人教版小学四年级数学下册总复习重点知识

合集下载

人教版小学四年级下册数学知识点归纳

人教版小学四年级下册数学知识点归纳

一、四则运算1、运算顺序:①在没有括号的算式里,如果只有加减法或只有乘除法,都要从左往右按顺序(依次)计算。

②在没有括号的算式里,有加减法又有乘除法,要先算乘除法,后算加减法。

③算式里有括号时,要先算括号里面的。

2、加法、减法、乘法和除法统称为四则运算。

3、有关0的运算:①一个数加上0得原数。

②任何一个数乘0得0。

③0不能做除数。

0除以一个非0的数等于0。

④0÷0得不到固定的商;5÷0得不到商。

关于“0”的运算1、“0”不能做除数;字母表示:a÷0错误,0做除数没有意义2、一个数加上0还得原数;字母表示:a+0= a3、一个数减去0还得原数;字母表示:a-0= a4、被减数等于减数,差是0;字母表示:a-a = 05、一个数和0相乘,仍得0;字母表示:a×0= 06、0除以任何非0的数,还得0;字母表示:0÷a(a≠0)= 07、0÷0得不到固定的商;5÷0得不到商,找不到一个数与0相乘得5。

二、观察物体(二)1、正确辨认从上面、前面、左面观察到物体的形状。

2、观察物体有诀窍,先数看到几个面,再看它的排列法,画图形时要注意,只分上下画数量。

3、从不同位置观察同一个物体,所看到的图形有可能一样,也有可能不一样。

4、从同一个位置观察不同的物体,所看到的图形有可能一样,也有可能不一样。

5、从不同的位置观察,才能更全面地认识一个物体。

三、运算定律1、加法运算定律:①加法交换律:两个数相加,交换加数的位置,和不变。

a+b=b+a②加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。

(a+b) +c=a+(b+c)③加法的这两个定律往往结合起来一起使用。

如:165+93+35=93+(165+35)2、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和;或交换减数的位置。

a-b-c=a-(b+c)或 a-b-c=a-c-b3、乘法运算定律:①乘法交换律:两个数相乘,交换因数的位置,积不变。

人教版四年级下册数学复习资料知识点

人教版四年级下册数学复习资料知识点

四年级下册数学复习资料第一单元、四则运算(一)知识点总结一、四则运算:加法、减法、乘法和除法统称四则运算。

1、加减法的意义和各部分间的关系。

(1)把两个数合并成一个数的运算,叫做加法。

加法各部分间的关系:和=加数+加数加数=和-另一个数(2)已知两个数的和与其中一个加数,求另一个数的运算,叫做减法。

减法各部分间的关系:差=被减数-减数减数=被减数-差被减数=差+减数(3)加法和减法是互逆运算。

2、乘除法的意义和各部分间的关系。

(1)求几个相同加数的和的简便运算,叫做乘法。

乘法各部分间的关系:积=因数×因数因数=积÷另一个因数(2)已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。

除法各部分间的关系:商=被除数÷除数除数=被除数÷商被除数=商×除数(3)乘法和除法是互逆运算。

二、关于“0”的运算(1)“0”不能做除数;字母表示:a÷0错误(2)一个数加上0还得原数;字母表示:a+0= a(3)一个数减去0还得原数;字母表示:a-0= a(4)被减数等于减数,差是0;字母表示:a-a = 0(5)一个数和0相乘,仍得0;字母表示:a×0=0(6)0除以任何非0的数,还得0;字母表示:0÷a(a≠0)= 0 (7)被减数等于减数,差是0;被除数等于除数,商是1三、四则运算顺序(1)同级运算:在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

(2)两级运算:在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。

(3)一个算式里既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的,最后算括号外面的有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。

(二)易错题1.算式325-225÷5+126的运算顺序是先算()法,再算()法,最后算()法;如果把运算顺序改成先算减法,再算除法,最后算加法,那么算式应该是()。

人教版四年级下册数学知识点总结

人教版四年级下册数学知识点总结

【新人教版】小学数学四年级下册知识点总结1、整数加法(1)把两个数合并成一个数的运算叫做加法。

(2)在加法里,相加的数叫做加数,加得的数叫做和。

加数是部分数,和是总数。

(3)加数+加数=和,一个加数=和-另一个加数2、整数减法(1)已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。

(2)在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。

被减数是总数,减数和差分别是部分数。

(3)加法和减法互为逆运算。

3、整数乘法(1)求几个相同加数的和的简便运算叫做乘法。

(2)在乘法里,相同的加数和相同加数的个数都叫做因数。

相同加数的和叫做积。

(3)在乘法里,0和任何数相乘都得0.(4)1和任何数相乘都的任何数。

(5)一个因数×一个因数 =积;一个因数=积÷另一个因数4、整数除法(1)已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。

(2)在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。

(3)乘法和除法互为逆运算。

(4)在除法里,0不能做除数。

因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。

(5)被除数÷除数=商,除数=被除数÷商被除数=商×除数。

5、整数加法计算法则相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。

6、整数减法计算法则相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。

7.整数乘法计算法则先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。

7、整数除法计算法则(1)先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。

如果哪一位上不够商1,要补“0”占位。

人教版小学四年级数学下册复习资料全

人教版小学四年级数学下册复习资料全

四年级数学下册复习资料第1单元四则运算1、运算顺序P5:在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要按从左往右的顺序计算。

P6:在没有括号的算式里,有乘、除法和加、减法,要先算乘除法,再算加减法。

P11:算式里有括号的,要先算括号里面的,再算括号外面的。

2、P12:加、减、乘和除统称四则运算。

3、P13:有关0的运算一个数与0相加,还得这个数。

一个数减去0,还得这个数。

一个数与0相乘,得0。

0除以一个数,得0。

0不能做除数,例如5÷0 是不存在,没有意义的。

4、四则混合运算方法一看(看数字,运算符号,想想运算顺序是什么。

)二画(画线,哪一步先算,就在哪一步的下面画一条横线,没有计算的要照抄下来。

)三算(按照运算顺序计算)四检验(检验运算顺序是否错误,计算是否算错。

)第2单元位置与方向1、确定物体的位置(1)找参照物:以谁为参照物,就以谁为观测点。

如:“在XXX的东偏南”就是以“XXX”为观测点(2)找出较小的夹角,从箭头方向开始写出方向。

(3)确定物体位置的条件:方向和距离这两个条件缺一不可。

2、在平面图上标出物体位置的方法(1)确定观测点,建立方向标。

(2)用量角器确定建筑物的方向。

(3)用直尺确定建筑物的距离。

(4)画出建筑物具体位置,标出名称。

3、位置关系的相对性4、描述并绘制简单的路线图第3单元运算定律与简便计算1、运算定律与算式特点P28:加法交换律a+b=b+a 34+89+66=34+66+89 26+47-6=26-6+471、只有加法,减法。

2、注意减法时要将前面的“一”号一起交换。

3、在简便计算时,一般将加法交换律和加法结合律同时运用。

P29:加法结合律a+b+c=a+(b+c) 88+104+96=88+(104+96) 79+26-9=26+(79-9)P34:乘法交换律a × b=b× a 4×58×25=4×25×581、只有乘法。

人教版四年级下册数学.总复习(四则运算及运算定律)

人教版四年级下册数学.总复习(四则运算及运算定律)

40×3+20×98=2080(元) 团体票:30元/人
答:老师和学生分开购票最便 【10人以上(含10人)】
宜,至少需要2080元。
(2)如果小明一家和姑姑一家总共4名孩子、6名 大人一起去玩,他们拿出300元买门票够吗? 应该怎样买?
读完题,同桌之间 检互验相一说下一!说你知的
分开购票:20×4+40×6=80+240=320(元) 答道案了合哪适些吗信?息。
×
14260
31
÷
550
460

1010
550+(230×62÷31)=1010
4. 计算下面各题,怎样简便就怎样计算。
想一想每道题应用 了什么运算定律。
(1)142+914+58+86
=(142+58)+(914+86) =200+1000 =1200
(2)35×125×8
=35×(125×8) =35×1000 =35000
元 乘法的意义和各 求几个相同加数的和的简便运算,叫做乘法。
: 部分间的关系 积=因数×因数;因数=积÷另一个因数。
四 除法的意义和各 已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。
则 运
部分间的关系
商=被除数÷除数;除数=被除数÷商;被除数=商×除数。
算 四则混合运算的 1. 在没有括号的算式里,只有加、减法或只有乘、除法,都要从左往
右依次计算;如果有乘、除法,又有加、减法,先乘、除后加、减。
顺序
2. 在有括号的算式里,先算小括号里面的,再算中括号里面的。
有关“0”的 运算
一个数加上0,还得原数;被减数等于减数,差是0;一个数和0相乘, 仍得0;0除以一个非0的数,还得0。(0不能做除数)

人教版小学四年级下册数学知识点总结

人教版小学四年级下册数学知识点总结

人教版小学四年级下册数学知识点总结知识点一:四则运算(背诵)我要拿100分四则运算包括加法、减法、乘法和除法。

在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

如果算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。

知识点二:的运算(默写)我要拿100分在数学运算中,有一些特殊的规律需要掌握。

例如,被除数不能为0,任何数加上0还是原数,任何数减去0还是原数。

此外,被减数等于减数的差为0,任何数乘以0都是0,除以任何非0的数,还是本身。

知识点三:运算定律(默写)我要拿100分数学中有许多运算定律,包括加法交换律、加法结合律、乘法交换律、乘法结合律和乘法分配律等。

这些定律可以帮助我们更方便地进行数学运算。

知识点四:简便计算一(默写或自己举例子)我要拿100分简便计算是指在进行数学运算时,利用一些简单的规律和技巧来快速计算。

例如,常见的乘法计算可以通过将数字分解成更容易计算的因数来简化计算。

加法交换律和结合律也可以帮助我们更快地进行加法运算,而乘法交换律和结合律则可以帮助我们更快地进行乘法运算。

知识点五:简便计算二(默写或自己举例子)我要拿100分乘法分配律也是进行简便计算的重要方法之一。

我们可以将一个复杂的乘法式子分解成两个简单的乘法式子,然后再将它们合并起来,从而更快地完成计算。

25×(40+4)-135×12+135×225×40+25×4-135×(12-2)1000+100-135×101100-1350简便计算三:一、连续减法简便运算例子:528—65—35528—89—128528—(150+128)=528—(65+35)=528—128—89=528—128—150528—100=400—89=400—150311=250二、连续除法简便运算例子:3200÷25÷43200÷(25×4)3200÷10032三、其他简便运算例子:256—58+44÷250×8256+44—58=300—58=1000÷8242=125三角形:1、由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。

人教版小学数学四年级下册总复习第1课时四则运算的意义及其关系、运算定律PPT

个数的积:a÷b÷c=a÷(b×c)。 ②在连除运算中,任意交换两个除数的位置,
商不变:a÷b÷c=a÷c÷b。
(四)运算律和运算性质
1.①316+59=375 ②375÷3=125 ③125×16=200
(4)下面是小明和小兵的计算方法,说说他们
各用了什么运算律。
加法结合律 316+59
=316+(50+9)
作乘法。 ②各部分的关系:
25 × 8 = 200 因数×因数=积 积÷因数=另一个因数
(一)四则运算的意义和各部分之间的关系
除法的意义和各部分的关系: ①意义:已知两个数的积与其中一个因数,求
另一个因数的运算,叫作除法。 ②各部分的关系:
375 ÷ 3 = 125 被除数÷商=除数 被除数-除数=商 商×除数=被除数
375 - 59 = 316 被减数-差=减数 被减数-减数=差 差+减数=被减数
(一)四则运算的意义和各部分之间的关系
1.①316+59=375 ②375÷3=125 ③125×16=2000
(1)根据第①个算式,先说说加法与减法的关系, 再分别写出一个加法算式和一个减法算式。
加、减法的关系:减法是加法的逆运算。 加法算式:59+316=375 减法算式:375-59=316或375-316=59
位置,商不变:a÷b÷c=a÷c÷b。
重点解析 (一)四则运算的意义和各部分之间的关系 1.①316+59=375 ②375÷3=125 ③125×16=2000 (1)根据第①个算式,先说说加法与减法的关系, 再分别写出一个加法算式和一个减法算式。
教材第104页第1(1)题
(一)四则运算的意义和各部分之间的关系

人教版四年级数学下册全册知识点归纳与总结

第一单元四则运算一、加、减法的意义和各部分间的关系1、加法的意义:把两个数合并成一个数的运算,叫做加法。

相加的两个数叫做加数,加得的数叫做和。

2、加法各部分间的关系:和=加数+加数加数=和-另一个加数3、减法的意义:已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法。

在减法中,已知的和叫做被减数,减号后面的数叫做减数,等号后面的数叫做差。

4、减法各部分间的关系:差=被减数-减数减数=被减数-差被减数=减数+差5、加法与减法的关系:减法是加法的逆运算。

二、乘、除法的意义和各部分间的关系1、乘法的意义:求几个相同加数的和的简便运算,叫做乘法。

相乘的两个数叫做因数,乘得的数叫做积。

2、乘法各部分间的关系:积=因数X因数因数=积÷另一个因数3、除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。

已知的积叫做被除数,已知的因数叫做除数,求得的另一个因数叫做商。

4、除法各部分间的关系:①、在没有余数的除法中:商=被除数÷除数除数=被除数÷商被除数=商X除数②、在有余数的除法中:被除数=商X除数+余数商=(被除数-余数)÷除数除数=(被除数-余数)÷商三、有关0的运算①、一个数加上或减去0还得原数②、任何数减去自身都得0③、0除以任何非0的数还得0④、任何数乘0都得0⑤、0不能作除数四、四则混合运算的运算顺序1、在没有括号的算式里,只有乘除法或只有加减法,要按从左到右的顺序计算,有乘除法和加减法的,要先算乘除法,后算加减法。

2、有小括号的算式里,要先算小括号里面的,再算小括号外面的。

3、一个算式里,既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的,最后算中括号外面的。

第二单元观察物体1、从不同位置观察由小正方体拼摆的物体,辨认观察到的物体的形状的方法:在哪一位置观察物体,就从哪一面数出小正方形的数量,并确定摆出的形状。

人教版小学四年级下册数学知识点总结

四年级下册知识点复习第一单元:四则运算一、加法、减法、乘法和除法统称四则运算。

1、加减法的意义和各部分间的关系。

(1)把两个数合并成一个数的运算,叫做加法。

加法各部分间的关系:和=加数+加数加数=和-另一个数(2)已知两个数的和与其中一个加数,求另一个数的运算,叫做减法。

减法各部分间的关系:差=被减数-减数减数=被减数-差被减数=差+减数(3)加法和减法是互逆运算。

2、乘除法的意义和各部分间的关系。

(1)求几个相同加数的和的简便运算,叫做乘法。

乘法各部分间的关系:积=因数×因数因数=积÷另一个因数(2)已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。

除法各部分间的关系:商=被除数÷除数除数=被除数÷商被除数=商×除数(3)乘法和除法是互逆运算。

3、关于“0”的运算(1)“0”不能做除数;字母表示:a÷0错误(2)一个数加上0还得原数;字母表示:a+0=a(3)一个数减去0还得原数;字母表示:a-0=a(4)被减数等于减数,差是0;字母表示:a-a=0(5)一个数和0相乘,仍得0;字母表示:a×0=0(6)0除以任何非0的数,还得0;字母表示:0÷a(a≠0)=0(7)0÷0得不到有意义的商;5÷0得不到商.(8)被减数等于减数,差是0 字母表示:a-a=0被除数等于除数,商是1字母表示:a÷a=1(a不为0)二、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都按从左往右按顺序计算。

三、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。

四、算式有括号,先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。

第三单元:运算定律及简便运算:一、加法运算定律:1、加法交换律:两个数相加,交换加数的位置,和不变。

a+b=b+a2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。

人教版小学四年级数学下册知识点总结

小学数学四年级下册知识点总结四则运算4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序.5、加法、减法、乘法和除法统称为四则运算.6、先乘除,后加减,有括号,提前算“0”的运算1、“0”不能做除数;字母表示:a÷0错误2、一个数加上0还得原数;字母表示:a+0= a3、一个数减去0还得原数;字母表示:a-0= a4、被减数等于减数,差是0;字母表示:a-a = 05、一个数和0相乘,仍得0;字母表示:a×0= 06、0除以任何非0的数,还得0;字母表示:0÷aa≠0= 07、0÷0得不到固定的商;5÷0得不到商.位置与方向:1、根据方向和距离确定或者绘制物体的具体地点.比例尺、角的画法和度量注意:1、比例尺2、正北方向3、角的画法2、位置间的相对性.会描述两个物体间的相互位置关系.观测点的确定3、简单路线图的绘制.4.地图的三要素:图例、方向、比例尺.5.确定方向时:A、先确定观测点1从那里出发,那里就是观测点.2“在”字后面的为观测点.B站在观测点来看方向.例如:①东偏南25°标25°的那个角就靠近东②西偏北35°标35°的那个角就靠近西6.描述路线和绘路线图时:只有一条线,所作的线是首尾相连的.7.常用的八个方位:东、南、西、北、东南、东北、西南、西北.运算定律及简便运算:一、加法运算定律:1、加法交换律:两个数相加,交换加数的位置,和不变.a+b=b+a2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变.a+b+c=a+b+c加法的这两个定律往往结合起来一起使用.如:165+93+35=93+165+35依据是什么3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和.a-b-c=a-b+c二、乘法运算定律:1、乘法交换律:两个数相乘,交换因数的位置,积不变.a×b=b×a2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变. a×b × c = a× b×c乘法的这两个定律往往结合起来一起使用.如:125×78×8的简算3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加.a+b×c=a×c+b×c a-b×c=a×c-b×c乘法分配律的应用:①类型一:a+b×c a-b×c= a×c+b×c = a×c-b×c②类型二:a×c+b×c a×c-b×c=a+b×c =a-b×c③类型三:a×99+a a×b-a= a×99+1 = a×b-1④类型四:a×99 a×102= a×100-1 = a×100+2= a×100-a×1 = a×100+a×2三、简便计算1.连加的简便计算:①使用加法结合律把和是整十、整百、整千、的结合在一起②个位:1与9,2与8,3与7,4与6,5与5,结合.③十位:0与9,1与8,2与7,3与6,4与5,结合.2.连减的简便计算:①连续减去几个数就等于减去这几个数的和.如:106-26-74=106-26+74②减去几个数的和就等于连续减去这几个数.如: 106-26+74=106-26-743.加减混合的简便计算:第一个数的位置不变,其余的加数、减数可以交换位置可以先加,也可以先减例如:123+38-23=123-23+38 146-78+54=146+54-784.连乘的简便计算:使用乘法结合律:把常见的数结合在一起 25与4; 125与8 ;125与80 等看见25就去找4,看见125就去找8;5.连除的简便计算:①连续除以几个数就等于除以这几个数的积.②除以几个数的积就等于连续除以这几个数.6.乘、除混合的简便计算:第一个数的位置不变,其余的因数、除数可以交换位置.可以先乘,也可以先除例如:27×13÷9=27÷9×13四、连除的性质:一个数连续除以两个数,等于除以这两个数的积.a÷b÷c= a÷b ×c1、常见乘法计算:25×4=100 125×8=10002、加法交换律简算例子:3、加法结合律简算例子:50+98+50 488+40+60=50+50+98 =488+40+60=100+98 =488+100=198 =5884、乘法交换律简算例子:5、乘法结合律简算例子:25×56×4 99×125×8=25×4×56 =99×125×8=100×56 =99×1000=5600 =990006、含有加法交换律与结合律的简便计算:65+28+35+72=65+35+28+72=100+100=2007、含有乘法交换律与结合律的简便计算:25×125×4×8=25×4×125×8=100×1000=100000乘法分配律简算例子:1、分解式2、合并式25×40+4 135×12—135×2=25×40+25×4 =135×12—2=1000+100 =135×10=1100 =13503、特殊14、特殊299×256+256 45×102=99×256+256×1 =45×100+2=256×99+1 =45×100+45×2=256×100 =4500+90=25600 =45905、特殊36、特殊499×26 35×8+35×6—4×35=100—1×26 =35×8+6—4=100×26—1×26 =35×10=2600—26 =350=2574一、连续减法简便运算例子:528—65—35 528—89—128 528—150+128 =528—65+35 =528—128—89 =528—128—150=528—100 =400—89 =400—150=428 =311 =250二、连续除法简便运算例子:3200÷25÷4=3200÷25×4=3200÷100=32五、有关简算的拓展:102×38-38×2125×25×32125×8837×96+37×3+37易错的情况: 38×99+99小数的意义和性质:1.小数的产生:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示.2、分母是10、100、1000……的分数可以用小数来表示.3、小数是十进制分数的另一种表现形式.4、小数的计数单位是十分之一、百分之一、千分之一……分别写作、、……5、每相邻两个计数单位间的进率是10.6、小数的数位是十分位、百分位、千分位……最高位是十分位.整数部分的最低位16.378的计数单位是0.001.最低位的计数单位是整个数的计数单位26.378中有6个一,3个十分之一0.1,7个百分之一0.01,8个千分之一0.001.36.378中有6378个千分之一0.001.49.426中的4表示4个十分之一0.14在十分位8、小数的读法:先读整数部分按照原来的读法,再读小数点,再读小数部分.读小数部分,小数部分要依次读出每个数字,而且有几个0就读几个0.9、小数的写法:先写整数部分按照原来的写法,再写小数点,再小数部分:写小数部分,小数部分要依次写出每个数字,而且有几个0就写几个0.10、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变.注意:小数中间的“0”不能去掉,取近似数时有一些末尾的“0”不能去掉.作用可以化简小数等.长度单位:千米————米————分米————厘米面积单位:平方千米———公顷———平方米————平方分米———平方厘米质量单位:吨————千克————克单位换算:1高级单位转化成低级单位=======乘以进率,小数点向右移动.2低级单位转化成高级单位=======除以进率,小数点向左移动.14、小数的近似数用“四舍五入”的方法:1保留整数,表示精确到个位,就是要把小数部分省略,要看十分位,如果十分位的数字大于或等于5则向前一位进一.如果小于五则舍.2保留一位小数,表示精确到十分位,就要把第一位小数以后的部分全部省略, 这时要看小数的第二位,如果第二位的数字比5小则全部舍.反之,要向前一位进一.3保留两位小数,表示精确到百分位,就要把第二位小数以后的部分全部省略,这时要看小数的第三位,如果第三位的数字比5小则全部舍.反之,要向前一位进一.4为了读写的方便,常常把不是整万或整亿的数改写成用“万”或“亿”作单位的数.改写成“万”作单位的数就是小数点向左移4位,即在万位的右边点上小数点,在数的后面加上“万”字.改写成“亿”作单位的数就是小数点往左移8位即在亿位的右边点上小数点,在数的后面加上“亿”字.注意:带上单位.然后再根据小数的性质把小数末尾的零去掉即可.5在表示近似数时,小数末尾的“0”不能去掉.三角形:1、三角形的定义:由三条线段围成的图形每相邻两条线段的端点相连或重合,叫三角形.2、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底.三角形只有3条高.重点:三角形高的画法.3、三角形的特性:1、物理特性:稳定性.如:自行车的三角架,电线杆上的三角架.4、边的特性:任意两边之和大于第三边.5、为了表达方便,用字母A、B、C分别表示三角形的三个顶点,三角形可表示成三角形ABC.6、三角形的分类:按照角大小来分:锐角三角形,直角三角形,钝角三角形.按照边长短来分:三边不等的△,等腰△等边三角形或正三角形是特殊的等腰△.等边△的三边相等,每个角是60度.顶角、底角、腰、底的概念7、三个角都是锐角的三角形叫做锐角三角形.8、有一个角是直角的三角形叫做直角三角形.9、有一个角是钝角的三角形叫做钝角三角形.10、每个三角形都至少有两个锐角;每个三角形都至多有1个直角;每个三角形都至多有1个钝角.11、两条边相等的三角形叫做等腰三角形.12、三条边都相等的三角形叫等边三角形,也叫正三角形.13、等边三角形是特殊的等腰三角形14、三角形的内角和等于180度.四边形的内角和是360°有关度数的计算以及格式.15、图形的拼组:两个完全一样的三角形一定能拼成一个平行四边形.16、用2个相同的三角形可以拼成一个平行四边形.17、用2个相同的直角三角形可以拼成一个平行四边形、一个长方形、一个大三角形.18、用2个相同的等腰的直角的三角形可以拼成一个平行四边形、一个正方形.一个大的等腰的直角的三角形.19、密铺:可以进行密铺的图形有长方形、正方形、三角形以及正六边形等.小数的加减法:1、计算法则:相同数位对齐小数点对齐,按照整数计算方法进行计算,得数的小数点要和横线上的小数的小数点对齐.结果是小数的要依据小数的性质进行化简.2、竖式计算以及验算.注意横式上要写上答案,不要写成验算的结果.3、整数的四则运算顺序和运算定律在小数中同样适用.简算统计:1、条形统计图优点:直观地反映数量的多少.2、折线统计图优点:既可以反映数量的多少,又能反映数量的增减变化.3、折线统计图中,变化趋势指:上升或者下降.4、折线统计图:是用一个单位长度表示一定的数量,根据数量的多少描出各点,再把各点用线段顺次连接起来.5、优点:不仅可以看出数量的多少,还可以看出数量的增减变化情况,预测今后的趋势,对今后的生产和生活提供指导和帮助.数学广角:植树问题一植树问题:1、两端要栽:间隔数=总长÷间距;总长=间距×间隔数;棵数=间隔数+1;间隔数=棵数-12、两端不栽:间隔数=总长÷间距;总长=间距×间隔数;棵数=间隔数-1;间隔数=棵数+1间隔数=总长度÷间隔长度情况分类:1、两端都植:棵数=间隔数+12、一端植,一端不植:棵数=间隔数3、两端都不植:棵数=间隔数-14、封闭:棵数=间隔数二锯木问题:段数=次数+1;次数=段数-1总时间=每次时间×次数三方阵问题:最外层的数目是:边长×4—4或者是边长-1×4整个方阵的总数目是:边长×边长四封闭的图形例如围成一个圆形、椭圆形:总长÷间距=间隔数;棵数=间隔数五棋盘棋子数目:1.棋盘最外层棋子数:每边棋子数×边数-边数2.棋盘总的棋子数:每行棋子数×每列棋子数3.方阵最外层人数:每边人数×4-44.多边形上摆花盆:每边摆的花盆数×边数-边数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4
11、小数的大小比较: (1) 先比较整数部分; (2)如果整数部分相同,就比较十分位; (3) 十分位相同,就比较百分位;(4)以此类推,直到比较出大小。 12、小数点的移动 小数点向右移: 移动一位,小数就扩大到原数的 10 倍; 移动两位,小数就扩大到原数的 100 倍; 移动三位,小数就扩大到原数的 10 00 倍;…… 小数点向左移: 1 移动一位,小数就缩小 10 倍,即小数就缩小到原数的 ; 10 1 移动两位,小数就缩小 100 倍,即小数就缩小到原数的 ; 100 1 移动三位,小数就缩小 1000 倍,即小数就缩小到原数的 ;…… 1000 13、生活中常用的单位: 质量: 1 吨=1000 千克; 1 千克=1000 克 长度: 1 千米=1000 米 1 分米=10 厘米 1 厘米=10 毫米 1 分米=100 毫米 1 米=10 分米=100 厘米=1000 毫米 面积: 1 平方米= 100 平方分米 1 平方分米=100 平方厘米 1 平方千米=100 公顷 1 公顷=10000 平方米 人民币: 1 元=10 角 1 角=10 分 1 元=100 分 长度单位:千米 ———— 米 ———— 分米 ———— 厘米 面积单位:平方千米———公顷———平方米————平方分米———平方厘米 质量单位:吨————千克————克 单位换算: (1)高级单位转化成低级单位=======乘以进率,小数点向右移动。 (2)低级单位转化成高级单位=======除以进率,小数点向左移动。 14、小数的近似数(用“四舍五入”的方法): (1)保留整数,表示精确到个位,就是要把小数部分省略,要看十分位,如果十分位的数字 大于或等于 5 则向前一位进一。如果小于五则舍。 (2)保留一位小数,表示精确到十分位,就要把第一位小数以后的部分全部省略, 这时要 看小数的第二位,如果第二位的数字比 5 小则全部舍。反之,要向前一位进一。 (3)保留两位小数,表示精确到百分位,就要把第二位小数以后的部分全部省略,这时要看 小数的第三位,如果第三位的数字比 5 小则全部舍。反之,要向前一位进一。 (4 ) 为了读写的方便 , 常常把不是整万或整亿的数改写成用“万”或“亿”作单位的数 。 改写成“万” 作单位的数就是小数点向左移 4 位,即在万位的右边点上小数点,在数的后面加上“万”字。 改写成“亿”作单位的数就是小数点往左移 8 位即在亿位的右边点上小数点,在数的后面加上 “亿”字。注意:带上单位。然后再根据小数的性质把小数末尾的零去掉即可。 (5)在表示近似数时,小数末尾的“0”不能去掉。
人教版小学四年级数学下册总复习知识点 第一单元
四则运算
1、加法、减法、乘法和除法统称四则运算。 2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。 3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。 4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上 的计算顺序。
二、乘法运算定律:
1、乘法交换律:两个数相乘,交换因数的位置,积不变。a×b=b×a 2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个 数相乘,再乘以第一个数,积不变。( a×b )× c = a× (b×c ) 乘法的这两个定律往往结合 起来一起使用。如:125×78×8的简算 3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积 相加。(a+b)×c=a×c+b×c (a-b)×c=a×c-b×c 乘法分配律的应用: ①类型一:(a+b)×c (a-b)×c = a×c+b×c = a×c-b×c ②类型二:a×c+b×c a×c-b×c =(a+b)×c =(a-b)×c ③类型三:a×99+a a×b-a = a×(99+1) = a×(b-1) ④类型四:a×99 a×102 = a×(100-1) = a×(100+2) = a×100-a×1 = a×100+a×2 三、简便计算 1.连加的简便计算:①使用加法结合律(把和是整十、整百、整千、的结合在一起) ②个位:1 与 9,2 与 8,3 与 7,4 与 6,5 与 5,结合。 ③十位:0 与 9,1 与 8,2 与 7,3 与 6,4 与 5,结合。 2.连减的简便计算: ①连续减去几个数就等于减去这几个数的和。如:106-26-74=106-(26+74) ②减去几个数的和就等于连续减去这几个数。如: 106-(26+74)=106-26-74 3.加减混合的简便计算: 第一个数的位置不变,其余的加数、减数可以交换位置(可以先加,也可以先减) 例如:123+38-23=123-23+38 146-78+54=146+54-78 4.连乘的简便计算: 使用乘法结合律:把常见的数结合在一起 25 与 4; 125 与 8 ;125 与 80 等 看见 25 就去找 4,看见 125 就去找 8; 5.连除的简便计算: ①连续除以几个数就等于除以这几个数的积。 ②除以几个数的积就等于连续除以这几个数。 6.乘、除混合的简便计算: 第一个数的位置不变,其余的因数、除数可以交换位置。(可以先乘,也可以先除) 例如:27×13÷9=27÷9×13 四、连除的性质:一个数连续除以两个数,等于除以这两个数的积。a÷b÷c = a÷(b×c) 1、常见乘法计算: 25×4=100 125×8=1000 2、加法交换律简算例子: 3、加法结合律简算例子:
关于“0”的运算
1、“0”不能做除数; 2、一个数加上 0 还得原数; 3、一个数减去 0 还得原数; 4、被减数等于减数,差是 0; 5、一个数和 0 相乘,仍得 0; 6、0 除以任何非 0 的数,还得 0; 7、0÷0 得不到固定的商;5÷0 得不到商. 字母表示:a÷0 错误 字母表示:a+0= a 字母表示:a-0= a 字母表示:a-a = 0 字母表示:a×0= 0 字母表示:0÷a(a≠0)= 0
2
50+98+50 488+40+60 =50+50+98 =488+(40+60) =100+98 =488+100 =198 =588 4、乘法交换律简算例子: 5、乘法结合律简算例子: 25×56×4 99×125×8 =25×4×56 =99×(125×8) =100×56 =99×1000 =5600 =99000 6、含有加法交换律与结合律的简便计算: 65+28+35+72 =(65+35)+(28+72) =100+100 =200 7、含有乘法交换律与结合律的简便计算: 25×125×4×8 =(25×4)×(125×8) =100×1000 =100000 乘法分配律简算例子: 1、分解式 2、合并式 25×(40+4) 135×12—135×2 =25×40+25×4 =135×(12—2) =1000+100 =135×10 =1100 =1350 3、特殊 1 4 、特殊 2 99×256+256 45×102 =99×256+256×1 =45×(100+2) =256×(99+1) =45×100+45×2 =256×100 =4500+90 =25600 =4590 5、特殊 3 6 、特殊 4 99×26 35 ×8+35×6—4×35 =(100—1)×26 =35×(8+6—4) =100×26—1×26 =35×10 =2600—26 =350 =2574 一、 连续减法简便运算例子: 528—65—35 528—89—128 528—(150+128) =528—(65+35) =528—128—89 =528—128—150 =528—100 =400—89 =400—150 =428 =311 =250 二、 连续除法简便运算例子: 3200÷25÷ 4 =3200÷ (25×4)
3
=3200÷ 100 =32 三、 其它简便运算例子: 256—58+44 250÷ 8×4 =256+44 —58 =250×4÷ 8 =300—58 =1000÷ 8 =242 =125 五、有关简算的拓展: 102×38-38×2 125×25×32 125×88 3.25+1.98 10.32-1.98 37×96+37×3+37 易错的情况:0.6+0.4-0.6+0.4 38×99+99
第四单元
小数的意义和性质 1. 小数的产生: 在进行测量和计算时, 往往不能正好得到整数的结果, 这时常用小数来表示。 2、分母是 10、100、1000„„的分数可以用小数来表示。 3、小数是十进制分数的另一种表现形式。 4、小数的计数单位是十分之一、百分之一、千分之一„„分别写作 0.1、0.01、0.001„„ 5、每相邻两个计数单位间的进率是 10。 6、小数的数位是十分位、百分位、千分位……最高位是十分位。整数部分的最低位是个位。 个位和十分位的进率是 10。 7、 小数的数位顺序表 小数 整数部分 小数部分 点
第三单元
运算定律及简便运算
一、加法运算定律:
1、加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a
1
2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数 相加,再加上第一个数,和不变。(a+b)+c=a+(b+c) 加法的这两个定律往往结合起来一起 使用。如:165+93+35=93+(165+35)依据是什么? 3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。a-b-c=a-(b+c)
第二单元
位置与方向
1、根据方向和距离确定或者绘制物体的具体地点。(比例尺、角的画法和度量) 注意:1、比例尺 2、正北方向 3、角的画法 2、位置间的相对性。会描述两个物体间的相互位置关系。(观测点的确定) 3、简单路线图的绘制。 4.地图的三要素:图例、方向、比例尺。 5.确定方向时:A、先确定观测点 (1)从那里出发,那里就是观测点。 (2)“在”字后面的为观测点。 B 站在观测点来看方向。 例如:①东偏南 25°(标 25°的那个角就靠近东) ②西偏北 35°(标 35°的那个角就靠近西) 6.描述路线和绘路线图时:只有一条线,所作的线是首尾相连的。 7.常用的八个方位:东、南、西、北、东南、东北、西南、西北。
相关文档
最新文档