数的计算方法即可得出答案【详解】解:这位厨师的最后得分为:(分)故答案为:90分【点睛】本题考查了加权平均数的计算掌握计算加权平均数的方法是解题的关键【分析】根据加权平均数的计算方法即可得出答案.【详解】 解:这位厨师的最后得分为:927+882+801=907+2+1⨯⨯⨯(分). 故答案为:90分.【点睛】本题考查了加权平均数的计算,掌握计算加权平均数的方法是解题的关键. 14.136【解析】【分析】根据中位数和众数的意义先求出后三位数由和为最大值求出前两个数然后求方差即可【详解】解:因为五个正整数从小到大排列后其中中位数是4这组数据的唯一众数是5所以这5个数据分别是xy4解析:1.36【解析】【分析】根据中位数和众数的意义先求出后三位数,由和为最大值求出前两个数,然后求方差即可.【详解】解:因为五个正整数从小到大排列后,其中中位数是4,这组数据的唯一众数是5.所以这5个数据分别是x,y,4,5,5,且x y 4<<,当这5个整数的和最大时,整数x,y 取最大值,此时x 2y 3==,, 所以这组数据的平均数()1192345555x =++++=, 22222211919191919S 23455555555⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+-⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦=1.36 【点睛】此题考查了中位数、众数的概念,牢记方差公式是解题关键.15.乙【解析】【分析】根据方差的意义方差反映了一组数据的波动大小根据方差越小波动越小故可由两班的方差得到结论【详解】∵S2甲>S2乙∴成绩较为稳定的是乙故答案为乙【点睛】本题考查了方差的意义:反映了一组 解析:乙【解析】【分析】根据方差的意义,方差反映了一组数据的波动大小,根据方差越小,波动越小,故可由两班的方差得到结论.【详解】∵S 2甲>S 2乙∴成绩较为稳定的是乙.故答案为乙.本题考查了方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16.与【分析】根据方差的意义进行判断【详解】解:因为甲组的数据都相等没有波动而乙组数有波动所以s 甲2<s 乙2故答案为s 甲2<s 乙2【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量方差越大则平 解析:2s 甲与2s <乙【分析】根据方差的意义进行判断.【详解】解:因为甲组的数据都相等,没有波动,而乙组数有波动,所以s 甲2<s 乙2.故答案为s 甲2<s 乙2.【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好. 17.68【分析】本题可用求平均数的公式解出x 的值在运用方差的公式解出方差【详解】解:依题意得:5+8+x +10+4=2x×5所以x =32x =6方差s2==68【点睛】本题考查了算术平均数方差的计算方法熟解析:6.8【分析】本题可用求平均数的公式解出x 的值,在运用方差的公式解出方差.【详解】解:依题意得:5+8+x +10+4=2x×5,所以x =3,2x =6,方差s 2=15()()()()()222225-6+8-6+3-6+10-6+4-6⎡⎤⎣⎦=6.8, 【点睛】 本题考查了算术平均数、方差的计算方法,熟练掌握该知识点是本题解题的关键. 18.24【分析】根据方差公式S2=(x1﹣)2+(x2﹣)2+…+(xn ﹣)2中各个字母表示的意义得出这组数据的平均数是6数据个数是4从而得出这组数据的总和【详解】∵s2=(x1﹣6)2+(x2﹣6)2解析:24【分析】根据方差公式S 2=1n[(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2]中各个字母表示的意义,得出这组数据的平均数是6,数据个数是4,从而得出这组数据的总和.【详解】∵s2=14[(x1﹣6)2+(x2﹣6)2+(x3﹣6)2+(x4﹣6)2],∴这组数据的平均数是6,数据个数是4,∴这组数据的总和为4×6=24.故答案为24.【点睛】本题考查了方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2].19.丙【分析】先比较平均数得到乙组和丙组成绩较好然后比较方差得到丙组的状态稳定于是可决定选丙组去参赛【详解】因为乙组丙组的平均数比甲组丁组大而丙组的方差比乙组的小所以丙组的成绩比较稳定所以丙组的成绩较好解析:丙【分析】先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛.【详解】因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组.故答案为丙.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.20.04【解析】【分析】根据数据2334x的平均数是3先利用平均数的计算公式可求出x然后利用方差的计算公式进行求解即可【详解】∵数据2334x的平均数是3∴∴∴故答案为【点睛】本题主要考查了平均数和方差解析:0.4【解析】【分析】根据数据2、3、3、4、x的平均数是3,先利用平均数的计算公式可求出x,然后利用方差的计算公式进行求解即可.【详解】∵数据2、3、3、4、x的平均数是3,∴2334x35++++=⨯,∴x3=,∴(2222221S [(33)(23)(33)(43)33)0.45⎤=⨯-+-+-+-+-=⎦, 故答案为0.4. 【点睛】本题主要考查了平均数和方差的计算,解题的关键是熟练掌握平均数和方差的计算公式.三、解答题21.(1)60,68,70;(2)乙组,理由见解析【分析】(1)利用中位数的定义确定a 、c 的值,根据平均数的定义计算出b 的值;(2)先计算出乙组成绩的方差,然后选择甲乙两组成绩的方差较小的一组.【详解】解:(1)甲组学生成绩的中位数为60602+=60,即a =60; 乙组学生成绩的平均数为110(50+3×60+4×70+80+90)=68; 乙组学生成绩的中位数为70702+=70,即b =68,c =70; 故填:60,68,70;(2)选择乙组.理由如下: 乙组学生成绩的方差为110[(50﹣68)2+3(60﹣68)2+4(70﹣68)2+(80﹣68)2+(90﹣68)2]=116,因为甲乙两组学生成绩的平均数相同,而乙组学生成绩的方差较小,成绩比较稳定,所以选择乙组.【点睛】本题考查众数、中位数、平均数的意义和计算方法,理解各个统计量的意义及各个统计量所反映数据的特点是解决问题的关键. 22.10【分析】本题首先将1x ,2x ,3x ,…,n x 的和表示出来,继而将其求和值代入目标式子中求解本题.【详解】∵1x ,2x ,3x ,…,n x 的平均数为5,∴1235n x x x x n +++⋅⋅⋅+=,∴15x +,25x +,35x +,…,5n x +的平均数为:[]1231231155(5)(5)(5)(5)(5)10n n n n x x x x x x x x n n n n +⨯++++++⋅⋅⋅++=⨯+++⋅⋅⋅++==.【点睛】本题考查平均数,解题关键在于理解其概念,其次注意计算精度.23.(1)89分,78分,初二(1);(2) 排名最好的是初二一班,最差的是初二(2)班,理由见解析;(3)见解析【分析】(1)用算术平均数的计算方法求得三个班的服装统一的平均数,找到动作整齐的众数即可;(2)利用加权平均数分别计算三个班的得分后即可排序;(3)根据成绩提出提高成绩的合理意见即可;【详解】(1)服装统一方面的平均分为:8097903++=89分; 动作整齐方面的众数为78分;动作准确方面最有优势的是初二(1)班;(2)∵初二(1)班的平均分为:802843875235⨯+⨯+⨯++ =84.7分; 初二(2)班的平均分为:972783805235⨯+⨯+⨯++=82.8分; 初二(3)班的平均分为:902783855235⨯+⨯+⨯++ =83.9; ∴排名最好的是初二一班,最差的是初二(2)班;(3)加强动作整齐方面的训练,才是提高成绩的基础.【点睛】考查了平均数和加权平均数的计算.要注意,当所给数据有单位时,所求得的平均数与原数据的单位相同,不要漏单位.24.(1)50; 8;(2)C 组;(3)320人【分析】(1)利用统计表和扇形统计图中D 组的信息可得样本容量,从而得出表1中A 对应的人数;(2)成绩已经按照从小到大的顺序排列,找出最中间的2人,即第25和第26位,取二者的平均值即可;(3)先求出80分以上的比例,然后乘总人数可得.【详解】解:(1)本次调查一共随机抽取学生:1836%50÷=(人),8a =(2)∵抽样了50人,则最中间的为第25和第26位的平均值第25位落在C 组,第26位落在C 组∴中位数落在C 组(3)该校九年级竞赛成绩达到80分以上(含80分)的学生有141850032050+⨯=(人)【点睛】本题考查调查与统计,解题关键是结合残缺不全的统计表和扇形统计图,得出样本容量. 25.(1)补全图表见解析;(2)甲,理由见解析;(3)可制定评判规则为:命中10环次数较多者胜出,理由见解析.【分析】(1)根据甲选手成绩的平均数可求出甲选手第8次命中的环数,即可补全折线图;然后根据平均数、中位数和方差的求法补全统计表;(2)根据方差的意义可得答案;(3)可根据乙选手命中10环1次,甲选手没有命中10环来制定评判规则.【详解】解:(1)甲选手第8次命中的环数为:7×10-(9+6+7+6+5+7+7+8+9)=6, 将甲选手的成绩从小到大排列为:5,6,6,6,7,7,7,8,9,9,中间两次的环数分别为:7,7,故中位数为7772+=, 2222221=5767377387972=1.610S 甲,乙选手成绩的平均数为:24687789910=710, 补全表格和折线图为: 平均数 中位数 方差命中10环的次数 甲7 7 1.6 0 乙 7 7.5 5.4 1(2)如果规定成绩较稳定者胜出,则甲胜出,理由:因为甲的方差小于乙的方差,所以甲的成绩比乙稳定,即甲胜出;(3)可制定评判规则为:命中10环次数较多者胜出,理由:因为乙选手命中10环1次,甲选手没有命中10环,所以乙胜出.【点睛】本题考查了折线统计图,平均数、中位数、方差的意义与求法,能够从图表中得出有用信息是解题的关键.26.(1)m=60;(2)120°;(3)2.8小时.【分析】(1)根据2小时所占扇形的圆心角的度数确定其所占的百分比,然后根据条形统计图中2小时的人数求得m的值;(2)先求出课外阅读3小时的人数,再用360°乘以阅读时间为3小时的人数所占的百分比即可;(3)利用平均数的计算公式进行计算即可.【详解】(1)∵课外阅读时间为2小时的所在扇形的圆心角的度数为90°,∴其所占的百分比为9013604=,∵课外阅读时间为2小时的有15人,∴m=15÷14=60;(2)课外阅读3小时的人数有:60﹣10﹣15﹣10﹣5=20(人),所以阅读时间为3小时的扇形圆心角的度数是2060×360°=120°;(3)这组数据的平均数为:1011522031045560⨯+⨯+⨯+⨯+⨯≈2.8小时.【点睛】此题考查条形统计图与扇形统计图的结合计算,能正确求样本的总数,求部分的数量及圆心角度数,掌握加权平均数的公式是解题的关键.。
新人教版初中数学八年级数学下册第五单元《数据的分析》测试卷(含答案解析)
一、选择题1.已知5个数1a 、2a 、3a 、4a 、5a 的平均数是a ,则数据11a +、22a +、33a +、44a +、55a +的平均数为( )A .aB .3a +C .56a D .15a +2.若一组数据2,3,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等,则x 的值为( ). A .1 B .6 C .1或6D .5或63.若数据 4,x ,2,8 ,的平均数是 4,则这组数据的中位数和众数是( ) A .3 和 2 B .2 和 3 C .2 和 2 D .2 和4 4.若一组数据2468x ,,,,的方差比另一组数据5791113,,,,的方差大,则 x 的值可以为( ) A .12B .10C .2D .05.下面说法正确的个数有( )(1)二元一次方程组的两个方程的所有解,叫做二元一次方程组的解; (2)如果a b >,则ac bc >;(3)三角形的外角等于与它不相邻的两个内角的和; (4)多边形内角和等于360︒; (5)一组数据1,2,3,4,5的众数是0 A .0个B .1个C .2个D .3个6.某次知识竞赛中,两组学生成绩如下表,通过计算可知两组的方差为S 2甲172=,S 2乙256=,下列说法:①两组的平均数相同;②甲组学生成绩比乙组学生成绩稳定; ③甲组成绩的众数>乙组成绩的众数;④两组成绩的中位数均是80,但成绩≥80的人数甲比乙组多,从中位数来看,甲组成绩总体比乙组好;⑤成绩高于或等于90分的人数乙组比甲组多,高分段乙组成绩比甲组好. 其中正确的有( )个A .2B .3C .4D .5 7.样本数据4,m ,5,n ,9的平均数是6,众数是9,则这组数据的中位数是( ) A .3B .4C .5D .98.某班七个兴趣小组人数如下:5,6,6,x ,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是( )A .6B .6.5C .7D .89.下列说法正确的是( )A .中位数就是一组数据中最中间的一个数B . 8. 99,1010,11,,这组数据的众数是9 C .如果123,,,,n x x x x ⋯的平均数是1,那么()()()121110n x x x -+-+⋯+-= D .一组数据的方差是这组数据的极差的平方10.甲、乙两人各射击次,甲所中的环数是,,,,,,且甲所中的环数的平均数是,众数是;乙所中的环数的平均数是,方差是4.根据以上数据,对甲,乙射击成绩的正确判断是( ) A .甲射击成绩比乙稳定 B .乙射击成绩比甲稳定C .甲,乙射击成绩稳定性相同D .甲、乙射击成绩稳定性无法比较11.某校八年级(1)班全体学生进行了第一次体育中考模拟测试,成绩统计如下表: 成绩(分) 24 25 26 27 28 29 30 人数(人)6558774根据上表中的信息判断,下列结论中错误的是( ) A .该班一共有42名同学B .该班学生这次考试成绩的众数是8C .该班学生这次考试成绩的平均数是27D .该班学生这次考试成绩的中位数是27分12.为了解某校计算机考试情况,抽取了50名学生的计算机考试成绩进行统计,统计结果如表所示,则50名学生计算机考试成绩的众数、中位数分别为( ) 考试分数(分) 20 16 12 8 人数241853A .20,16B .l6,20C .20,l2D .16,l2二、填空题13.已知一组样本数据1x ,2x ,3x ,⋅⋅⋅,n x 的平均数为2,方差为3,则数据12+5x ,22+5x ,325x +,⋅⋅⋅,2+5n x 的平均数为__________,方差为__________.14.已知一组数据a ,b ,c 的方差为2,那么数据3a +,3b +,3+c 的方差是________.15.为了增强青少年的防毒拒毒意识,学校举办了一次“禁毒教育”演讲比赛,其中某位选手的演讲内容、语言表达、演讲技巧这三项得分分别为90分,80分,85分,若依次按50%,30%,20%的比例确定成绩,则该选手的最后得分是__________分.16.某校在“爱护地球,绿化祖国“的创建活动中,组织了100名学生开展植数造林活动,其植树情况整理如下表:植树棵数(单位:棵)456810人数(人)302225158则这100名学生所植树棵数的中位数为_____.17.某中学人数相等的甲、乙两班学生参加了同一次数学测验,两班平均分和方差分别为⎺x甲=82分,⎺x乙=82分,S2甲=245,S2乙=190.那么成绩较为整齐的是__________班18.春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为__.19.在新年晚会的投飞镖游戏环节中,7名同学的投掷成绩(单位:环)分别是:7,9,9,6,9,8,8,则这组数据的方差是______________________ .20.已知5个数据的平均数是7,另外还有3个数据的平均数是k,则这 8个数据的平均数是_______(用关于 k 的代数式表示).参考答案三、解答题21.濮阳市团委举办“我的中国梦”为主题的知识竞赛,甲乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分,80分,90分,100分,并根据统计数据绘制了如下不完整的统计图表:乙校成绩统计表(1)请你将图②中条形统计图补充完整;(2)图①中,90分所在扇形的圆心角是 °;图③中80分有人.(3)分别求甲、乙两校成绩的平均分;(4)经计算知S2甲=135,S2乙=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.22.学校午餐采用自助的形式,并倡导学生和教师“厉行勤俭节约,践行光盘行动” .学校共有6个年级,且各年级的人数基本相同.为了解午餐的浪费情况,从这6年级中随机抽取了A、B两个年级,进行了连续四周(20个工作日)的调查,得到这两个年级每天午餐浪费饭菜的质量,以下简称“每日餐余质量”(单位:kg),并对这些数据进行了整理、描述和分析.下面给出了部分信息.a.A年级每日餐余质量的频数分布直方图如下(数据分成6组:<<<<<<≤≤≤≤≤≤:x x x x x x02,24,46,68,810,1012)b.A年级每日餐余质量在68≤<这一组的是:6.1,6.6,7.0,7.0,7.0,7.8xc.B年级每日餐余质量如下:1.4,2.8,6.9,7.8,1.9,9.7,3.1,4.6,6.9,10.8,6.9,2.6,7.5,6.9,9.5,7.8,8.4,8.3,9.4,8.8d.A、B两个年级这20个工作日每日餐余质量的平均数、中位数、众数如下:(1)m = ____________,n = _____________.(2)A、B这两个年级中,“厉行勤俭节约,践行光盘行动”做的较好的年级是______.(3)结合A、B这两个年级每日餐余质量的数据,估计该学校(6个年级)一年(按240个工作日计算)的餐余总质量.23.为了了解某学校八年级学生每周平均体育锻炼时间的情况,随机抽查了该年级的部分学生,对其每周锻炼时间进行统计,根据统计数据绘制成图1和图2两个不完整的统计图.请你根据统计图提供的信息,回答下列问题:(1)本次共抽取了学生人,并请将图1条形统计图补充完整;(2)这组数据的中位数是,求出这组数据的平均数;(3)若八年级有学生1800人,请你估计体育锻炼时间为3小时的学生有多少人?24.在全民读书月活动中,某校随机抽样调查了一部分学生本学期计划购买课外书的费用情况,根据图中的相关信息,解答下面问题;(1)这次调查获取的样本容量是________;(2)由统计图可知,这次调查获取的样本数据的众数是________;中位数是________;(3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.25.随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注.某校计划将这种学习方式应用到教育教学中,从各年级共1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备情况进行了调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为 人 ,图①中m 的值为 . (2)求本次调查获取的样本数据的众数、中位数;(3)根据样本数据,估计该校学生家庭中;拥有3台移动设备的学生人数.26.为响应我市创建“全国文明城市”的号召,我区某校举办了一次“秀美巴中,绿色家园”主题演讲比赛,满分10分,得分均为整数,成绩大于等于6分为合格,大于等于9分为优秀,这次演讲比赛中甲、乙两组学生(各10名学生)成绩分布的条形统计图如下图:(1)补充完成下列的成绩统计分析表: 组别 平均分中位数众数方差合格率优秀率甲 6.7 6 3.41 90% 20% 乙7.1 7.51.6980%10%可知,小王是________组的学生;(填“甲”或“乙”)(3)结合两个小组的成绩分析,你觉得哪个组的成绩更好一些?说说你的理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据数据11a +、22a +、33a +、44a +、55a +比数据1a 、2a 、3a 、4a 、5a 的和多15,可得数据11a +、22a +、33a +、44a +、55a +的平均数比a 多3,据此求解即可【详解】解:a+()()24512345132+4+51+3+-+a a a a a a a a a a ++++++++⎡⎤⎣⎦ ÷5 =a+[1+2+3+4+5] ÷5 =a+15÷5 =a+3 故选:B 【点睛】此题主要考察了算术平均数的含义和求法,解题关键是判断出:数据11a +、22a +、33a +、44a +、55a +比数据1a 、2a 、3a 、4a 、5a 的平均数多3.2.C解析:C 【解析】根据数据x 1,x 2,…x n 与数据x 1+a ,x 2+a ,…x n +a 的方差相同这个结论即可解决问题. 解:∵一组数据2,2,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等, ∴这组数据可能是2,3,4,5,6或1,2,3,4,5, ∴x=1或6, 故选C.“点睛”本题考查方差、平均数等知识,解题的关键领域结论:数据x 1,x 2,…x n 与数据x 1+a ,x 2+a ,…x n +a 的方差相同解决问题,属于中考常考题型.3.A解析:A 【分析】根据平均数的计算公式先求出x 的值,再根据中位数和众数的概念进行求解即可. 【详解】∵数据2,x ,4,8的平均数是4,∴这组数的平均数为2484x +++=4,解得:x =2; 所以这组数据是:2,2,4,8,则中位数是242+=3. ∵2在这组数据中出现2次,出现的次数最多,∴众数是2. 故选A . 【点睛】本题考查了平均数、中位数和众数,平均数的计算方法是求出所有数据的和,然后除以数据的总个数;据此先求得x 的值,再将数据按从小到大排列,将中间的两个数求平均值即可得到中位数,众数是出现次数最多的数.4.A解析:A 【解析】∵5791113,,,,的平均数是9,方差是8,,,,,的方差大,一组数据2,4,6,8,x的方差比数据5791113∴这组数据可能是x(x<0),2,4,6,8或2,4,6,8,x(x>10),观察只有A选项符合,故选A.5.B解析:B【分析】利用二元一次方程组的解的定义、不等式的性质、三角形的内角的性质及众数的定义分别判断后即可确定正确的选项.【详解】解:(1)二元一次方程组的两个方程的所有公共解,叫做二元一次方程组的解,故原命题错误,不符合题意;(2)如果a>b,则当c<0时,ac>bc,故原命题错误,不符合题意;(3)三角形的外角等于与它不相邻的两个内角的和,正确,符合题意;(4)多边形内角和等于(n-2)×180°,故原命题错误,不符合题意;(5)数据1,2,3,4,5没有众数,故错误,不符合题意,正确的个数为1个,故选:B.【点睛】本题考查了二元一次方程组的解的定义、不等式的性质、三角形的内角的性质及众数的定义,属于基础知识,比较简单.6.C解析:C【分析】根据中位数、众数、方差、平均数的概念来解答.【详解】解:①平均数:甲组:(50×2+60×5+70×10+80×13+90×14+100×6)÷50=80,乙组:(50×4+60×4+70×16+80×2+90×12+100×12)÷50=80,②S甲2=172<S乙2=256,故甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数90>乙组成绩的众数70;④成绩≥80的人数甲组33人比乙组26人多;从中位数来看,甲组成绩80=乙组成绩80,故错误.⑤成绩高于或等于90分的人数乙组24人比甲组20人多,高分段乙组成绩比甲组好.故①②③⑤正确.故选:C.【点睛】此题考查中位数和众数的定义.解题关键在于掌握各定义性质.7.C解析:C【分析】先判断出m ,n 中至少有一个是9,再用平均数求出12m n +=,即可求出这两个数,由中位数的定义排序后求中位数即可. 【详解】解:∵一组数据4,m ,5,n ,9的众数为9, ∴m ,n 中至少有一个是9,∵一组数据4,m ,5,n ,9的平均数为6,45965m n ++++=∴12m n +=∴m ,n 中一个是9,另一个是3 ∴这组数按从小到大排列为:3,4,5,9,9. ∴这组数的中位数为:5. 故选:C. 【点睛】本题考查了众数、平均数和中位数的知识.能结合平均数和众数的定义对这组数据正确分析是解决此题的关键.8.C解析:C 【分析】根据平均数求出x 的值,再利用中位数定义即可得出答案. 【详解】∵5,6,6,x ,7,8,9,这组数据的平均数是7, ∴()775667898x =⨯-+++++=, ∴这组数据从小到大排列为:5,6,6,7,8,8,9 ∵这组数据最中间的数为7, ∴这组数据的中位数是7. 故选C . 【点睛】此题主要考查了中位数,根据平均数正确得出x 的值是解题关键.9.C解析:C 【分析】根据中位数以及众数和平均数和极差、方差的定义分别判断得出即可. 【详解】A 、当数据是奇数个时,按大小排列后,中位数就是一组数据中最中间的一个数,数据个数为偶数个时,按大小排列后,最中间的两个的平均数是中位数,故此选项错误;B 、8,9,9,10,10,11这组数据的众数是9和10,故此选项错误;C、如果x1,x2,x3,…,x n的平均数是x,那么(x1-x)+(x2-x)+…+(x n-x)=x1+x2+x3+…+x n-n x=0,故此选项正确;D、一组数据的方差与极差没有关系,故此选项错误;故选C.【点睛】此题主要考查了中位数以及众数和平均数和极差、方差的定义,根据定义举出反例是解题关键.10.B解析:B【解析】【分析】要判断甲,乙射击成绩的稳定性就是要比较两人成绩的方差的大小,关键是求甲的方差.甲的这组数中的众数是8就说明a,b,c中至少有两个是8,而平均数是6,则可以得到a,b,c三个数其中一个是2,另两个数是8,求得则甲的方差,再进行比较得出结果.【详解】∵这组数中的众数是8,∴a,b,c中至少有两个是8,∵平均数是6,∴a,b,c三个数其中一个是2,∴ (4+1+1+4+4+16)=5,∵5>4,∴乙射击成绩比甲稳定.故选:B.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.11.B解析:B【解析】【分析】根据众数,中位数,平均数的定义解答.【详解】解:该班共有6+5+5+8+7+7+4=42(人),成绩27分的有8人,人数最多,众数为27;该班学生这次考试成绩的平均数是=142(24×6+25×5+26×5+27×8+28×7+29×7+30×4)=27,该班学生这次考试成绩的中位数是第21名和第22名成绩的平均数为27分,错误的为B,故选:B .【点睛】本题考查的是众数,中位数,平均数,熟练掌握众数,中位数,平均数的定义是解题的关键.12.A解析:A【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:在这一组数据中20是出现次数最多的,故众数是20;将这组数据从大到小的顺序排列后,处于中间位置的数是16,16,那么这组数据的中位数16.故选:A .【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是一组数据中出现次数最多的数.二、填空题13.912【分析】利用平均数求法和方差的方法分别列式求得平均数和方差得出答案即可【详解】∵x1x2…xn 的平均数为2∴x1+x2+…+xn=2n ∴=2×2+5=9∵原平均数为2新数据的平均数变为9则原来解析:9 12【分析】利用平均数求法和方差的方法分别列式求得平均数和方差得出答案即可.【详解】∵x 1、x 2、…x n 的平均数为2,∴x 1+x 2+…+x n =2n , ∴12252525n x x x n++++⋯++ =2×2+5=9, ∵原平均数为2,新数据的平均数变为9,则原来的方差S 12=1n [(x 1-2)2+(x 2-2)2+…+(x n -2)2]=3, 现在的方差S 22=1n [(2x 1+5-9)2+(2x 2+5-9)2+…+(2x n +5-9)2] =1n[4(x 1-2)2+4(x 2-2)2+…+4(x n -2)2]=4×3=12.故答案为:9,12.【点睛】此题考查平均数与方差的意义,掌握平均数与方差的计算方法是解题的关键.14.2【分析】根据方差是用来衡量一组数据波动大小的量每个数都加3所以波动不会变方差不变【详解】解:设abc 的平均数是d 所以方差不变故答案为:2【点睛】本题主要考查了方差的公式解题的关键是当数据都加上一个解析:2【分析】根据方差是用来衡量一组数据波动大小的量,每个数都加3,所以波动不会变,方差不变.【详解】解:设a 、b 、c 的平均数是d,()222211S =()()23a d b d c d ⎡⎤-+-+-=⎢⎥⎣⎦ , ()222221S =33(33)(33)23a d b d c d ⎡⎤+-+++-+++-+=⎢⎥⎣⎦ , ()222221S =()()23a d b d c d ⎡⎤-+-+-=⎢⎥⎣⎦, 所以方差不变.故答案为:2.【点睛】本题主要考查了方差的公式,解题的关键是当数据都加上一个数时,方差不变.15.86【分析】根据加权平均数的计算公式列出算式再进行计算即可得出答案【详解】解:根据题意得:90×50+80×30+85×20=45+24+17=86(分)答:该选手的最后得分是86分故答案为86【点解析:86【分析】根据加权平均数的计算公式列出算式,再进行计算即可得出答案.【详解】解:根据题意得:90×50%+80×30%+85×20%=45+24+17=86(分).答:该选手的最后得分是86分.故答案为86.【点睛】本题考查了加权平均数的求法.本题易出现的错误是求90,80,85这三个数的平均数,对平均数的理解不正确.16.5【解析】【分析】直接利用中位数定义求解【详解】第50个数和第55个数都是5所以这100名学生所植树棵数的中位数为5(棵)故答案为5【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排解析:5【解析】【分析】直接利用中位数定义求解.【详解】第50个数和第55个数都是5,所以这100名学生所植树棵数的中位数为5(棵).故答案为5.【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.17.乙【解析】【分析】根据方差的意义方差反映了一组数据的波动大小根据方差越小波动越小故可由两班的方差得到结论【详解】∵S2甲>S2乙∴成绩较为稳定的是乙故答案为乙【点睛】本题考查了方差的意义:反映了一组解析:乙【解析】【分析】根据方差的意义,方差反映了一组数据的波动大小,根据方差越小,波动越小,故可由两班的方差得到结论.【详解】∵S2甲>S2乙∴成绩较为稳定的是乙.故答案为乙.【点睛】本题考查了方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18.234【解析】【分析】将折线统计图中的数据按从小到大进行排序然后根据中位数的定义即可确定【详解】从图中看出五天的游客数量从小到大依次为219224234249254则中位数应为234故答案为234【解析:23.4【解析】【分析】将折线统计图中的数据按从小到大进行排序,然后根据中位数的定义即可确定.【详解】从图中看出,五天的游客数量从小到大依次为21.9,22.4,23.4,24.9,25.4,则中位数应为23.4,故答案为23.4.【点睛】本题考查了中位数的定义,熟知“中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)”是解题的关键.19.【解析】分析:先计算出这组数据的平均数再根据方差公式进行计算即可详解:故答案为:点睛:此题考查了方差用到的知识点是方差公式一般地设n 个数据x1x2…xn 的平均数为则方差它反映了一组数据的波动大小方差 解析:87【解析】分析:先计算出这组数据的平均数,再根据方差公式进行计算即可. 详解:1(7996988)87x =++++++=, 2222218[(78)3(98)(68)2(88)]77S =-+-+-+-=. 故答案为:87点睛:此题考查了方差,用到的知识点是方差公式,一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差2222121[()()...()]n S x x x x x x n=-+-++-,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 20.【解析】【详解】根据平均数的概念和公式可知5个数据的和为5×7=353个数据的和为3k 因此这8个数的和为35+3k 因此其平均数为(35+3k )÷8即故答案为: 解析:35+38k 【解析】【详解】根据平均数的概念和公式,可知5个数据的和为5×7=35,3个数据的和为3k ,因此这8个数的和为35+3k ,因此其平均数为(35+3k )÷8,即35+38k . 故答案为:35+38k . 三、解答题21.(1)见解析;(2)108,4;(3)甲校85分,乙校85分;(4)见解析【分析】(1)甲校得“90分”的有6人,占调查人数的30%,可求出调查人数,再用总人数减其它分数段的人数,求出得100分的人数,从而补全统计图;(2)用360︒乘以得90分的人数所占的百分比求出90分所在扇形的圆心角,用总人数减去乙校其它分数段的人数求出得80分的人数;(3)根据平均数的计算公式求出甲校和乙校的平均成绩;(4)从方差的大小,得出数据的离散程度.【详解】解:(1)甲校参赛的总人数是:630%20÷=(人),100分的人数有:206365---=(人),补全统计图如下:(2)图①中,90分所在扇形的圆心角是:36030%108︒⨯=︒,图③中80分有:207184---=(人),故答案为:108,4;(3)甲校的平均成绩是:1(7068039061005)8520⨯+⨯+⨯+⨯=(分), 乙校的平均成绩是:1(7078049011008)8520⨯+⨯+⨯+⨯=(分). (4)甲、乙两校的平均分相同 ,22135175S S =<=乙甲,∴甲校的成绩离散程度较小,比较稳定.【点睛】此题考查中位数、平均数的意义,条形统计图、扇形统计图的意义,理解各个概念的内涵和外延是正确解答的前提.22.(1)6.8;6.9.(2)A ;(3)9360(kg ).【分析】(1)判断出A 组样本容量,根据中位数的定义和A 年级在68x ≤<这一组的数值即可求解;根据中位数的定义即可得出B 组统计的众数;(2)根据平均数和中位数进行比较,即可得出结论;(3)用A 、B 两个年级的平均数乘以6再乘以天数即可求解.【详解】(1)解:由A 组的直方图可得样本容量为1+2+5+6+4+2=20,故中位数为排序后第10、11个数的中位数,又因为这两个数都落在68x ≤<这一组,所以第10、11个数分别是6.6、7.0, 故 6.67.0 6.82m +==,在B 组数据中6.9出现的次数最多,故众数n=6.9;(2)从平均数、中位数看,A 组学生做的比较好,故答案为:A ;(3)6.4 6.6624093602+⨯⨯=(kg ). 答:该学校一年的餐余总质量约为9360kg . 【点睛】本题考查平均数、中位数、众数,直方图、用样本估计总体等知识,综合性较强,根据所学知识理解题意好题意,并结合相关统计量分析是解题关键.23.(1)60;(2)中位数是3小时,平均数是2.75小时;(3)600.【分析】(1)根据统计图求出2小时人数所占百分比,再根据2小时的人数可以求得本次共抽取了学生多少人,阅读3小时的学生有多少人,从而可以将条形统计图补充完整;(2)根据统计图中的数据可以求得众数和平均数;(3)根据统计图中的数据可以求得课外阅读时间为3小时的学生有多少人.【详解】由扇形统计图知,2小时人数所占的百分比为90360︒⨯︒100%=25%, ∴本次共抽取的学生人数为15÷25%=60(人), 则3小时的人数为60﹣(10+15+10+5)=20(人),补全条形图如下:故答案为60;(2)这组数据的中位数是332+=3(小时),平均数为1102153204105560⨯+⨯+⨯+⨯+⨯=2.75(小时). 故答案为中位数是3小时.平均数为2.75小时.(3)估计体育锻炼时间为3小时的学生有18002060⨯=600(人). 【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(1)40;(2)30元,50元;(3)50500元.【分析】(1)根据条形统计图的信息把计划购买课外书的不同费用的人数相加计算即可; (2)根据众数的定义,中位数的定义,逐一进行求解即可;(3)先根据条形统计图展现的数据,计算样本中每个学生平均花费,再用全校总人数×每个学生平均花费,即可估算全校购买课外书的总花费.【详解】解:(1)6121084=40++++(2)购买30元课外书的人数最多,所以这次抽样的众数是30元;购买课外书排第20,第21的费用均为50元,所以这次抽样的中位数是50元; (3)样本中平均每个学生的费用是620123010508804100=50.56121084⨯+⨯+⨯+⨯+⨯++++(元) 因此该校1000学生购买课外书的总花费约为100050.5=50500⨯(元)答:该校本学期计划购买课外书的总花费约为50500元.【点睛】本题主要考查抽样调查中样本容量,众数,中位数的定义及由样本数据估算总体数量的知识.25.(1)50,32;(2)众数为4;中位数是3;(3)420【分析】(1)根据2台的人数和所占百分比可求出调查的学生总人数,用4台的人数除以总人数可得m 的值;(2)根据众数和中位数的定义求解;(3)用1500乘以拥有3台移动设备的学生人数所占的百分比即可.【详解】解:(1)本次接受随机抽样调查的学生人数为:10÷20%=50(人),16%100%32%50m , ∴m =32,故答案为:50,32; (2)∵这组样本数据中,4出现了16次,出现次数最多,∴这组数据的众数为4;∵将这组数据从小到大排列,其中处于中间的两个数均为3,且332+=3, ∴这组数据的中位数是3;(3)1500×28%=420(人),答:估计该校学生家庭中;拥有3台移动设备的学生人数约为420人.【点睛】本题考查了条形统计图和扇形统计图的综合运用,众数和中位数的定义以及样本估计总体,能够从不同的统计图中获取有用信息是解题的关键.26.(1)6;8;(2)甲;(3)乙组的成绩更好一些.【分析】(1)先根据条形统计图得出甲、乙两组各学生的成绩,再根据中位数、众数的定义即可求得;(2)根据中位数即可判断,小明的成绩大于中位数;(3)可以从平均分、中位数、众数、方差四个方面综合分析.【详解】解:(1)∵甲组的成绩为:3,6,6,6,6,6,7,8,9,10.∴甲组中位数为6,∵乙组的成绩为:5,5,6,7,7,8,8,8,8,9.∴乙组众数为8,故答案为:6;8.(2)∵小明的成绩为7分属中游略偏上,甲组的中位数是6,乙组的中位数为7.5,∴小明在甲组.故答案为:甲.(3)因为乙组成绩的平均分、中位数、众数均比甲高,而乙组成绩的方差又比甲组小,所以乙组的成绩比甲组更稳定,因此综合分析乙组的成绩更好一些.【点睛】本题考查平均分、中位数、众数、方差等概念,正确掌握这些概念是解题的关键.。
人教版初中数学八年级数学下册第五单元《数据的分析》检测卷(含答案解析)(1)
一、选择题1.反映一组数据变化范围的是()A.极差B.方差C.众数D.平均数2.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是()A.21,21 B.21,21.5 C.21,22 D.22,223.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环)9.149.159.149.15方差 6.6 6.8 6.7 6.6根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁4.一组数据:3,2,5,3,7,5,x,它们的众数为5,则x=()A.2 B.3 C.5 D.75.样本数据4,m,5,n,9的平均数是6,众数是9,则这组数据的中位数是( )A.3 B.4 C.5 D.96.有一组数据:1,1,1,1,m.若这组数据的方差是0,则m为()A.4-B.1-C.0 D.17.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择( )A.甲B.乙C.丙D.丁8.某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是()A.众数是8 B.中位数是8 C.平均数是8.2 D.方差是1.29.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的()A.平均数B.方差C.众数D.中位数10.为了帮助我市一名贫困学生,某校组织捐款,现从全校所有学生的捐款数额中随机抽取10名学生的捐款数统计如下表:捐款金额/20305090元人数2431A.10名学生是总体的一个样本B.中位数是40C.众数是90D.方差是40011.甲、乙、丙、丁四位选手各进行了10次射击,射击成绩的平均数和方差如下表:选手甲乙丙丁平均数(环)9.09.09.09.0方差0.25 1.00 2.50 3.00则成绩发挥最不稳定的是( )A.甲B.乙C.丙D.丁12.甲、乙两位射击运动员参加射击训练,各射击20次,成绩如下表所示:设甲、乙两位运动员射击成绩的方差分别为S 2甲和S2乙,则下列说法正确的是( )A .S 2甲<S 2乙B .S 2甲=S 2乙C .S 2甲>S 2乙D .无法比较S 2甲和S 2乙的大小二、填空题13.据统计,某车间10名员工的日平均生产零件个数为8个,方差为2.5个2,引入新技术后,每名员工每天都比原先多生产1个零件,则现在日平均生产零件个数为______个,方差为______个2.14.一组数据1x ,2x ,3x ,4x ,5x 的平均数是5,方差是3,则143x -,243x -,343x -,443x -,543x -的平均数是________,方差是________.15.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图6-Z -2所示,那么三人中成绩最稳定的是________.16.一组数据1,2,3,x ,5的平均数是3,则该组数据的方差是_____. 17.已知一组数据为:5,3,3,6,3则这组数据的方差是______.18.一组数据2、3、5、6、x 的平均数正好也是这组数据的中位数,那么正整数x 为_____.19.如图所示是某校中学部篮球兴趣小组年龄结构条形统计图,该小组年龄最小为13岁,最大为17岁,根据统计图所提供的数据,该小组组员年龄的中位数为__________岁.20.已知x 1,x 2,x 3的平均数x =10,方差s 2=3,则2x 1,2x 2,2x 3的平均数为__________,方差为__________.三、解答题21.学校广播站要招聘一名播音员,考查形象、知识面、普通话三个项目(每个项目按百分制计分).若按形象占10%,知识面占40%,普通话占50%计算加权平均数,作为最后评定的总成绩.李颖和张明两位同学的各项成绩如表所示: 项 目 选 手 形 象 知识面 普通话 李 颖 70 80 88 张 明8075x(1)计算李颖同学的总成绩;(2)若张明同学要在总成绩上超过李颖同学,求x的范围.22.已知一组数据x1,x2,x3,…,x n的平均数为5,求数据x1+5,x2+5,x3+5,…,x n+5的平均数23.某校需要选出一名同学去参加温州市“生活中的数学说题”比赛,现有5名候选人参加该校举办的模拟说题比赛,挑选出成绩最高者参加说题比赛.已知5名候选人模拟说题比赛成绩情况如表所示.某校5名候选人模拟说题比赛成绩情况(1)5名候选人模拟说题比赛成绩的中位数是;(2)由于C、E两名候选人成绩并列第一;所以学校决定根据两人平时成绩、任课老师打分、模拟说题比赛成绩按2:3:5的比例最后确定成绩,最终谁将参加说题比赛.已知C、E两名候选人平时成绩、任课老师打分情况如表所示.24.受疫情影响,某地无法按原计划正常开学.在延迟开学期间该地区组织了在线教学活动.开学后,某校针对各班在线教学的个性化落实情况,通过初评决定从甲、乙、丙三个班中推荐一个作为在线教学先进班级,下表是这三个班的五项指标的考评得分表(单位:分):根据统计表中的信息解答下列问题:(1)请确定如下的“五项指标的考评得分分析表”中的a、b、c的值:(2)如果学校把“课程设置”、“课程质量”、“在线答疑”、“作业情况”、“学生满意度”这五项指标得分按照2∶2∶3∶1∶2的比例确定最终成绩,请你通过计算判断应推荐哪个班为在线教学先进班级?25.为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表: 甲乙射击成绩统计表平均数 中位数 方差 命中10环的次数 甲 7乙7.5 5.41甲乙射击成绩折线图(1)请补全上述图表(请直接在统计表中填空和补全折线图);(2)如果规定成绩较稳定者胜出,则_____胜出,理由是____________________; (3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?说明理由.26.根据重庆轨道集团提供的日客运量统计,2019年2月21日重庆轨道交通首次日客运量突破300万乘次,其中近期开通的重庆轨道交通环线日客运量为21.5万乘次.据了解,某工作日上午7点至9点轨道环线四公里站有20列列车进出站,每列车进出站时,将上车和下车的人数记录下来,各得到20个数据,并将数据进行整理,绘制成了如下两幅不完整统计图.(数据分组为:A 组:170180x ≤<,B 组:180190x ≤<,C 组:190200x ≤<,D 组:200210x ≤<,E 组:210220x ≤≤)I .上车人数在C 组的是:190,190,191,192,193,193,195,196,198,198,198,198;II .上车人数的平均数、中位数如下表:平均数中位数上车人数(人)194a根据以上信息,回答下列问题:(1)请补全频数分布直方图;(2)表中a=________,扇形统计图中m=_________,扇形统计图中E组所在的圆心角度数为________度;(3)请利用平均数,估算一周内5个工作日的上午7点至9点重庆轨道环线四公里站的上车总人数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据极差是刻画数据离散程度的一个统计量.它能反映数据的波动范围大小解答.【详解】解:反映一组数据变化范围的是极差;故选:A.【点睛】本题考查了极差、方差、众数以及平均数的概念和意义,掌握极差是刻画数据离散程度的一个统计量.它能反映数据的波动范围是解题的关键.2.C解析:C【解析】这组数据中,21出现了10次,出现次数最多,所以众数为21,第15个数和第16个数都是22,所以中位数是22. 故选C.3.D解析:D 【解析】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【详解】∵==x x x x >乙丁甲丙, ∴从乙和丁中选择一人参加比赛,∵22S S >乙丁,∴选择丁参赛, 故选D .【点睛】本题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.4.C解析:C 【分析】根据众数的定义(一组数据中出现次数最多的数叫众数),直接写出x 的值即可得到答案. 【详解】解:∵一组数据:3,2,5,3,7,5,x ,它们的众数为5, ∴5出现的次数最多, 故5x =, 故选C . 【点睛】本题主要考查众数的基本概念,熟练掌握众数的基本概念是解题的关键,一组数据中出现次数最多的数据叫做众数.5.C解析:C 【分析】先判断出m ,n 中至少有一个是9,再用平均数求出12m n +=,即可求出这两个数,由中位数的定义排序后求中位数即可. 【详解】解:∵一组数据4,m ,5,n ,9的众数为9, ∴m ,n 中至少有一个是9,∵一组数据4,m ,5,n ,9的平均数为6,45965m n ++++=∴12m n +=∴m ,n 中一个是9,另一个是3∴这组数按从小到大排列为:3,4,5,9,9.∴这组数的中位数为:5.故选:C.【点睛】本题考查了众数、平均数和中位数的知识.能结合平均数和众数的定义对这组数据正确分析是解决此题的关键.6.D解析:D【分析】方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.【详解】依题意可得,平均数:45mx∴224441555m mm解得m=1,故选D.【点睛】本题考查了方差,熟练运用方差公式是解题的关键.7.C解析:C【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,选出方差最小,而且平均数较大的同学参加数学比赛.【详解】∵3.6<7.4<8.1,∴甲和丙的最近几次数学考试成绩的方差最小,发挥稳定,∵95>92,∴丙同学最近几次数学考试成绩的平均数高,∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择丙.故选C.【点睛】此题主要考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.8.D解析:D【分析】首先根据图形数出各环数出现的次数,在进行计算众数、中位数、平均数、方差.【详解】根据图表可得10环的2次,9环的2次,8环的3次,7环的2次,6环的1次.所以可得众数是8,中位数是8,平均数是102+92+83+72+61=8.210⨯⨯⨯⨯⨯方差是222222(108.2)2(98.2)3(88.2)2(78.2)(68.2)1.5610⨯-+⨯-+⨯-+⨯-+-=故选D【点睛】本题主要考查统计的基本知识,关键在于众数、中位数、平均数和方差的概念.特别是方差的公式.9.B解析:B【分析】平均数、众数、中位数反映的是数据的集中趋势,方差反映的是数据的离散程度,方差越大,说明这组数据越不稳定,方差越小,说明这组数据越稳定.【详解】解:由于方差能反映数据的稳定性,故需要比较这两名同学5次短跑训练成绩的方差.故选B.【点睛】考核知识点:均数、众数、中位数、方差的意义.10.D解析:D【分析】根据样本、众数、中位数及方差的定义,结合表格分别进行解答,即可得出答案.【详解】A、10名学生的捐款数是总体的一个样本,故本选项错误;B、中位数是30,故本选项错误;C、众数是30,故本选项错误;D、平均数是:(20×2+30×4+50×3+90)÷10=40(元),则方差是:110×[2×(20﹣40)2+4×(30﹣40)2+3×(50﹣40)2+(90﹣40)2]=400,故本选项正确,故选D.【点睛】本题考查了中位数、方差、众数及样本的知识,掌握相关的定义以及求解方法是解题的关键.11.D解析:D【解析】【分析】根据方差的定义,方差越小数据越稳定,反之波动越大.【详解】由表可知:丁的方差最大,这四个人中,发挥最不稳定的是丁故选:D【点睛】本题考查方差的意义,熟知方差越小数据越稳定,反之波动越大是解题关键. 12.C解析:C【解析】【分析】先计算两组数据的平均数,再计算它们的方差,选择正确的答案即可.【详解】甲的平均数为:120×5×(7+8+9+10)=172乙的平均数为:120×(4×7+6×8+6×9+4×10)=172S甲2=120×{5×[(7-172)2+(8-172)2+(9-172)2+(10-172)2]}=14×[94+14+14+94]=54;S乙2=120×[4×[(7-172)2+6×(8-172)2+6×(9-172)2+4×(10-172)2]=120×[9+64+64+9]=21 20;∵54>2120∴S甲2>S乙2故选C.【点睛】此题主要考查了平均数及方差的知识.方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x ,则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 二、填空题13.925【分析】根据平均数与方差的定义计算即可得答案【详解】∵每名员工每天都比原先多生产1个零件∴现在日平均生产零件个数为=9设原先每人日生产零件的个数为:x1x2x3……x10∴原先的方差为=25∴解析:9 2.5【分析】根据平均数与方差的定义计算即可得答案.【详解】∵每名员工每天都比原先多生产1个零件,∴现在日平均生产零件个数为8101010⨯+=9, 设原先每人日生产零件的个数为:x 1、x 2、x 3、……x 10,∴原先的方差为22212101(8)(8)(8)10x x x ⎡⎤-+-+-⎣⎦…+=2.5, ∴现在的方差为22212101(19)(19)(19)10x x x ⎡⎤+-++-++-⎣⎦…+=22212101(8)(8)(8)10x x x ⎡⎤-+-+-⎣⎦…+=2.5, 故答案为:9,2.5【点睛】本题考查平均数与方差,熟练掌握定义与计算公式是解题关键.14.1748【分析】根据平均数和方差公式的变形即可得到结果【详解】一组数据x1x2x3x4x5的平均数是5则4x1-34x2-34x3-34x4-34x5-3的平均数是4(x1+x2+x3+x4+x5)解析:17 48【分析】根据平均数和方差公式的变形即可得到结果.【详解】一组数据x 1,x 2,x 3,x 4,x 5的平均数是5,则4x 1-3,4x 2-3,4x 3-3,4x 4-3,4x 5-3的平均数是15[4(x 1+x 2+x 3+x 4+x 5)-15]=17, ∵新数据是原数据的4倍减3;∴方差变为原来数据的16倍,即48.故答案为:17;48.【点睛】本题考查方差的计算公式的运用:一般地设有n 个数据,x 1,x 2,…x n ,若每个数据都放大或缩小相同的倍数后再同加或同减去一个数,其平均数也有相对应的变化,方差则变为这个倍数的平方倍.15.乙【分析】通过图示波动的幅度即可推出【详解】通过图示可看出一至三次甲乙丙中乙最稳定波动最小四至五次三人基本一样故选乙【点睛】考查数据统计的知识点解析:乙【分析】通过图示波动的幅度即可推出.【详解】通过图示可看出,一至三次甲乙丙中,乙最稳定,波动最小,四至五次三人基本一样,故选乙【点睛】考查数据统计的知识点16.2【分析】先用平均数是3可得x 的值再结合方差公式计算即可【详解】平均数是3(1+2+3+x+5)解得:x=4∴方差是S2(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)210=2故解析:2【分析】先用平均数是3可得x 的值,再结合方差公式计算即可.【详解】平均数是315=(1+2+3+x +5),解得:x =4, ∴方差是S 215=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]15=⨯10=2. 故答案为2.【点睛】本题考查了平均数和方差的概念,解题的关键是牢记方差的计算公式,难度不大. 17.【解析】【分析】先求出平均数再根据方差的公式计算即可【详解】这组数据的平均数是:则这组数据的方差是;故答案为【点睛】此题考查了方差:一般地设n 个数据的平均数为则方差它反映了一组数据的波动大小方差越大 解析:1.6【解析】【分析】先求出平均数,再根据方差的公式计算即可.【详解】这组数据的平均数是:()5336354++++÷=, 则这组数据的方差是(22221S [(54)3(34)64) 1.65⎤=-+⨯-+-=⎦; 故答案为1.6.【点睛】此题考查了方差:一般地设n 个数据,1x ,2x ,n x ⋯的平均数为x ,则方差(222212n 1S [(x x)(x x)x x)n⎤=-+-+⋯+-⎦,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 18.-149【分析】根据平均数的计算公式先表示出这组数据的平均数再根据中位数的定义进行讨论即可得出答案【详解】∵数据2356x 的平均数是=∴当x=-1时这组数据的平均数是3中位数也是3;当x=4时这组数解析:-1、4、9【分析】根据平均数的计算公式先表示出这组数据的平均数,再根据中位数的定义进行讨论,即可得出答案.【详解】∵数据2、3、5、6、x 的平均数是23565x ++++=165x +, ∴当x=-1时,这组数据的平均数是3,中位数也是3;当x=4时,这组数据的平均数是4,中位数也是4;当x=9时,这组数据的平均数是5,中位数也是5;∴x=-1,4或9;故答案为-1,4或9.【点睛】 此题考查了中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.19.155【解析】【分析】将该小组年龄按照从小到大顺序排列找出中位数即可【详解】根据题意排列得:131314141415151515161616161617171717则该小组组员年龄的中位数为(15+解析:15.5【解析】【分析】将该小组年龄按照从小到大顺序排列,找出中位数即可.【详解】根据题意排列得:13,13,14,14,14,15,15,15,15,16,16,16,16,16,17,17,17,17,则该小组组员年龄的中位数为12(15+16)=15.5岁, 故答案为15.5【点睛】 此题考查了条形统计图,以及中位数,弄清中位数的计算方法是解本题的关键. 20.2012【解析】∵=10∴=10设222的方差为则=2×10=20∵∴==4×3=12故答案为20;12点睛:本题考查了当数据加上一个数(或减去一个数)时方差不变即数据的波动情况不变平均数也加或减这解析:20 12【解析】 ∵x =10, ∴1233x x x ++=10, 设21x ,22x ,23x 的方差为, 则1232223x x x y ++==2×10=20, ∵22221231(10)(10)(10)3s x x x ⎡⎤=-+-++⎣⎦ , ∴22221231(2)(2)(2)S x y x y x y n '⎡⎤=-+-+-⎣'⎦ =132221234(10)4(10)4(10)x x x ⎡⎤-+-++⎣⎦ =4×3=12.故答案为20;12. 点睛:本题考查了当数据加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变,平均数也加或减这个数;当乘以一个数时,方差变成这个数的平方倍,平均数也乘以这个数.三、解答题21.(1)83;(2)90<x ≤100【分析】(1)按照各项目所占比求得总成绩;(2)各项目所占比求得总成绩大于83分即可,列出不等式求解.【详解】(1)70×10%+80×40%+88×50%=83(分);(2)80×10%+75×40%+50%•x >83,∴x >90.∵每个项目按百分制计分∴90<x≤100∴李颖同学的总成绩是83分,张明同学要在总成绩上超过李颖同学,则他的普通话成绩应90<x≤100.【点睛】本题综合考查平均数的运用.解题的关键是正确理解题目的含义.22.10【分析】本题首先将1x ,2x ,3x ,…,n x 的和表示出来,继而将其求和值代入目标式子中求解本题.【详解】∵1x ,2x ,3x ,…,n x 的平均数为5,∴1235n x x x x n +++⋅⋅⋅+=,∴15x +,25x +,35x +,…,5n x +的平均数为:[]1231231155(5)(5)(5)(5)(5)10n n n n x x x x x x x x n n n n +⨯++++++⋅⋅⋅++=⨯+++⋅⋅⋅++==.【点睛】本题考查平均数,解题关键在于理解其概念,其次注意计算精度.23.(1)85;(2)最终候选人E 将参加说题比赛【分析】(1)根据中位数的定义直接进行解答即可;(2)根据算术平均数的计算公式先求出C 、E 两名候选人的平均成绩,再进行比较,即可得出答案.【详解】解:(1)把这些数从小到大排列为:75,83,85,90,90,则名候选人模拟说题比赛成绩的中位数是85分;故答案为:85;(2)∵C 的平均成绩是:952803905235⨯+⨯+⨯++=88(分), E 的平均成绩是:852*********⨯+⨯+⨯++=89(分), ∴88<89,∴最终候选人E 将参加说题比赛.【点睛】本题考查中位数、平均数,加权平均数等知识,解题的关键是理解平均数的定义. 24.(1)a =10,b =8,c =8.6;(2)推荐丙班级为网上教学先进班级.【分析】(1)直接根据中位数、众数、平均分的概念即可求解;(2)先根据各项得分的权重求得各班的最终成绩,然后比较即可判断.【详解】解:(1)∵甲班的五项指标得分由小到大重新排列为:6、7、10、10、10∴甲班的中位数为:10分;∵乙班的五项指标得分为:10、8、8、9、88分出现次数最多,∴乙班的众数是:8分;∵(9+10+8+7+9)÷5=8.6(分),∴丙班的平均分是:8.6分;∴a =10,b =8,c =8.6.(2) 甲:10×20%+10×20%+6×30%+10×10%+7×20%=8.2(分)乙:10×20%+8×20%+8×30%+9×10%+8×20%=8.5(分)丙:9×20%+10×20%+8×30%+7×10%+9×20%=8.7(分),∴推荐丙班级为网上教学先进班级.【点睛】此题主要考查数据的统计和分析,正确理解每个概念是解题关键.25.(1)补全图表见解析;(2)甲,理由见解析;(3)可制定评判规则为:命中10环次数较多者胜出,理由见解析.【分析】(1)根据甲选手成绩的平均数可求出甲选手第8次命中的环数,即可补全折线图;然后根据平均数、中位数和方差的求法补全统计表;(2)根据方差的意义可得答案;(3)可根据乙选手命中10环1次,甲选手没有命中10环来制定评判规则.【详解】解:(1)甲选手第8次命中的环数为:7×10-(9+6+7+6+5+7+7+8+9)=6, 将甲选手的成绩从小到大排列为:5,6,6,6,7,7,7,8,9,9,中间两次的环数分别为:7,7,故中位数为7772+=, 2222221=5767377387972=1.610S 甲, 乙选手成绩的平均数为:24687789910=710, 补全表格和折线图为:(2)如果规定成绩较稳定者胜出,则甲胜出,理由:因为甲的方差小于乙的方差,所以甲的成绩比乙稳定,即甲胜出;(3)可制定评判规则为:命中10环次数较多者胜出,理由:因为乙选手命中10环1次,甲选手没有命中10环,所以乙胜出.【点睛】本题考查了折线统计图,平均数、中位数、方差的意义与求法,能够从图表中得出有用信息是解题的关键.26.(1)补图见解析;(2)193,30,36;(3)19400人.【分析】(1)用20减去A、C、D、E组的数量得到B组数量,据此即可补全直方图;(2)利用中位数的概念可求得a的值,用100%减去B、C、D、E组所占的百分比求得A 组所占的百分比可求得m的值,用360度乘以E组所占的比例即可求得相应圆心角的度数;(3)用样本的平均数乘以这一时间段的进站车数再乘以天数即可得.【详解】(1)B组的数量为:20-2-12-2-1=3,补全频数直方图如图所示:(2)20个数据从小到大排列后位于中间的应该是第10、第11个数据,A、B、C、D、E组的数据是从小到大进行的,A、B组共有5个数据,C组有12个数据,从小到大排列为:190,190,191,192,193,193,195,196,198,198,198,198,C组中的第5个数据是总数据的第10个,为193,C组中的第6个数据是总数据的第11个,为193,所以中位数为:(193+193)÷2=193,即a=193;m%=100%-25%-20%-15%-10%=30%,所以m=30;扇形统计图中E组所在的圆心角度数为360°×10%=36°,故答案为:193,30,36;(3)估算一周内5个工作日的上午7点至9点重庆轨道环线四公里站的上车总人数为:194×20×5=19400人.【点睛】本题考查了频数分布直方图,扇形统计图,中位数,用样本估计总体等知识,弄清题意,准确识图,熟练运用相关知识是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级下数学《数据的分析》 1.平均数: (1)算术平均数:一组数据中,有n个数据,则它们的算术平均数为
nxxxxn21. (2)加权平均数: 若在一组数字中,x1的权为w1,x2的权为w2,„,xn的权为wn,那么
wwwwxwxwxnnnx212211 叫做x1,x2,„xn的加权平均数。 其中,w1、w2、„、wn分别是x1,x2,„xn的权. 权的理解:反映了某个数据在整个数据中的重要程度。 权的表示方法:比、百分比、频数(人数、个数、次数等)。 2.中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。 3.众数:一组数据中出现次数最多的数据就是这组数据的众数。 4.极差:一组数据中的最大数据与最小数据的差叫做这组数据的极差。极差反映的是数据的变化范围。 平均数:反映了一组数据的平均大小,常用来一代表数据的总体 “平均水平”。 (受极端值影响) 中位数:像一条分界线,将数据分成前半部分和后半部分,因此用来代表一组数据的“中等水平”。 众数:反映了出现次数最多的数据,用来代表一组数据的“多数水平”。这三个统计量虽反映有所不同,但都可表示数据的集中趋势,都可作为数据一般水平的代表。 (中位数,众数不受极端值影响) 5.方差:设有n个数据nxxx,,,21,各数据与它们的平均数的差的平方分别是2221)()(xxxx,,„,,,2)(xxn我们用它们的平均数,即用
])()()[(1222212xxxxxxnSn 来衡量这组数据的波动大小,并把它叫做这组数据的方差。 方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。 一、选择或填空题: 1、8个数的平均数12,4个数的平均为18,则这12个数的平均数为( ). 2、衡量样本和总体的波动大小的特征数是( ) A.平均数 B.方差 C.众数 D.中位数 3、一组数据按从小到大排列为1,2,4,x,6,9这组数据的中位数为5,•那么这组数据的众数为( ) 4、某服装销售商在进行市场占有率的调查时,他最应该关注的是( ) A.服装型号的平均数; B.服装型号的众数; C.服装型号的中位数; D.最小的服装型号
5、人数相同的八年级甲、乙两班学生在同一次数学单元测试中,班级平均分和方差如下:80乙甲xx,2402甲s,1802乙s,则成绩较为稳定的班级是( )
6、某校五个绿化小组一天植树的棵树如下:10、10、12、x、8.已知这组数据的众数与平均数相同,那么这组数据的平均数是( ) 数据10,10,x, 8的中位数和平均数都相等,则中位数为 7、某班20名学生身高测量的结果如下,该班学生身高的中位数是_________抽取的样本容量是_________, 身高 1.53 1.54 1.55 1.56 1.57 1.58 人数 1 3 5 6 4 1 8、如果一组数据1,2,3,4,5的方差是2,那么一组新数据101,102,103,104,105的方差是( ) 9,平均数均是7,甲的方差是1.2,乙的方差是5.8,下列说法中不正确的是( ) A、甲、乙射中的总环数相同。 B、甲的成绩稳定。 C、乙的成绩波动较大 D、甲、乙的众数相同。
10、样本方差的计算式S2=120[(x1-30)2+(x2-30)2 +。。。+(x20-30)2]中,数字20和30分别表示样本中的( )和( ) 12.某超市购进了一批不同价格的皮鞋,下表是该超市在近几年统计的平均数据.要使该超市销售皮鞋收入最大,该超市应多购( )元的皮鞋
13.为了了解参加某运动会的200名运动员的年龄情况,从中抽查了20名运动员的年龄,就这个问题来说,下面说法正确的是( ) A.200名运动员是总体 B.每个运动员是总体 C.20名运动员是一个样本 D.样本容量是20 14.一城市准备选购一千株高度大约为2m的树来进行绿化,•有四个苗圃生产基地投标(单株树的价格都一样).•采购小组从四个苗圃中都任意抽查了20株树苗的高度,得到的数据如下,应选购( ) 树苗平均高度(单位:m) 标准差 甲苗圃 1.8 0.2 乙苗圃 1.8 0.6 丙苗圃 2.0 0.6 丁苗圃 2.0 0.2
15.甲、乙两班举行电脑汉字输入速度比赛,•参赛学生每分钟输入汉字的个数经统计计算后结果如下表,上述结论中正确的番号是( ) 班级 参加人数 中位数 方差 平均数 甲 55 149 191 135 乙 55 151 110 135 某同学得出如下结论:(1)甲、乙两班学生成绩的平均水平相同; (2)乙班优秀的人数多于甲班优秀的人数;(每分钟输入汉字≥150个为优秀) (3)甲班成绩的波动情况比乙班成绩的波动小 16.某校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按50%、20%•、•30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、•丙三人的各项成 绩如下(单位:分),学期总评成绩优秀的是( ) 纸笔测试 实践能力 成长记录 甲 90 83 95 乙 98 90 95 丙 80 88 90
17. 某同学随机调查了“幸福小区”10户家庭一周内使用环保方便袋的数量,数据如下(单位:只):6,5,7,8,7,5,8,10,5,9利用上述数据估计该小区2000户家庭一周内需要环保方便袋 只。 18.某鞋柜售货员为了了解市场的需求,需要知道所销售的鞋子码数的( ) 19.某班英语成绩的平均分是75分,方差为225分2,如果每个学生都多考5分,下列说法正确的是:( ) A方差不变平均分不变 B 平均分变大方差不变化 C 平均分不变方差变大 D 平均分变大方差变大
皮鞋价(元) 160 140 120 100 销售百分率 60% 75% 83% 95% 20.一组数据的方差为2s,将每个数据都扩大三倍再加2,所得到的一组新的数据的方差为( ) 21,一个样本的方差是22221261[(5)(5)(5)]6sxxx,则平均数为( ) 22.某班七个小组人数为:5,5,6,x,7,7,8.已知这组数据的平均数是6,则这组数据的中位数是( ). 23、为了引导学生树立正确的消费观,某班随机调查了10名同学某日的零花钱情况,其统计图表如下:零花钱在4元以上(含4元)的学生所占比例为 ,该班学生每日零花钱的平均数大约是 元。
24、一组数据中游a个x1,b个x2,c个x3, 数组成一个样本,则一样本的平均数为 25.在数据-1,0,4,5,8中插入一个x,使这组数据的中位数为3,则x= 26.在演唱比赛中,8位评委给一名歌手的演唱打分如下:9.3,9.5,9.9,9.4,9.3,8.9,9.2,9.6,若用去尾平均数计算这名歌手最后得分约为________. 27.为了估计湖里有多少鱼,我们从湖里捕上150条鱼作上标记,然后放回湖里去,经过一段时间再捕上300条鱼,其中带标记的鱼有30条,•则估计湖里约有鱼_______条. 28.某人开车100km,在前60km内,时速为90km,在后40km内,时速为120km,则平均速度为_________. 29.某公司欲招聘工人,对候选人进行三项测试:语言、创新、综合知识,并按测试得分1:4:3的比例确定测试总分,已知三项得分分别为88,72,50,•则这位候选人的招聘得分为________. 二、解答题 1.当今,青少年视力水平下降已引起全社会的关注,为了了解某市30000名学生的视力情况,从中抽取了一部分学生进行了一次抽样调查,利用所得数据绘制的频数分布直方图如下:
①本次抽样调查共抽测了 名学生;②参 加抽测的学生的视力的众数在 范围内;中位数在 范围内; ③若视力为4.9及以上为正常,试估计该市学生的视力正常的人数约为多少? 2、 甲、乙两台机床生产同种零件,10天出的次品个数分别是: 甲:0,1,0,2,1,0,1,1,2,2 乙:1,3,0,1,0,2,1,1,0,1请你运用学的知识作出判断,估计哪台机床性能较好。为什么?(注意:要列出式子) 3. 2000年~2005年某市城市居民人均可支配收入情况(如图5所示). 根据图示信息: (1)求该市城市居民人均可支配收入的中位数; (2)哪些年份该市城市居民人均可支配收入比上一年增加了1 000元以上? 说明理由。 4:某养鱼户养鱼三年,第一年放养了2万尾,成活率为7成,在秋季随意捞出10尾,称重为(单位:千克);0.8, 0.9, 1.2, 1.3, 0.8, 0.9, 1.1, 1.0, 1.2, 0.8 (1)估计池塘中鱼的总重量。(2)若将鱼全部卖掉,市场售价为4元每千克,成本投入1600元,求纯收入,(3)若第三年纯收入为132400 元,求第一,二年每年平均增长率。 5、一养鱼专业户为了估计池塘里有多少条鱼,先捕上100条做上标记,然后放回池塘里,过了一段时间,
分组 频数 010x 8
1020x 12 待带标记的一混合于鱼群后,再捕捞3次,记录如下:第一次共捕捞95条,平均重量是2.1千克,有标记的有6条;第二次捕捞107条,平均重量是2.3千克,,带有标记的有7条;第三次捕捞98条,平均重量是1.9千克,带有标记的有7条; (1)问他鱼塘内大约有多少条鱼?(2)问他鱼塘内大约有多少千克的鱼? 6、某球队对对两人进行3分球投篮测试,每人每天投10次,五天中进球的个数统计结果如下: 队员 每人每天进球数 甲 10 6 10 6 8 乙 7 9 7 8 9
经过计算,甲进球的平均数为x甲=8,方差为23.2s甲.(1)求乙进球的平均数x乙和方差2s乙; (2)现从甲、乙两名队员中选出一人去参加3分球投篮大赛,你认为应该选哪名队员去?为什么? 7.(8分)某乡镇企业生产部有技术工人15人,•生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数: 每人加工件数 540 450 300 240 210 120 人 数 1 1 2 6 3 2 (1)写出这15人该月加工零件数的平均数、中位数和众数. (2)假如把每位工人的月加工零件数定为260(件),•你认为这个定额是否合理,为什么?
9. 为了了解全校400名学生参加课外锻炼的情况,随机对40•名学生一周内平均每天锻炼的时间进行了调查如下:(单位:分)40 21 35 24 40 38 23 52 35 62 36 15 51 45 40 42 40 32 43 36 34 53 38 40 39 32 45 40 42 45 50 45 40 50 26 45 40 45 35 40 10. (1):补全频率分布表和频率分布直方图. (2)填空:在这个问题中,总体是_________,样本是________.由统计分析得,•这组数据的平均数是39.35(分),众数是__________,中位数是________. (3)。如果描述该校400名学生一周内平均每天参加锻炼的总体情况,•你认为用平均数、众数、中位数中的哪一个比较合适?