两条直线的平行与垂直(2)[19]
10.2两条直线平行与垂直的条件

10.2.2两条直线垂直的条件
如图,当 l1 l2 时,
(1)斜率均存在时:l1 : y k1x b1 ;l2 : y k2x b2
k1
tan1
BC AB
k2
tan2
tan(π 3 )
tan3
AB BC
所以 k1 k2 1.
(2)如直线 l1 的斜率不存在,即1 90 ,则直线 l2 的倾斜
(1)斜率存在时,l1 : y k1x b1 ;l2 : y k2 x b2( b1 b2 )
若 1
平行;
2
0 时,则k1
k2
0,直线
y b1 和直线 y b2
若 1 2 0 时,则 k1 k2 0 ,直线 y k1x b1 和直
线 y k2x b2 平行.
(2)斜率不存在时:l1 : x x1 ,l2 : x x2( x1 x2 ),
2.P(1,0) 是直线 l上一点,且平行于经过 A(3,5) 和 B(2, 7)两点
的直线,求直线 l 的方程.
3.直线 ax y 5 0 与直线 3x 2y c 0平行,判断 a, c
的取值.
10.2.2两条直线垂直的条件
如图:l1 l2他们的倾斜角之间满足 1 2 90 ,那么 他们的斜率之间又存在着什么样的关系呢?
解:(1)两条直线斜率都不存在,即两条直线都与 x 轴垂直,
所以 l1 / /l2 .
(2)l2 可化为y
以 l1 / /l2 .
3x 5,有 kl1
kl2
3
且 bl1
1 bl2
5,所
(3)kl1
2 3
kl2
2 3
,所以 l1与l2 相交
2.1.2 两条直线平行和垂直的判定

(1)若 l1∥l2,则 k1=k2,即2a- -a4=-a3, 解得 a=1 或 a=6. 经检验,当 a=1 或 a=6 时,l1∥l2. (2)若 l1⊥l2. ①当 k2=0 时,此时 a=0,k1=-12,不符合题意.
②当 k2≠0 时,l2 的斜率存在, 由 k1k2=-1,得2a- -a4×-3a=-1, 可得 a=3 或 a=-4, 所以当 a=3 或 a=-4 时,l1⊥l2.
因为 kAB=kCD,kBC=kDA,且 kAB·kBC=-1, 所以四边形 ABCD 是矩形. 又 kAC=5-(6-7)=12,kBD=9--(4- -32)=-2,kAC·kBD =-1, 即四边形 ABCD 的对角线互相垂直. 所以四边形 ABCD 是正方形.
课堂检测 基础达标
1.若经过点 P(-2,m)和 Q(m,4)的直线平行于斜率等于 1 的
所以 kAB=kCD,kBC=kDA.所以 AB∥CD,BC∥DA. 所以四边形 ABCD 为平行四边形. 又因为 kAB·kBC=-1,所以直线 AB⊥BC. 即∠ABC=90°,所以四边形 ABCD 为矩形.
探究题 5 解:设所求点 D 的坐标为(x,y),如图.
因为 kAB=3,kBC=0, 所以 kAB·kBC≠-1,即 AB 与 BC 不垂直. 所以 AB,BC 都不可作为直角梯形的直角腰.
(2)k1=1,k2=22- -11=1,k1=k2. 故 l1∥l2 或 l1 与 l2 重合. (3)k1=01- -10=-1,k2=2-( 0--31)=-1,则有 k1=k2. 又 kAM=-3-1-10=-2≠-1, 则 A,B,M 不共线,故 l1∥l2. (4)由已知点的坐标,得 l1,l2 均与 x 轴垂直且不重合,故 l1∥l2.
高中数学 两条直线的平行与垂直

典例导学
即时检测
一
二
三
2.与直线2x+3y+5=0平行,且在两坐标轴上截距的绝对值之和为 10 . 3 的直线l的方程为 解析:设与直线2x+3y+5=0平行的直线l的方程为 2x+3y+c1=0(c1≠5),
典例导学
即时检测
一
二
三
二、两条直线平行或垂直条件的应用 如图,在平行四边形OABC中,点A(3,0),点C(1,3). (导学号51800070)
(1)求AB所在直线的方程; (2)过点C作CD⊥AB于点D,求CD所在直线的方程. 思路分析:已知四边形OABC是平行四边形,可以利用平行四边 形的有关性质求AB的斜率,利用两条直线垂直的条件求CD的斜率, 进而求相应直线的方程.
∴AB
即 3x+5y+2=0. ∵点 C(12,6)不在 AB 上 , ∴AB∥CD.
12-2 ∵kAD= 2+4
-4-2 3 12-6 3 =- ,kCD= =- , 6+4 5 2-12 5 3 的方程为 y-2=- (x+4), 5
=
∴kAB· kAD=-1,即 AB⊥AD.
5 , 3
典例导学
∴m=2.
1
∴当 m=2时,l1⊥l2.
1
典例导学
即时检测
一
二
三
1.已知A(-4,2),B(6,-4),C(12,6),D(2,12),下列结论正确的个数是 ( ) (导学号51800069) ①AB∥CD;②AB⊥AD;③AC⊥BD;④AC∥BD. A.1 B.2 C.3 D.4
解析: ∵kAB=
典例导学
即时检测
两条直线的平行与垂直

全国名校高中数学必修一优质课时训练汇编(附详解2 . 1.3两条直线的平行与垂直第一课时、基础过关1.已知点A(1,2), B(m,1),直线AB与直线x= 0平行,则m的值为2. 两直线2x —y+ k= 0和4x—2y + 1 = 0的位置关系是3. F列说法中正确的有①若两条直线斜率相等,则两直线平行;②若\JI '2,则k1= k2;③若两直线中有一条直线的斜率不存在,另一条直线的斜率存在,则两直线相交;④若两条直线的斜率都不存在,则两直线平行.4.若直线\1:2x+my+1 = 0与直线\2: y= 3x—1平行,则5.直线Ax+ 4y- 1 = 0与直线3x-y—C= 0重合,则A =6.若直线mx+ 4y—1 = 0与直线x+ my—3= 0不平行,则实数m的取值范围是7.求通过下列各点且与已知直线平行的直线方程:(1)( —1,2), y= 2x+ 1;(2)(1,- 4), 2x+3y+ 5= 0.& 已知两直线Iv mx+8y+ n= 0 和l2: 2x+ my—1 = 0.试确定m、n的值,使(1)l1与l2相交于点P(m,—1); (2)l1II l2.二、能力提升y—39.设集合A = {(x, y)|—7 = 2} , B= {(x, y)|4x + ay—16 =x—10},若A n B= ?,贝y a的值为10.P i(x i, y i)是直线I: f(x, y)= 0 上一点,P2(X2, y2)是直线则方程f(x, y) + f(X i,y i) + f(x2,y2)= 0 I外一点,所表示的直线与I的关系是ii.已知直线I i: (m+ 3)x + y—3m + 4= 0, l2: 7x+ (5 —m)y —8= 0, 问当m为何值时,直线l1与l2平行.12.求与直线3x+ 4y+ 9= 0平行,并且和两坐标轴在第一象限所围成的三角形面积是24的直线方程.三、探究与拓展13.是否存在m,使得三条直线3x—y+ 2= 0,2x + y + 3= 0,mx+ y= 0能够构成三角形?若存在,请求出m的取值范围;若不存在,请说明理由.答案2. 平行或重合24•一315.—12-16. m工±27.解(1)因为所求直线与已知直线平行,所以可设所求直1线为y= 2^+b.由于所求直线过点(一1,2),5 1 5代入方程,得b = 5.因此所求方程为y = 5.即x —2y +5= 0.⑵设所求的直线方程为2x+ 3y+ D = 0.由于所求直线过点(1,- 4),代入方程,得D = 10,因此,所求直线方程为2x+ 3y+ 10 = 0.& 解(1) •/ m2—8+ n= 0 且2m —m—1 = 0, m= 1, n =7.(2)由m m—8 X 2= 0,得m= ±4.由8X (—1) —nX mz 0,得n工?2.即m= 4, nz —2 或m=—4, nz 2 时,11 // I2.9. 4 或一210.平行11.解当m= 5 时,11:8x + y—11 = 0, I2:7x—8= 0.显然[-(m+ 3 )=I m — 53m -4工丄5— m••• m 为—2时,直线1i 与12平行.12. 解 •••直线3x + 4y + 9= 0的斜率为― 3•••设所求直线方程为y = — 4x + b ,4b由题意,b>0, 3>0,二 b>0 ,••• 2x bx 譽=24, /. b= 6,13.解 存在能够使直线 mx + y = 0,3x — y + 2= 0,2x +y +3= 0构成三角形的m 值有无数个,因此我们考虑其反面情 况,即三条直线不能构成三角形,有两种可能:有两条 直线平行,或三条直线过同一点.l l 与12不平行,同理,当 m =— 3 时, 1l 与12也不平行. 当mz 5且m 工一3时,11 // 1234,令x = 0,得y = b ;令y = 0,得 4bx =百,3故所求直线方程为y = — 4X + 6, 即 3x + 4y — 24= 0.由于3x —y + 2= 0与2x+y + 3 = 0相交,且交点坐标为(一1,—1),因此,mx+ y= 0 与3x—y+ 2= 0 平行时,m =—3; mx+ y= 0 与2x+y+ 3= 0 平行时,m= 2; mx + y= 0过3x—y+2=0 与2x+y+3=0 的交点时,m=—1.综上所述,三条直线不能构成三角形时,m=—3 或m= 2或m=—1.满足题意的m值为{m|m € R且mz —3且mz 2且mz —1}.。
人教版高中数学必修二课件 3.1.2 两条直线平行与垂直的判定

k2=_______.
解:由斜率定义,直线l的斜率k=tan 30°= 3, 3
因为l1∥l,所以k1=k=
3 3
.
因为l2⊥l,所以k2·k=-1,
所以k 2
=
1 k
=
3.
答案: 3
3
3
16
例3 已知A(-6,0),B(3,6),P(0,3),Q(6, -6),试判断直线AB与PQ的位置关系.
C.0
D. 1
2
解:选A.l1,l2的斜率分别为2,-a,由l1∥l2,可知
a=-2.
12
思考3 设两条直线l1,l2的斜率分别为k1,k2 ,
l1 ⊥ l2时,k1与k2满足什么关系?
提示:
如图,α2 =α1 + 90o,
tanα2
=
tan(α1
+ 90o
)=
-
1 tanα1
,
即k1k2 = -1.
3.1.2 两条直线平行与垂直的判定
1
平面内两条直线有哪些位置关系? 平行或相交
2
为了在平面直角坐标系内表示直线的倾斜程度, 我们引入倾斜角的概念,进而又引入了直线的斜率.
y
.
O
x
能否通过斜率来 判断两条直线的
位置关系?
3
1.理解并掌握两条直线平行与垂直的条件. (重点)
2.会运用条件判断两直线是否平行或垂直. (难点)
反之,成立,可得
y l2
l1
α1 α2
O
x
l1 l2 k1k2 = 1.
13
思考4
设两条直线l1的斜率k1 = 0,l2的斜率不存在,
l1 ⊥ l2吗?
.3.1.3两条直线的平行与垂直教案 新人教A版必修2

课题:2.3.1.3两条直线的平行与垂直课型:新授课教学目标:理解并掌握两条直线平行与垂直的条件,会运用条件判定两直线是否平行或垂直. 教学重点:两条直线平行和垂直的条件是重点,要求学生能熟练掌握,并灵活运用.教学难点:启发学生, 把研究两条直线的平行或垂直问题, 转化为研究两条直线的斜率的关系问题.注意:对于两条直线中有一条直线斜率不存在的情况, 在课堂上老师应提醒学生注意解决好这个问题.教学过程:(一)先研究特殊情况下的两条直线平行与垂直上一节课, 我们已经学习了直线的倾斜角和斜率的概念, 而且知道,可以用倾斜角和斜率来表示直线相对于x轴的倾斜程度, 并推导出了斜率的坐标计算公式. 现在, 我们来研究能否通过两条直线的斜率来判断两条直线的平行或垂直.讨论: 两条直线中有一条直线没有斜率, (1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,它们互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直.(二)两条直线的斜率都存在时, 两直线的平行与垂直设直线 L1和L2的斜率分别为k1和k2. 我们知道, 两条直线的平行或垂直是由两条直线的方向决定的, 而两条直线的方向又是由直线的倾斜角或斜率决定的. 所以我们下面要研究的问题是: 两条互相平行或垂直的直线, 它们的斜率有什么关系?首先研究两条直线互相平行(不重合)的情形.如果L1∥L2(图1-29),那么它们的倾斜角相等:α1=α2.(借助计算机, 让学生通过度量, 感知α1, α2的关系)∴tgα1=tgα2.即 k1=k2.反过来,如果两条直线的斜率相等: 即k1=k2,那么tgα1=tgα2.由于0°≤α1<180°, 0°≤α<180°,∴α1=α2.又∵两条直线不重合,∴L1∥L2.结论: 两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即注意: 上面的等价是在两条直线不重合且斜率存在........的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L2; 反之则不一定.下面我们研究两条直线垂直的情形.如果L1⊥L2,这时α1≠α2,否则两直线平行.设α2<α1(图1-30),甲图的特征是L1与L2的交点在x轴上方;乙图的特征是L1与L2的交点在x轴下方;丙图的特征是L1与L2的交点在x轴上,无论哪种情况下都有α1=90°+α2.因为L1、L2的斜率分别是k1、k2,即α1≠90°,所以α2≠0°.,可以推出: α1=90°+α2. L1⊥L2.结论: 两条直线都有斜率........,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即注意: 结论成立的条件. 即如果k1·k2 = -1, 那么一定有L1⊥L2; 反之则不一定.例题分析:例1已知A(2,3), B(-4,0), P(-3,1), Q(-1,2), 试判断直线BA与PQ的位置关系, 并证明你的结论.解: 直线BA的斜率k1=(3-0)/(2-(-4))=0.5,直线PQ的斜率k2=(2-1)/(-1-(-3))=0.5,因为 k1=k2=0.5, 所以直线BA∥PQ.例2.已知四边形ABCD的四个顶点分别为A(0,0), B(2,-1), C(4,2), D(2,3), 试判断四边形ABCD的形状,并给出证明.例3.已知A(-6,0), B(3,6), P(0,3), Q(-2,6), 试判断直线AB与PQ的位置关系.解: 直线AB的斜率k1= (6-0)/(3-(-6))=2/3,直线PQ的斜率k2= (6-3)(-2-0)=-3/2,因为 k1·k2 = -1 所以 AB⊥PQ.例4.已知A(5,-1), B(1,1), C(2,3), 试判断三角形ABC的形状.分析: 借助计算机作图, 通过观察猜想: 三角形ABC是直角三角形, 其中AB⊥BC, 再通过计算加以验证.(图略)课堂练习P89 练习 1. 2.归纳小结:(1)两条直线平行或垂直的真实等价条件;(2)应用条件, 判定两条直线平行或垂直.(3)应用直线平行的条件, 判定三点共线.作业布置:P89-90 习题3.1:A组 5. 8;课后记:。
两条直线平行与垂直的判定题型总结及习题测试含答案
两条直线平行与垂直的判定题型总结及习题测试含答案两条直线平行与垂直的判定一、基础知识1.两条直线平行的判定(1)l1∥l2,说明两直线l1与l2的倾斜角相等,当倾斜角都不等于90°时,有k1=k2;当倾斜角都等90°时,斜率都不存在.(2)当k1=k2时,说明两直线l1与l2平行或重合.2.两直线垂直的判定(1)当两直线l1与l2斜率都存在时,有k1·k2=-1⇔l1⊥l2;当一条直线斜率为0,另一条直线斜率不存在时,也有l1⊥l2.(2)若l1⊥l2,则有k1•k2=-1或一条直线斜率不存在,同时另一条直线的斜率为零.3.如何判断两条直线的平行与垂直判断两条直线平行或垂直时,要注意分斜率存在与不存在两种情况作答.二、典例剖析题型一直线平行问题例1:下列说法中正确的有( )①若两条直线斜率相等,则两直线平行.②若l1∥l2,则k1=k2.③若两直线中有一条直线的斜率不存在,另一条直线的斜率存在,则两直线相交.④若两条直线的斜率都不存在,则两直线平行.规律技巧:判定两条直线的位置关系时,一定要考虑特殊情况,如两直线重合,斜率不存在等.一般情况都成立,只有一种特殊情况不成立,则该命题就是假命题. 变式训练1:已知过点A(-2,m)和B(m,4)的直线与斜率为-2的直线平行,则m的值为( )A.-8B.0C.2D.10题型二直线垂直问题例2:已知直线l1的斜率k1= ,直线l2经过点A(3a,-2),B(0,a2+1),且l1⊥l2, 34求实数a 的值.变式训练2:已知四点A(5,3),B(10,6),C(3,-4),D(-6,11).求证:AB ⊥CD. 题型三 平行与垂直的综合应用例3:已知长方形ABCD 的三个顶点的坐标分别为A(0,1),B(1,0),C(3,2),求第四个顶点D 的坐标.规律技巧:利用图形的几何性质解题是一种重要的方法. 易错探究例4:已知直线l 1经过点A(3,a),B(a-2,3),直线l 2经过点C(2,3),D(-1,a-2),若l 1⊥l 2,求a 的值.错因分析:只有两条直线的斜率都存在的情况下,才有l 1⊥l 2k 1•k 2=-1,本题中直线l 2的斜率存在,而l 1的斜率不一定存在,因此要分l 1的斜率存在与不存在两种情况解答. 正解:三、基础强化训练1.下列命题①如果两条不重合的直线斜率相等,则它们平行; ②如果两直线平行,则它们的斜率相等;121122:l l ,k k 1.35k ,,53351,53a a k a a a a --==-⊥∴⋅---∴⋅=---=-错解又③如果两直线的斜率之积为-1,则它们垂直;④如果两直线垂直,则它们斜率之积为-1.2.已知点A(1,2),B(m,1),直线AB与直线y=0垂直,则m的值为( )A.2B.1C.0D.-13.以A(5,-1),B(1,1),C(2,3)为顶点的三角形是( )A.锐角三角形B.钝角三角形C.以A为直角顶点的直角三角形D.以B为直角顶点的直角三角形4.已知l1⊥l2,直线l1的倾斜角为45°,则直线l2的倾斜角为( )A.45°B.135°C.-45°D.120°5.经过点P(-2、-1)、Q(3,a)的直线与倾斜角为45°的直线垂直.则a=________.6.试确定m的值,使过点A(2m,2),B(-2,3m)的直线与过点P(1,2),Q(-6,0)的直线(1)平行;(2)垂直.7.已知A(1,5),B(-1,1),C(3,2),若四边形ABCD是平行四边形,求D点的坐标.8.如果下列三点:A(a,2)、B(5,1),C(-4,2a)在同一直线上,试确定常数a的值.9.若三点A(2,2),B(a,0),C(0,4)共线,则a 的值等于____.10. l 1过点A(m,1),B(-3,4),l 2过点C(0,2),D(1,1),且l 1∥l 2,则m=_______.题组练习一、选择题1、直线l 1:ax+y=3;l 2:x+by-c=0,则ab=1是l 1||l 2的 A 充要条件 B 充分不必要条件 C 必要不充分条件 D 既不充分也不必要条件2、两条直线mx+y-n=0和x+my+1=0互相平行的条件是 A m=1 B m=±1 C ⎩⎨⎧-≠=11n m D ⎩⎨⎧≠-=⎩⎨⎧-≠=1111n m n m 或 3、直线xsin α+ycos α+1=0与xcos α-ysin α+2=0直线的位置关系是A 平行B 相交但不垂直C 相交垂直D 视α的取值而定4、已知P(a,b)与Q(b-1,a+1)(a ≠b-1)是轴对称的两点,那么对称轴方程是A x+y=0B x-y=0C x+y-1=0D x-y+1=05、已知直线mx+4y-2=0与2x-5y+n=0互相垂直,垂足坐标为(1,p),则m-n+p=A 24B 20C 0D -46、由三条直线3x-4y+12=0,4x+3y-9=0,14x-2y-19=0所围成的三角形是 A 锐角不为450的直角三角形 B 顶角不为900的等腰三角形 C 等腰直角三角形 D 等边三角形7、已知△ABC 中,A (2,4),B (-6,-4),C (5,-8),则∠C 等于 A 2740arctanB -2740arctanC +π2740arctan D -π2740arctan8、直线3x+3y+8=0直线xsin α+ycos α+1=0)24(παπ<<的角是A 4πα-B απ-4C 43πα-D απ-45 二、填空题1、与直线2x+3y+5=0平行,且在两坐标轴上截距之和为10/3的直线的方程为________;2、与直线2x-y+4=0的夹角为450,且与这直线的交点恰好在x 轴上的直线方程为_____;3、直线过点A (1,)33且与直线x-y 3=0成600的角,则直线的方程为__ 三、解答题1、直线过P (1,2)且被两条平行直线4x+3y+1=0和4x+3y+6=0截得的线段长为2,求这条直线的方程。
3.1.2两条直线的平行与垂直的判定授课讲义
解 :
k AB
1 (1) 15
1 2
y
kBC
3 1 2 1
2
C
B
k AB • kBC 1
O
x
AB BC 即ABC 900
A
因此ABC是直角三角形.
小结
平行:对于两条不重合的直线l1、l2,其
斜率分别为k1、k2,有
l1∥l2
k1=k2.
条件:不重合、都有斜率
垂直:如果两条直线l1、l2都有斜率,且
解 : kAB
63 3 (6)
2 3
kPQ
6 3 60
3 2
kAB • kPQ -1 BA PQ
例题讲解
例6、已知A(5,-1),B(1,1),C(2,3)三 点,试判断△ABC的形状。
解 :
k AB
1 (1) 15
1 2
y
kBC
3 1 2 1
2
C
B
k AB • kBC 1
O
x
AB BC 即ABC 900
分别为k1、k2,则有
l1⊥l2
k1k2=-1.
条件:都有斜率
1 2
P B
Q
O
x
kBA kPQ BA∥ PQ
例题讲解
例4. 已知四边形ABCD的四个顶点分别为A(0,
0),B(2,-1),C(4,2),D(2,3),试判 断四边形ABCD的形状,并给出证明。
解 : k AB
1 2
kCD
1 2
yD
k BC
3 2
kDA
3 2
C
kAB kCD , kBC kDA AB∥CD, BC∥ DA
A
两条直线的平行与垂直
观察与原直线 形式关系?
与直线Ax+By+C=0平行的直线为: Ax+By+C’=0
例3.已知三角形的三个顶点分别为A(2,4),B(1,-2),C(-2,3), 求:BC边上的高AD所在直线的方程.
数学探究一 研究两条直线平行的情况
当两条直线的斜率都存在时,如果两条直线平行,斜率有什么关系呢? “数”的角度
一方面 另一方面
l1∥l2 k1=k2
回顾斜率的定义:
如图,构造两个直角三角形(直角边分别平行于坐标轴) “形”的角度
反之, k1=k2 能推出l1∥l2 吗?
有如下结论:l1∥l2 k1=k2 (k1,k2均存在时)
y l1
如图:两条直线倾斜角分别为α1和α2(α1<α2)
α1 l2
O
α2 x
120° ,k1= 135° ,k1=
150° ,k1=
你能发现k1与k2之间有什么关系吗?
3
3 ,k2= 3 ;
,k2= -1 .
3
,k2=
3 3
.
k1k2=-1
y l1
α1
l2 α2
x
O
因为两条直线l1和l2互相垂直且斜率都存在,所以斜率都不为零
y l1
α1 l2
O
α2 x
“数”的角度
我们有结论:l1⊥l2k1k2=-1(k1,k2均存在时)
类比平行的推导
“形D
x l2 B
以上推理可逆,有如下结论: l1⊥l2k1k2=-1(k1,k2均存在时)
思考:如果两条直线中,有一条斜率不存在,那么这两条直线什 么时候互相垂直呢?
第2节 两直线的位置关系
第2节 两直线的位置关系知识梳理1.两条直线平行与垂直的判定 (1)两条直线平行对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.特别地,当直线l 1,l 2的斜率都不存在时,l 1与l 2平行. (2)两条直线垂直如果两条直线l 1,l 2斜率都存在,设为k 1,k 2,则l 1⊥l 2⇔k 1·k 2=-1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直. 2.两直线相交直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎨⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解一一对应. 相交⇔方程组有唯一解,交点坐标就是方程组的解; 平行⇔方程组无解; 重合⇔方程组有无数个解. 3.距离公式 (1)两点间的距离公式平面上任意两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式为|P 1P 2|=特别地,原点O (0,0)与任一点P (x ,y )的距离|OP | (2)点到直线的距离公式平面上任意一点P0(x 0,y 0)到直线l :Ax +By +C =0的距离d(3)两条平行线间的距离公式一般地,两条平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离d =4.对称问题(1)点P (x 0,y 0)关于点A (a ,b )的对称点为P ′(2a -x 0,2b -y 0).(2)设点P (x 0,y 0)关于直线y =kx +b 的对称点为P ′(x ′,y ′),则有⎩⎪⎨⎪⎧y ′-y 0x ′-x 0·k =-1,y ′+y 02=k ·x ′+x 02+b ,可求出x ′,y ′.1.两直线平行的充要条件直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0平行的充要条件是A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0(或A 1C 2-A 2C 1≠0). 2.两直线垂直的充要条件直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0垂直的充要条件是A 1A 2+B 1B 2=0.3.点到直线、两平行线间的距离公式的使用条件 (1)求点到直线的距离时,应先化直线方程为一般式.(2)求两平行线之间的距离时,应先将方程化为一般式且x ,y 的系数对应相等.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)当直线l 1和l 2的斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.( ) (2)如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.( ) (3)若两直线的方程组成的方程组有唯一解,则两直线相交.( ) (4)直线外一点与直线上一点的距离的最小值就是点到直线的距离.( ) 答案 (1)× (2)× (3)√ (4)√ 解析 (1)两直线l 1,l 2有可能重合.(2)如果l 1⊥l 2,若l 1的斜率k 1=0,则l 2的斜率不存在.2.两条平行直线3x +4y -12=0与ax +8y +11=0之间的距离为( )A.235B.2310 C .7 D.72 答案 D解析 由题意知a =6,直线3x +4y -12=0可化为6x +8y -24=0,所以两平行直线之间的距离为|11+24|36+64=72.3.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________. 答案 -9解析 由⎩⎨⎧y =2x ,x +y =3,得⎩⎨⎧x =1,y =2.∴点(1,2)满足方程mx +2y +5=0, 即m ×1+2×2+5=0,∴m =-9.4.(2021·武汉联考)若直线ax +4y -2=0与直线2x -5y +b =0垂直,垂足为(1,c ),则a +b +c =( )A .-2B .-4C .-6D .-8 答案 B解析 ∵直线ax +4y -2=0与直线2x -5y +b =0垂直,∴-a 4×25=-1, ∴a =10,∴直线ax +4y -2=0的方程即为5x +2y -1=0. 将点(1,c )的坐标代入上式可得5+2c -1=0, 解得c =-2.将点(1,-2)的坐标代入方程2x -5y +b =0得2-5×(-2)+b =0,解得b =-12.∴a +b +c =10-12-2=-4.故选B.5.(2020·淮南二模)设λ∈R ,则“λ=-3”是“直线2λx +(λ-1)y =1与直线6x +(1-λ)y =4平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 答案 A解析 当λ=-3时,两条直线的方程分别为6x +4y +1=0,3x +2y -2=0,此时两条直线平行;若两条直线平行,则2λ×(1-λ)=-6(1-λ),所以λ=-3或λ=1,经检验,两者均符合,综上,“λ=-3”是“直线2λx +(λ-1)y =1与直线6x +(1-λ)y =4平行”的充分不必要条件,故选A.6.(2019·江苏卷)在平面直角坐标系xOy 中,P 是曲线y =x +4x (x >0)上的一个动点,则点P 到直线x +y =0的距离的最小值是________. 答案 4解析 法一 由题意可设P ⎝ ⎛⎭⎪⎫x 0,x 0+4x 0(x 0>0), 则点P 到直线x +y =0的距离d =⎪⎪⎪⎪⎪⎪x 0+x 0+4x 02=⎪⎪⎪⎪⎪⎪2x 0+4x 02≥22x 0·4x 02=4,当且仅当2x 0=4x 0,即x 0=2时取等号.故所求最小值是4.法二 设P ⎝ ⎛⎭⎪⎫x 0,4x 0+x 0(x 0>0),则曲线在点P 处的切线的斜率为k =1-4x 20.令1-4x 20=-1,结合x 0>0得x 0=2,∴P (2,32),曲线y =x +4x (x >0)上的点P 到直线x +y =0的最短距离即为此时点P 到直线x +y =0的距离,故d min =|2+32|2=4.考点一 两直线的平行与垂直【例1】已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0. (1)试判断l 1与l 2是否平行; (2)当l 1⊥l 2时,求a 的值.解 (1)法一 当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1不平行于l 2; 当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不平行于l 2; 当a ≠1且a ≠0时,两直线方程可化为l 1:y =-a2x -3, l 2:y =11-ax -(a +1), l 1∥l 2⇔⎩⎪⎨⎪⎧-a2=11-a ,-3≠-(a +1),解得a =-1,综上可知,当a =-1时,l 1∥l 2. 法二 由A 1B 2-A 2B 1=0,得a (a -1)-1×2=0,由A 1C 2-A 2C 1≠0,得a (a 2-1)-1×6≠0,∴l 1∥l 2⇔⎩⎨⎧a (a -1)-1×2=0,a (a 2-1)-1×6≠0⇔⎩⎨⎧a 2-a -2=0,a (a 2-1)≠6,可得a =-1, 故当a =-1时,l 1∥l 2.(2)法一 当a =1时,l 1:x +2y +6=0,l 2:x =0, l 1与l 2不垂直,故a =1不成立;当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不垂直于l 2,故a =0不成立; 当a ≠1且a ≠0时,l 1:y =-a 2x -3,l 2:y =11-a x -(a +1),由⎝ ⎛⎭⎪⎫-a 2·11-a=-1,得a =23. 法二 由A 1A 2+B 1B 2=0,得a +2(a -1)=0,可得a =23.感悟升华 1.当含参数的直线方程为一般式时,若要表示出直线的斜率,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况,同时还要注意x ,y 的系数不能同时为零这一隐含条件.2.在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.【训练1】 (1)经过抛物线y 2=2x 的焦点且平行于直线3x -2y +5=0的直线l 的方程是( )A .6x -4y -3=0B .3x -2y -3=0C .2x +3y -2=0D .2x +3y -1=0(2)(多选题)(2021·重庆调研)已知直线l 1:x +my -1=0,l 2:(m -2)x +3y +3=0,则下列说法正确的是( ) A .若l 1∥l 2,则m =-1或m =3 B .若l 1∥l 2,则m =3 C .若l 1⊥l 2,则m =-12 D .若l 1⊥l 2,则m =12 答案 (1)A (2)BD解析 (1)因为抛物线y 2=2x 的焦点坐标为⎝ ⎛⎭⎪⎫12,0,直线3x -2y +5=0的斜率为32,所以所求直线l 的方程为y =32⎝ ⎛⎭⎪⎫x -12,化为一般式,得6x -4y -3=0.(2)若直线l 1∥l 2,则3-m (m -2)=0,解得m =3或m =-1,但m =-1时,两直线方程分别为x -y -1=0,-3x +3y +3=0即x -y -1=0,两直线重合,只有m =3时两直线平行,A 错误,B 正确;若l 1⊥l 2,则m -2+3m =0,m =12,C 错误,D 正确.考点二 两直线的交点与距离问题【例2】 (1)(2021·淮南模拟)已知直线kx -y +2k +1=0与直线2x +y -2=0的交点在第一象限,则实数k 的取值范围为( ) A.⎝ ⎛⎭⎪⎫-32,-1 B.⎝ ⎛⎭⎪⎫-∞,-32∪(-1,+∞) C.⎝ ⎛⎭⎪⎫-∞,-13∪⎝ ⎛⎭⎪⎫12,+∞ D.⎝ ⎛⎭⎪⎫-13,12 (2)(2021·广州模拟)已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是________. 答案 (1)D (2)[0,10]解析 (1)联立⎩⎨⎧kx -y +2k +1=0,2x +y -2=0,解得x =1-2k 2+k ,y =2+6k 2+k (k ≠-2).∵直线kx -y +2k +1=0与直线2x +y -2=0的交点在第一象限, ∴1-2k 2+k >0,且2+6k2+k >0. 解得-13<k <12.故选D.(2)由题意得,点P 到直线的距离为|4×4-3×a -1|5=|15-3a |5.又|15-3a |5≤3,即|15-3a |≤15,解之得0≤a ≤10, 所以a 的取值范围是[0,10].感悟升华 1.求过两直线交点的直线方程的方法求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程.2.利用距离公式应注意:(1)点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |;(2)应用两平行线间的距离公式要把两直线方程中x ,y 的系数分别化为对应相等.【训练2】 (1)(多选题)(2020·济宁调研)已知直线l 1:2x +3y -1=0和l 2:4x +6y -9=0,若直线l 到直线l 1的距离与到直线l 2的距离之比为1∶2,则直线l 的方程为( )A .2x +3y -8=0B .4x +6y +5=0C .6x +9y -10=0D .12x +18y -13=0(2)求经过直线l 1:3x +2y -1=0和l 2:5x +2y +1=0的交点,且垂直于直线l 3:3x -5y +6=0的直线l 的方程为________________. 答案 (1)BD (2)5x +3y -1=0解析 (1)设直线l :4x +6y +m =0,m ≠-2且m ≠-9,直线l 到直线l 1和l 2的距离分别为d 1,d 2,由题知:d 1=|m +2|16+36,d 2=|m +9|16+36,因为d 1d 2=12,所以2|m +2|16+36=|m +9|16+36,即2|m +2|=|m +9|,解得m =5或m =-133,即直线l 为4x +6y +5=0或12x +18y -13=0. (2)先解方程组⎩⎨⎧3x +2y -1=0,5x +2y +1=0,得l 1,l 2的交点坐标为(-1,2), 再由l 3的斜率35求出l 的斜率为-53, 于是由直线的点斜式方程求出l : y -2=-53(x +1),即5x +3y -1=0. 考点三 对称问题角度1 点关于点对称【例3】过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________. 答案 x +4y -4=0解析 设l 1与l 的交点为A (a ,8-2a ),则由题意知,点A 关于点P 的对称点B (-a ,2a -6)在l 2上,代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以直线l 的方程为x +4y -4=0.感悟升华 1.点关于点的对称:点P (x ,y )关于M (a ,b )对称的点P ′(x ′,y ′)满足⎩⎨⎧x ′=2a -x ,y ′=2b -y . 2.直线关于点的对称:直线关于点的对称可转化为点关于点的对称问题来解决,也可考虑利用两条对称直线是相互平行的,并利用对称中心到两条直线的距离相等求解.角度2 点关于线对称【例4】一束光线经过点P (2,3)射在直线l :x +y +1=0上,反射后经过点Q (1,1),则入射光线所在直线的方程为________. 答案 5x -4y +2=0解析 设点Q (1,1)关于直线l 的对称点为Q ′(x ′,y ′),由已知得⎩⎪⎨⎪⎧y ′-1x ′-1=1,x ′+12+y ′+12+1=0,解得⎩⎨⎧x ′=-2,y ′=-2,即Q ′(-2,-2),由光学知识可知,点Q ′在入射光线所在的直线上,又k PQ ′=3-(-2)2-(-2)=54,∴入射光线所在直线的方程为y -3=54(x -2),即5x -4y +2=0.感悟升华 1.若点A (a ,b )与点B (m ,n )关于直线Ax +By +C =0(A ≠0,B ≠0)对称,则直线Ax +By +C =0垂直平分线段AB ,即有⎩⎪⎨⎪⎧n -b m -a ·⎝ ⎛⎭⎪⎫-A B =-1,A ·a +m 2+B ·b +n 2+C =0.2.几个常用结论(1)点(x ,y )关于x 轴的对称点为(x ,-y ),关于y 轴的对称点为(-x ,y ). (2)点(x ,y )关于直线y =x 的对称点为(y ,x ),关于直线y =-x 的对称点为(-y ,-x ).(3)点(x ,y )关于直线x =a 的对称点为(2a -x ,y ),关于直线y =b 的对称点为(x ,2b -y ).角度3 线关于线对称【例5】 (1)(2021·成都诊断)与直线3x -4y +5=0关于x 轴对称的直线的方程是( )A .3x -4y +5=0B .3x -4y -5=0C .3x +4y -5=0D .3x +4y +5=0(2)直线2x -y +3=0关于直线x -y +2=0对称的直线方程是________________. 答案 (1)D (2)x -2y +3=0解析 (1)设所求直线上点的坐标(x ,y ),则关于x 轴的对称点(x ,-y )在已知的直线3x -4y +5=0上,所以所求对称直线方程为3x +4y +5=0,故选D. (2)设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0),由⎩⎪⎨⎪⎧x +x 02-y +y 02+2=0,x -x 0=-(y -y 0),得⎩⎨⎧x 0=y -2,y 0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上, ∴2(y -2)-(x +2)+3=0,即x -2y +3=0.感悟升华 求直线l 1关于直线l 对称的直线l 2有两种处理方法:(1)在直线l 1上取两点(一般取特殊点),利用点关于直线的对称的方法求出这两点关于直线l 的对称点,再用两点式写出直线l 2的方程.(2)设点P (x ,y )是直线l 2上任意一点,其关于直线l 的对称点为P 1(x 1,y 1)(P 1在直线l 1上),根据点关于直线对称建立方程组,用x ,y 表示出x 1,y 1,再代入直线l 1的方程,即得直线l 2的方程.【训练3】已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)直线l 关于点A 对称的直线l ′的方程.解(1)设A ′(x ,y ),则⎩⎪⎨⎪⎧y +2x +1·23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413,即A ′⎝ ⎛⎭⎪⎫-3313,413.(2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点必在m ′上.设对称点为M ′(a ,b ),则⎩⎪⎨⎪⎧2×⎝ ⎛⎭⎪⎫a +22-3×⎝ ⎛⎭⎪⎫b +02+1=0,b -0a -2×23=-1,解得⎩⎪⎨⎪⎧a =613,b =3013,即M ′⎝ ⎛⎭⎪⎫613,3013.设m 与l 的交点为N ,则由⎩⎨⎧2x -3y +1=0,3x -2y -6=0, 得N (4,3).又m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0.(3)法一 在l :2x -3y +1=0上任取两点,如P (1,1),N (4,3),则P ,N 关于点A 的对称点P ′,N ′均在直线l ′上.易知P ′(-3,-5),N ′(-6,-7),由两点式可得l ′的方程为2x -3y -9=0. 法二 设Q (x ,y )为l ′上任意一点,则Q (x ,y )关于点A (-1,-2)的对称点为 Q ′(-2-x ,-4-y ),∵Q ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0,即2x -3y -9=0.活用直线系方程具有某些共同特点的所有直线的全体称为直线系,直线系方程问题是高中数学中的一类重要问题,在解题中有着重要的应用.在直线方程求解中,可以由特定条件设出直线系方程,再结合题目中其他条件求出具体直线,这个解题思路在解决许多问题时,往往能起到化繁为简,化难为易的作用.一、相交直线系方程【例1】已知两条直线l 1:x -2y +4=0和l 2:x +y -2=0的交点为P ,求过点P 且与直线l 3:3x -4y +5=0垂直的直线l 的方程.解 法一 解l 1与l 2组成的方程组得到交点P (0,2),因为k 3=34,所以直线l 的斜率k =-43,方程为y -2=-43x ,即4x +3y -6=0.法二 设所求直线l 的方程为4x +3y +c =0,由法一可知P (0,2),将其代入方程,得c =-6,所以直线l 的方程为4x +3y -6=0.法三 设所求直线l 的方程为x -2y +4+λ(x +y -2)=0,即(1+λ)x +(λ-2)y +4-2λ=0,因为直线l 与l 3垂直,所以3(1+λ)-4(λ-2)=0,所以λ=11,所以直线l 的方程为4x +3y -6=0.二、平行直线系方程【例2】已知直线l 1与直线l 2:x -3y +6=0平行,l 1与x 轴、y 轴围成面积为8的三角形,请求出直线l 1的方程.解 设直线l 1的方程为x -3y +c =0(c ≠6),令y =0,得x =-c ;令x =0,得y =c 3,依照题意有12×|-c |×⎪⎪⎪⎪⎪⎪c 3=8,c =±4 3.所以l 1的方程是x -3y ±43=0. 【例3】已知直线方程3x -4y +7=0,求与之平行且在x 轴、y 轴上的截距和是1的直线l 的方程.解 法一 设存在直线l :x a +y b =1,则a +b =1和-b a =34组成的方程组的解为a=4,b =-3.故l 的方程为x 4-y 3=1,即3x -4y -12=0.法二 根据平行直线系方程可设直线l 为3x -4y +c =0(c ≠7),则直线l 在两坐标轴上截距分别对应的是-c 3,c 4,由-c 3+c 4=1,知c =-12.故直线l 的方程为3x -4y -12=0.三、垂直直线系方程【例4】求经过A (2,1),且与直线2x +y -10=0垂直的直线l 的方程.解 因为所求直线与直线2x +y -10=0垂直,所以设直线方程为x -2y +c =0,又直线过点A (2,1),所以有2-2×1+c =0,解得c =0,即所求直线方程为x -2y =0.思维升华 直线系方程的常见类型1.过定点P (x 0,y 0)的直线系方程是y -y 0=k (x -x 0)(k 是参数,直线系中未包括直线x =x 0);2.平行于已知直线Ax +By +C =0的直线系方程是Ax +By +λ=0(λ是参数且λ≠C );3.垂直于已知直线Ax +By +C =0的直线系方程是Bx -Ay +λ=0(λ是参数);4.过两条已知直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的交点的直线系方程是A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ∈R,但不包括l2).A级基础巩固一、选择题1.已知点(a,2)(a>0)到直线l:x-y+3=0的距离为1,则a=() A. 2 B.2- 2 C.2-1 D.2+1答案C解析由题意得|a-2+3|1+1=1.解得a=-1+2或a=-1- 2.∵a>0,∴a=-1+ 2.2.已知直线l过点(0,7),且与直线y=-4x+2平行,则直线l的方程为() A.y=-4x-7 B.y=4x-7C.y=4x+7 D.y=-4x+7答案D解析过点(0,7)且与直线y=-4x+2平行的直线方程为y-7=-4x,即直线l 的方程为y=-4x+7,故选D.3.已知b>0,直线(b2+1)x+ay+2=0与直线x-b2y-1=0垂直,则ab的最小值为()A.1 B.2 C.2 2 D.23答案B解析由已知两直线垂直可得(b2+1)-ab2=0,即ab2=b2+1,又b>0,所以ab=b+1 b.由基本不等式得b+1b≥2b·1b=2,当且仅当b=1时等号成立,所以(ab)min=2.故选B.4.坐标原点(0,0)关于直线x-2y+2=0对称的点的坐标是()A.⎝ ⎛⎭⎪⎫-45,85B.⎝ ⎛⎭⎪⎫-45,-85 C.⎝ ⎛⎭⎪⎫45,-85 D.⎝ ⎛⎭⎪⎫45,85 答案 A解析 设对称点的坐标为(x 0,y 0),则⎩⎪⎨⎪⎧x 02-2×y 02+2=0,y 0=-2x 0,解得⎩⎪⎨⎪⎧x 0=-45,y 0=85,即所求点的坐标是⎝ ⎛⎭⎪⎫-45,85. 5.(2020·豫西五校联考)过点P (1,2)作直线l ,若点A (2,3),B (4,-5)到它的距离相等,则直线l 的方程为( )A .4x +y -6=0或x =1B .3x +2y -7=0C .4x +y -6=0或3x +2y -7=0D .3x +2y -7=0或x =1答案 C解析 若A ,B 位于直线l 的同侧,则直线l ∥AB .k AB =3+52-4=-4,∴直线l 的方程为y -2=-4(x -1),即4x +y -6=0;若A ,B 位于直线l 的两侧,则直线l 必经过线段AB 的中点(3,-1),∴k l =2-(-1)1-3=-32,∴直线l 的方程为y -2=-32(x -1),即3x +2y -7=0. 综上,直线l 的方程为4x +y -6=0或3x +2y -7=0,故选C.6.(多选题)(2021·泰安调研)已知直线l :(a 2+a +1)x -y +1=0,其中a ∈R ,则下列说法正确的是( )A .当a =-1时,直线l 与直线x +y =0垂直B .若直线l 与直线x -y =0平行,则a =0C .直线l 过定点(0,1)D .当a =0时,直线l 在两坐标轴上的截距相等答案 AC解析 对于A 项,当a =-1时,直线l 的方程为x -y +1=0,显然与x +y =0垂直,所以正确;对于B 项,若直线l 与直线x -y =0平行,可知(a 2+a +1)·(-1)=1·(-1),解得a =0或a =-1,所以不正确;对于C 项,当x =0时,有y =1,所以直线过定点(0,1),所以正确;对于D 项,当a =0时,直线l 的方程为x -y +1=0,在两轴上的截距分别是-1,1,所以不正确.7.(2021·宝鸡模拟)光线沿着直线y =-3x +b 射到直线x +y =0上,经反射后沿着直线y =ax +2射出,则有( )A .a =13,b =6B .a =-3,b =16C .a =3,b =-16D .a =-13,b =-6答案 D解析 由题意,直线y =-3x +b 与直线y =ax +2关于直线y =-x 对称, 所以直线y =ax +2上的点(0,2)关于直线y =-x 的对称点(-2,0)在直线y = -3x +b 上,所以(-3)×(-2)+b =0,所以b =-6,所以直线y =-3x -6上的点(0,-6)关于直线y =-x 的对称点(6,0)在直线y =ax +2上,所以6a +2=0,所以a =-13.8.(多选题)(2021·长沙模拟)已知直线l :3x -y +1=0,则下列结论正确的是( )A .直线l 的倾斜角是π6B .若直线m :x -3y +1=0,则l ⊥mC .点(3,0)到直线l 的距离是2D .过(23,2)与直线l 平行的直线方程是3x -y -4=0答案 CD解析 对于A ,直线l :3x -y +1=0的斜率k =tan θ=3,故直线l 的倾斜角是π3,故A 错误;对于B ,因为直线m :x -3y +1=0的斜率k ′=33,kk ′=1≠-1,故直线l 与直线m 不垂直,故B 错误;对于C ,点(3,0)到直线l 的距离d =|3·3-0+1|(3)2+(-1)2=2,故C 正确;对于D ,过(23,2)与直线l 平行的直线方程是y -2=3(x -23),整理得: 3x -y -4=0,故D 正确.二、填空题9.(2020·南昌重点中学联考)已知直线l 1:y =2x ,则过圆x 2+y 2+2x -4y +1=0的圆心且与直线l 1垂直的直线l 2的方程为________.答案 x +2y -3=0解析 由题意可知圆的标准方程为(x +1)2+(y -2)2=4,所以圆的圆心坐标为(-1,2),由已知得直线l 2的斜率k =-12,所以直线l 2的方程为y -2=-12(x +1),即x +2y -3=0.10.直线x -2y -3=0关于定点M (-2,1)对称的直线方程是________. 答案 x -2y +11=0解析 设所求直线上任一点(x ,y ),则关于M (-2,1)的对称点(-4-x ,2-y )在已知直线上,∴所求直线方程为(-4-x )-2(2-y )-3=0,即x -2y +11=0.11.若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则PQ 的最小值为________.答案 2910解析 因为36=48≠-125,所以两直线平行,将直线3x +4y -12=0化为6x +8y -24=0,由题意可知|PQ |的最小值为这两条平行直线间的距离,即|-24-5|62+82=2910,所以|PQ |的最小值为2910. 12.以点A (4,1),B (1,5),C (-3,2),D (0,-2)为顶点的四边形ABCD 的面积为________.答案 25解析 因为k AB =5-11-4=-43,k DC =2-(-2)-3-0=-43. k AD =-2-10-4=34,k BC =2-5-3-1=34. 则k AB =k DC ,k AD =k BC ,所以四边形ABCD 为平行四边形.又k AD ·k AB =-1,即AD ⊥AB ,故四边形ABCD 为矩形.故S四边形ABCD =|AB |·|AD |=(1-4)2+(5-1)2×(0-4)2+(-2-1)2=25.B 级 能力提升13.设△ABC 的一个顶点是A (3,-1),∠B ,∠C 的平分线的方程分别是x =0,y =x ,则直线BC 的方程是( )A .y =3x +5B .y =2x +3C .y =2x +5D .y =-x 2+52答案 C解析 A 关于直线x =0的对称点是A ′(-3,-1),关于直线y =x 的对称点是A ″(-1,3),由角平分线的性质可知,点A ′,A ″均在直线BC 上,所以直线BC 的方程为y =2x +5.故选C.14.(多选题)(2021·南京调研)已知直线l 1:ax -y +1=0,l 2:x +ay +1=0,a ∈R ,以下结论正确的是( )A .不论a 为何值,l 1与l 2都互相垂直B .当a 变化时,l 1与l 2分别经过定点A (0,1)和B (-1,0)C .不论a 为何值,l 1与l 2都关于直线x +y =0对称D .如果l 1与l 2交于点M ,则|MO |的最大值是2答案 ABD解析 对于A ,a ×1+(-1)×a =0恒成立,l 1与l 2都互相垂直恒成立,故A 正确;对于B ,直线l 1:ax -y +1=0,当a 变化时,x =0,y =1恒成立,所以l 1恒过定点A (0,1);l 2:x +ay +1=0,当a 变化时,x =-1,y =0恒成立,所以l 2恒过定点B (-1,0),故B 正确;对于C ,在l 1上任取点(x ,ax +1),关于直线x +y =0对称的点的坐标为(-ax -1,-x ),代入l 2:x +ay +1=0,则等式左边不恒等于0,故C 不正确;对于D ,联立⎩⎨⎧ax -y +1=0,x +ay +1=0,解得⎩⎪⎨⎪⎧x =-a -1a 2+1,y =-a +1a 2+1,即M ⎝ ⎛⎭⎪⎫-a -1a 2+1,-a +1a 2+1, 所以|MO |=⎝ ⎛⎭⎪⎫-a -1a 2+12+⎝ ⎛⎭⎪⎫-a +1a 2+12=2a 2+1≤2,所以|MO |的最大值是2,故D 正确.15.已知直线l 经过直线2x +y -5=0与x -2y =0的交点,若点A (5,0)到直线l 的距离为3,则l 的方程为________.答案 x =2或4x -3y -5=0解析 法一 两直线交点为(2,1),当斜率不存在时,所求直线方程为x -2=0,此时A 到直线l 的距离为3,符合题意;当斜率存在时,设其为k ,则所求直线方程为y -1=k (x -2),即kx -y +(1-2k )=0.由点到线的距离公式得d =|5k +1-2k |k 2+1=3,解得k =43,故所求直线方程为4x -3y -5=0.综上知,所求直线方程为x -2=0或4x -3y -5=0.法二 经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0,所以|10+5λ-5|(2+λ)2+(1-2λ)2=3,解得λ=2或λ=12. 所以l 的方程为x =2或4x -3y -5=0.16.已知点A (4,-1),B (8,2)和直线l :x -y -1=0,动点P (x ,y )在直线l 上,则|P A |+|PB |的最小值为________.答案 65解析 设点A 1与A 关于直线l 对称,P 0为A 1B 与直线l 的交点,∴|P 0A 1|=|P 0A |,|P A 1|=|P A |.在△A 1PB 中,|P A 1|+|PB |>|A 1B |=|A 1P 0|+|P 0B |=|P 0A |+|P 0B |,∴|P A |+|PB |≥|P 0A |+|P 0B |=|A 1B |.当P 点运动到P 0时,|P A |+|PB |取得最小值|A 1B |.设点A 关于直线l 的对称点为A (x 1,y 1),则由对称的充要条件知⎩⎪⎨⎪⎧y 1+1x 1-4·1=-1,x 1+42-y 1-12-1=0,解得⎩⎨⎧x 1=0,y 1=3,∴A 1(0,3). ∴(|P A |+|PB |)min =|A 1B |=82+(-1)2=65.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学案---------高一年级(下)数学NO.19
1
课题:2.1.3两条直线的平行与垂直(二)
备课时间 2008-01-28 上课时间: 主备:何送军 审核:贾永亮 姓名:
一、学习目标:
1、课标要求:
①、掌握两条直线垂直的判定方法 ②、会根据直线方程判断两条直线是否垂直
2、情感态度与价值观
①、理解两条直线垂直条件的推导过程 ②、注意解几思想的渗透和表述的规范性
③、培养学生的探索和概括能力
3、学习重难点:掌握两条直线垂直的判定方法及分类讨论
二、教学内容分析
〖 温故知新 〗
若12ll(12,ll都不与x轴垂直),如右图
1122
,lklk的斜率为的斜率为
,求证:12kk=-1
〖 新知探究 〗
问题:
(1)当两直线斜率都存在时,若它们互相垂直,则它们的斜率的乘积为多少?
(2)、若它们的斜率的乘积等于1,那么它们的位置关系怎样?
即: 12ll121kk(12,kk均存在)是否成立?
(3)、若两条直线12,ll中的一条斜率不存在,则另一条斜率为多少时,12ll?
〖 分析过程 〗
P
y
x
S
T
Q
x
1
l
O
R
2
l
学案---------高一年级(下)数学NO.19
2
〖 反思小结〗
1.两直线垂直的判定条件;
2.与直线0CByAx垂直的直线的方程可设为0mAyBx,其中m待定.
〖 课后练习 〗(每题10分,共30分)
1、若直线1l的斜率134k,直线2l过点2(3,2),(0,1)AaBa,且12ll,求实数a值.
2、求过点(2,1)A,且与直线0102yx垂直的直线l的方程.
3、求垂直与直线3x-4y-7=0,且与坐标轴构成三角形的周长为10的直线方程。(15分)
学案---------高一年级(下)数学NO.19
3
课题:2.1.3两条直线的平行与垂直(二)
备课时间 2008-01-28 上课时间: 主备:何送军 审核:朱碧道 姓名:
三、应用巩固
〖 例题 〗
1、已知三角形三个顶点是A(4,0),B(6,7),C(0,3),求AB边上高所在直线的方
程。
2、已知直线l的方程为01243yx,求直线'l的方程,使'l与l垂直且'l与坐标轴围
成的三角形面积为6.
学案---------高一年级(下)数学NO.19
4
〖 课堂练习 〗(共30分)
1、过原点作直线l的垂线,若垂足为(2,3),则直线l的方程是 (5分)
2、经过点P(2,3),且与直线L:y+4=0垂直的直线的方程是 .(5分)
3、已知直线12:220,:10lxayalaxya,
(1)若12//ll,试求a的值,(5分)
(2)若12ll,试求a的值.(5分)
4、已知直线1L:(a+2)x+(a+3)y-5=0和2L:6x+(2a-1)y-5=0相互垂直,求实数a值。
(10分)