实验九 温度传感器设计性实验讲义

合集下载

温度传感器实验

温度传感器实验

温度传感器实验一、实验原理:温度传感器在各个领域运用极为广泛,其中热电偶、热敏电阻(包括金属和半导体热敏电阻)和集成电路温度传感器尤为突出。

热电偶应用金属的热电效应将温度变化直接转换为电压,用的有K型、J型和B型等,表征热电偶的参数是分度号。

金属材料的电阻率随温度的升降而升降,选用一些电阻温度系数较大且比较稳定的金属如铂、铜、镍等可制成金属热敏电阻。

半导体PN结对温度变化十分敏感,PN结的电流与端电压随温度变化呈线性关系,集成电路温度传感器利用半导体PN结的温度特性制成,其温度检测的依据是PN结正向电压和温度的关系,即当集成电路中晶体管的集电极偏置电流Ic为常数时,基极与发射极之间的电压与温度近似为线性关系。

集成电路温度传感器又分为电压输出型和电流输出型,即输出电压(电流)随温度变化呈线性关系,电压输出型一般以0 ℃为零点,温度系数为10mV/℃;电流输出型一般以0°K为零点,温度系数1μA/K,更适合长距离测量。

本实验旨在通过热电偶、金属热敏电阻和集成电路温度传感器的相关实验,认识、了解其特性及使用方法。

二、实验材料:K型热电偶、Pt100铂热电阻、AD590、OP77运放、LM35、TL431、LM324、温度计、小电炉、烧杯,三、实验内容:(一)热电偶实验将热电偶热端置于0—100℃的环境中,通过K 型热电偶的温度/电压转换电路,观察放大器输出端的电平变化,学会热电偶及分度表的使用。

图1-1是K 型热电偶的温度/电压转换电路,图中由热电偶、放大电路等构成,热电偶的输出电压极小,每1℃约为40 μV ,因此运算放大器要采用高灵敏度器件,本电路中采用OP77运算放大器接成同相放大电路形式。

K 型热电偶的100 ℃的感应电动势为4.095mV ,为观察方便,运算放大器增益Av 设为Av =1000倍。

此外电路还有由温度传感器集成电路LM35D构成的冷端温度补偿电路。

该集成电路的输出为10mV /℃,通过电阻分压,在 端可以产生40.44μV*t(t为环境温度)热电偶热电动势的电压。

实验九 温度传感器设计性实验讲义

实验九 温度传感器设计性实验讲义

实验九温度传感器设计传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。

它是实现自动检测和自动控制的首要环节。

传感器一般由敏感元件、转换元件和基本转换电路三部分组成。

其中,敏感元件用于感知被测量,并输出与被测量成确定关系的某一物理量;转换元件将敏感元件的输出量转换成电路参量;转换电路将上述电路参量转换成电学量进行输出。

物理学中的温度用以表征物体的冷热程度。

而温度在具体的计量时,一般需要通过物体随温度变化的某些特性来间接测量。

温度传感器就是将温度信息转换成易于传递和处理的电信号的传感器。

在科技日新月异的今天,温度传感器的应用尤其广泛。

在工业方面,温度传感器可应用于各种对温度有要求的产业,如金属冶炼,用于控制加热熔炉的温度以及冷却金属;航天领域,用于检测顶流罩、航天服等的耐热及耐寒程度等。

在化学方面,关于对温度有严格要求的化学反应,需要高精度的温度传感器帮助控制反应过程中的特定温度。

在农业方面,温度传感器可以应用在温室培养的温度控制,对于农作物新品种开发及温室栽培起着重要作用。

在军事方面,可应用温度传感器对热源进行探测,起到侦查作用。

在医疗方面,温度传感器可用于体温探热器等探测体温的仪器。

【实验目的】1、了解Pt100铂电阻、Cu50铜电阻的温度特性及其测温原理。

2、学习运用不同的温度传感器设计测温电路。

【实验原理】热电阻传感器是利用导体的电阻随温度变化的特性,对温度和温度有关的参数进行检测的装置。

热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。

大多数热电阻在温度升高1℃时电阻值将增加0.4% ~ 0.6%。

热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在也逐渐采用镍、锰和铑等材料制造热电阻。

能够用于制作热电阻的金属材料必须具备以下特性:(1)电阻温度系数要尽可能大和稳定,电阻值与温度之间应具有良好的线性关系;(2)电阻率高,热容量小,反应速度快;(3)材料的复现性和工艺性好,价格低;(4)在测量范围内物理和化学性质稳定。

温度传感器实验ppt课件

温度传感器实验ppt课件
第2章 温度传感器及检测
2.1 温度检测的概述 2.2 热电阻测温传感器 2.3 热电偶温度传感器 2.4 集成温度传感器 2.5 温度传感器的工程设计实例
第一节 温度测量的基本概念
一、温度测量 的基本概念
温度标志着物 质内部大量分子无 规则运动的剧烈程 度。温度越高,表买的VIP时长期间,下载特权不清零。
100W优质文档免费下 载
VIP有效期内的用户可以免费下载VIP免费文档,不消耗下载特权,非会员用户需要消耗下载券/积分获取。
部分付费文档八折起 VIP用户在购买精选付费文档时可享受8折优惠,省上加省;参与折扣的付费文档均会在阅读页标识出折扣价格。
0下载券文档一键搜索 VIP用户可在搜索时使用专有高级功能:一键搜索0下载券文档,下载券不够用不再有压力!
内容特 无限次复制特权 权 文档格式转换
VIP有效期内可以无限次复制文档内容,不用下载即可获取文档内容 VIP有效期内可以将PDF文档转换成word或ppt格式,一键转换,轻松编辑!
阅读页去广告
敏感材料及测温原理 金属电阻的阻值大小与导体的长度
成正比,与导体的横截面积成反比,即
式中:R——导体的电阻; ρ——导体的电阻率; l——导体的长度; S——导体的截面积。
2021/8/25
改变温度t,金属导体的电阻率ρ与之大致成正比,即:
ρ=ρ0(1+αt)
式中,ρ0为0℃时导体的电阻率,α为电阻温度系数。
其他特 VIP专享精彩活动

VIP专属身份标识
开通VIP后可以享受不定期的VIP随时随地彰显尊贵身份。
专属客服
VIP专属客服,第一时间解决你的问题。专属客服Q全部权益:1.海量精选书免费读2.热门好书抢先看3.独家精品资源4.VIP专属身份标识5.全站去广告6.名

温度传感器的设计制作

温度传感器的设计制作
另外,还具有适应电源波动的特性,即电源 电压可以从4V~15V,输出电流的变化小于 1μA,所以它广泛用于高精度温度计和温度计 量等方面.
AD590 实物图
+
AD590 俯视图
-
CAN
二: 原理
特点:输出电流只随温度变化,准确度更高
一、测量AD590输出电流和温度的关系
IBtA 单位:µA
标准温度计
算传感器灵敏度及时传感器输出电流值。
按图1接线(AD590的正负极不能接错),取样电阻R的阻值为1000Ω。 把实验数据用最小二乘法进行拟合,求斜率B截距A和相关系数г。实 验时应注意AD590温度传感器为二端铜线引出,为防止极间短路,两 铜线不可直接放在水中,应用一端封闭的薄玻璃管套保护,其中注入 少量变压油,使之有良好热传递。(实验中如何保证AD590集成温度 传感器与水银温度计处在同一温度位置)
3. 测量集成温度传感器AD590在某恒定温度时的伏安 特性曲线,求出AD590线性使用范围的最小电压U。
二: 原理
AD590特性
AD590温度传感器工作电压 范围宽 (4V~30V),使用温度范围大(-55℃~150℃),其 灵敏度为1μA/K,电流输出线性极好(在使用温 度范围内非线性误差可小于±0.5℃).
四:实验内容
❖3 测量集成温度传感器AD590在某恒定
温度时的伏安特性曲线。
令图2中电源电压发生变化,如从8V变为10V,观测 一下,AD590传感器输出电流有无变化?分析其原 因。
五、实验数据
❖ 1 测量AD590传感器输出电流I和温度θ之间的 关系。求I-θ关系的经验公式。
表1 AD590传感器温度特性测量
实验简介 实验目的 实验原理
实验内容 仪器及调整 实验数据

传感器实验讲义

传感器实验讲义

实验一温度源的温度控制调节实验一、实验目的:了解温度控制的基本原理及熟悉温度源的温度调节过程。

二、基本原理:当温度源的温度发生变化时温度源中的P t100热电阻(温度传感器)的阻值发生变化,将电阻变化量作为温度的反馈信号输给智能调节仪,经智能调节仪的电阻——电压转换后与温度设定值比较再进行数字PID运算输出可控硅触发信号(加热)或继电器触发信号(冷却),使温度源的温度趋近温度设定值。

温度控制原理框图如图27—1所示。

三、需用器件与单元:主机箱、温度源、Pt100温度传感器。

图27—1温度控制原理框图四、实验步骤:温度源简介:温度源是一个小铁箱子,内部装有加热器和冷却风扇;加热器上有二个测温孔,加热器的电源引线与外壳插座(外壳背面装有保险丝座和加热电源插座)相连;冷却风扇电源为+24v DC,它的电源引线与外壳正面实验插孔相连。

温度源外壳正面装有电源开关、指示灯和冷却风扇电源+24v DC插孔;顶面有二个温度传感器的引入孔,它们与内部加热器的测温孔相对,其中一个为控制加热器加热的传感器Pt100的插孔,另一个是温度实验传感器的插孔;背面有保险丝座和加热器电源插座。

使用时将电源开关打开(O为关,-为开)。

从安全性、经济性即具有高的性价比考虑且不影响学生掌握原理的前提下温度源设计温度≤200℃。

1、调节仪的简介及调节仪的面板按键说明参阅实验二十六附言。

2、设置调节仪温度控制参数:合上主机箱上的电源开关;再合上主机箱上的调节仪电源开关,仪表上电后,仪表的上显示窗口(PV)显示随机数;下显示窗口(SV)显示控制给定值或交替闪烁显示控制给定值和“orAL”。

按SET键并保持约3秒钟,即进入参数设置状态。

在参数设置状态下按SET键,仪表将依次显示各参数,例如上限报警值HIAL、参数锁Loc 等等,对于配置好并锁上参数锁的仪表,用▼、▲、◄(A/M)等键可修改参数值。

按◄(A/M)键并保持不放,可返回显示上一参数。

温度传感器设计PPT课件

温度传感器设计PPT课件

VS
详细描述
在医疗领域,温度传感器主要用于体温监 测、保温箱和恒温箱的温度控制等。例如 ,新生儿保温箱、药品储存恒温箱等都需 要精确的温度控制,以确保病患和药品的 安全。此外,体温监测也是医疗诊断中的 重要环节,温度传感器的准确性和可靠性 对于病患的及时救治具有重要意义。
环境温度测量
总结词
环境温度传感器用于气象观测、建筑节能、农业种植等领域,为人们的生活和生产提供 气象和环境数据。
温度传感器应用
要点一
总结词
温度传感器广泛应用于工业、医疗、环境监测等领域。
要点二
详细描述
在工业领域中,温度传感器被广泛应用于各种生产过程中 ,如冶炼、化工、热力发电等,用于监测和控制生产过程 中的温度。在医疗领域中,温度传感器被用于体温测量、 医用消毒等,为医疗诊断和治疗提供重要依据。在环境监 测领域中,温度传感器被用于气象观测、环境监测和生态 保护等方面,以监测和保护环境。
响应。
金属材料易于加工和集成,适 用于大规模生产和应用。
非金属材料
01
陶瓷、玻璃、石英等非金属材料具有较好的耐高温性能和稳定 性,适用于高温环境下的温度测量。
02
非金属材料的热敏电阻具有较高的灵敏度和稳定性,能够提供
准确的温度测量。
非金属材料易于加工成复杂的形状,适用于小型化和集成化的
03
温度传感器设计。
温度传感器是用于测量温度的装 置,它能够将温度这个非电学量 转换为可测量的电信号,以便进 一步处理和控制。
温度传感器类型
总结词
常见的温度传感器类型包括热电偶、热电阻和热敏电阻等。
详细描述
热电偶是一种利用塞贝克效应将温度转换为电势差的传感器,具有测量范围广、精度高、稳定性好等优点。热电 阻是利用导体电阻随温度变化的特性进行测温的传感器,具有测量精度高、稳定性好等优点。热敏电阻是一种利 用半导体的电阻随温度变化的特性进行测温的传感器,具有灵敏度高、响应速度快等优点。

《传感器制作实验》课件


Web链接
包括 IEEE Xplore、ACM Digital Library 等传感器相 关网站。
2
实验注意事项
如何避免电路短路、如何正确接线、如何校准传感器等细节问题。
Hale Waihona Puke 3数据分析按照实验大纲,分别对实验步骤中采集到的数据进行处理和分析。
实验结果分析
数据采集
记录温度和时间,对不同环境条件下的温度进行采集,共采集了500组数据。
数据处理
将采集到的数据进行预处理和滤波,去除干扰噪声等。
结果分析
对处理后的数据进行分析,比较不同条件下温度的变化情况,总结出规律。
实验总结
实验心得
这次实验使我更加深入地了解了 传感器的原理和制作方法。
实验改进
下次实验,可以增加温度范围和 样本数量,从而获得更全面和准 确的数据结果。
实验意义
传感器在各个领域都有着广泛的 应用,这次实验有助于培养我们 的实践能力和实验设计能力。
参考资料
相关书籍
《传感器技术及应用》、《模拟电子技术基 础》、《物联网:基础与应用》等。
实验步骤
包括实验前准备和实验操作步骤。
电路连接图
传感器接线图
将电容、电阻、温度传感器接线至芯片板上,配合 相应的硬件电路测试。
电路连接示意图
标注各个器材的名称以及它们在电路图中的位置及 连线方式。
实验过程
1
实验操作步骤
安装硬件电路、启动软件、采集数据、保存数据、处理数据,最后查看分析数据 的结果。
《传感器制作实验》PPT 课件
这篇 PPT 课件向你介绍传感器制作实验,包含实验的目的、原理、器材、步 骤、电路连接图、实验结果分析等内容。
实验介绍

温度传感器课程设计

温度传感器课程设计报告专业:电气化年级: 13-2学院:机电院姓名:***学号:**********--目录1引言 (3)2 设计要求 (3)3 工作原理 (3)4 方案设计 (4)5 单元电路的设计和元器件的选择 (6)5.1微控制器模块 (6)5.2温度采集模块 (7)5.3报警模块 (9)5.4温度显示模块 (9)5.5其它外围电路 (10)6 电源模块 (12)7 程序设计 (13)7.1流程图 (13)7.2程序分析 (16)8. 实例测试 (18)总结 (18)参考文献 (19)1 引言传感器是一种有趣的且值得研究的装置,它能通过测量外界的物理量,化学量或生物量来捕捉知识和信息,并能将被测量的非电学量转换成电学量。

在生活中它为我们提供了很多方便,在传感器产品中,温度传感器是最主要的需求产品,它被应用在多个方面。

总而言之,传感器的出现改变了我们的生活,生活因使用传感器也变得多姿多彩。

温度控制系统广泛应用于社会生活的各个领域,如家电、汽车、材料、电力电子等,常用的控制电路根据应用场合和所要求的性能指标有所不同,在工业企业中,如何提高温度控制对象的运行性能一直以来都是控制人员和现场技术人员努力解决的问题。

这类控制对象惯性大,滞后现象严重,存在很多不确定的因素,难以建立精确的数学模型,从而导致控制系统性能不佳,甚至出现控制不稳定、失控现象。

传统的继电器调温电路简单实用,但由于继电器动作频繁,可能会因触点不良而影响正常工作。

控制领域还大量采用传统的PID控制方式,但PID控制对象的模型难以建立,并且当扰动因素不明确时,参数调整不便仍是普遍存在的问题。

而采用数字温度传感器DS18B20,因其内部集成了A/D转换器,使得电路结构更加简单,而且减少了温度测量转换时的精度损失,使得测量温度更加精确。

数字温度传感器DS18B20只用一个引脚即可与单片机进行通信,大大减少了接线的麻烦,使得单片机更加具有扩展性。

温度传感器实验

温度传感器实验传感器是将非电信号转换为电信号的装置,因为电信号容易传递和处理。

温度是物体冷热程度的标志,温度传感器就是将温度转换成电信号的传感器。

一.测温传感器的分类电阻式传感器。

常用的有铂热电阻、热敏电阻和铜热电阻。

其中铂电阻(Pt100)精确度最高,重现性和稳定性很好,不仅应用广泛,而且被制成标准的基准仪。

热敏电阻(Thermally Sensitive Resistor,简称Thermistor),是温度敏感的电阻的总称,是属于热电阻的一部分,一般分为负温度系数热敏电阻NTC(Negative Temperature Coefficient)和正温度系数热敏电阻PTC(Positive Temperature Coefficient)。

NTC的电阻值随温度的上升而下降;PTC正好相反。

其它传感器。

半导体PN结温度传感器,晶体温度传感器,非接触型温度传感器,热电偶温度传感器,光纤温度传感器,液压温度传感器,智能温度传感器。

二.DH-SJ5温度传感器实验装置DH-SJ5型温度传感实验装置以九孔板为实验平台,包括铂电阻Pt100、热敏电阻(NTC 和PTC)、铜电阻Cu50、铜-康铜热电偶、PN结、AD590和LM35等分离的温度传感器探头,各种电子元件。

能提供了多种测温电路和方法。

本装置采用Pt100铂电阻测温,智能温度控制器控温,控温精度高、范围广、可自由设定所需的温度,数字显示;用低电压恒流加热、安全可靠、无污染,加热电流连续可调;分离的温度传感器,形象直观,组合方便,可比较不同传感器的温度特性;降温实验可采用风扇快速降温;整体结构设计新颖,紧凑合理,外型美观大方。

主要技术指标:电源:AC220V±10%(50/60Hz),工作温度0~40℃,相对湿度<80%,无腐蚀性场合,控温范围:室温~120℃,控温精度:±0.2℃,分辨率:0.1℃。

温控仪与恒温炉的连线如图1,Pt100的插头与温控仪上的插座颜色应当对应连接。

利用温度传感器设计温度测量实验方案

温度变化。
热电偶
基于热电效应原理,将温度差转 换为电势差。可测量较宽的温度 范围,具有稳定性好、抗干扰能 力强等特点,常用于高温测量。
集成温度传感器
将温度敏感元件、信号放大电路 和接口电路等集成在一个芯片上 ,具有体积小、线性度好、使用
方便等优点。
辅助设备与器材
数据采集卡
用于将温度传感器输出 的模拟信号转换为数字 信号,并传输给计算机
它们的工作原理都是基于物质的物理 性质与温度之间的关系,如热电偶的 温差电势、热电阻的阻值随温度变化 等。
常见的温度传感器有热电偶、热电阻 、集成温度传感器等。
02
实验器材与准备
温度传感器选择及特性
热敏电阻
利用材料电阻随温度变化的特性 ,将温度转换为电信号。具有灵 敏度高、响应速度快、体积小等 优点,适用于测量较小范围内的
了解温度传感器的工 作原理和使用方法。
温度测量原理
温度是表示物体冷热程度的物理量, 是物体内分子热运动平均动能的标志 。
温度测量通常利用物质的某些物理性 质(如热胀冷缩、电阻变化等)与温 度之间的对应关系,将这些物理量的 变化转换为温度的变化。
温度传感器工作原理
温度传感器是一种将温度变量转换为 可传送的标准化输出信号的仪表。
利用温度传感器设计温度
测量实验方案
汇报人:XX
2024-01-11
• 实验目的与原理 • 实验器材与准备 • 实验步骤与方法 • 数据处理与误差分析 • 实验结果展示与应用 • 实验注意事项与改进方向
01
实验目的与原理
实验目的
学习和掌握温度测量 的基本原理和方法。
通过实验,掌握利用 温度传感器进行温度 测量的技能。
隔热措施
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验九温度传感器设计传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。

它是实现自动检测和自动控制的首要环节。

传感器一般由敏感元件、转换元件和基本转换电路三部分组成。

其中,敏感元件用于感知被测量,并输出与被测量成确定关系的某一物理量;转换元件将敏感元件的输出量转换成电路参量;转换电路将上述电路参量转换成电学量进行输出。

物理学中的温度用以表征物体的冷热程度。

而温度在具体的计量时,一般需要通过物体随温度变化的某些特性来间接测量。

温度传感器就是将温度信息转换成易于传递和处理的电信号的传感器。

在科技日新月异的今天,温度传感器的应用尤其广泛。

在工业方面,温度传感器可应用于各种对温度有要求的产业,如金属冶炼,用于控制加热熔炉的温度以及冷却金属;航天领域,用于检测顶流罩、航天服等的耐热及耐寒程度等。

在化学方面,关于对温度有严格要求的化学反应,需要高精度的温度传感器帮助控制反应过程中的特定温度。

在农业方面,温度传感器可以应用在温室培养的温度控制,对于农作物新品种开发及温室栽培起着重要作用。

在军事方面,可应用温度传感器对热源进行探测,起到侦查作用。

在医疗方面,温度传感器可用于体温探热器等探测体温的仪器。

【实验目的】1、了解Pt100铂电阻、Cu50铜电阻的温度特性及其测温原理。

2、学习运用不同的温度传感器设计测温电路。

【实验原理】热电阻传感器是利用导体的电阻随温度变化的特性,对温度和温度有关的参数进行检测的装置。

热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。

大多数热电阻在温度升高1℃时电阻值将增加0.4% ~ 0.6%。

热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在也逐渐采用镍、锰和铑等材料制造热电阻。

能够用于制作热电阻的金属材料必须具备以下特性:(1)电阻温度系数要尽可能大和稳定,电阻值与温度之间应具有良好的线性关系;(2)电阻率高,热容量小,反应速度快;(3)材料的复现性和工艺性好,价格低;(4)在测量范围内物理和化学性质稳定。

1、Pt100铂电阻的测温原理金属铂具有电阻温度系数大,感应灵敏;电阻率高,元件尺寸小;电阻值随温度变化基本呈线性关系;在测温范围内,物理、化学性能稳定,长期复现性好,测量精度高,是目前公认制造热电阻的最好材料。

但铂在高温下,易受还原性介质的污染,使铂丝变脆并改变电阻与温度之间的线性关系,因此使用时应装在保护套管中。

利用铂的此种物理特性制成的传感器称为铂电阻温度传感器。

铂电阻温度传感器精度高,稳定性好,应用温度范围广,是中低温区(-200~650℃)最常用的一种温度检测器,不仅广泛应用于工业测温,而且被制成各种标准温度计(涵盖国家和世界基准温度)供计量和校准使用。

通常使用的铂电阻温度传感器零度阻值为100Ω,电阻变化率为0.3851Ω/℃。

按IEC751国际标准, 温度系数TCR=0.003851,Pt100(R 0=100Ω)、Pt1000(R 0=1000Ω)为统一设计型铂电阻。

TCR=(R 100-R 0)/(R 0×100) (1)Pt100在100℃时标准电阻值R 100=138.51Ω,Pt1000在100℃标准电阻值R 100=1385.1Ω。

Pt100铂电阻的阻值随温度变化而变化满足下列公式:R t =R 0[1+At+Bt 2+C(t-100)t 3] -200<t<0 ℃(2)R t =R 0(1+At+B 2t ) 0<t<850 ℃ (3)R t 表示t ℃时的电阻值;R 0表示0℃时的电阻值。

公式(2)和(3)中A 、B 、C 的系数分别为: A=3.90802×10-3C -1;B=-5.802×10-7C -2 ;C=-4.27350×10-12C -4 。

铂电阻温度传感器在电路连接上通常采用三线制:在热电阻的根部的一端连接一根引线,另一端连接两根引线,这种方式通常与电桥配套使用,可以较好的消除引线电阻的影响,是工业过程控制中的最常用的引线方式(如图1所示)。

三线制接法要求引出的三根导线截面积和长度均相同,测量铂电阻的电路一般是不平衡电桥,铂电阻作为电桥的一个桥臂电阻,将导线一根接到电桥的电源端,其余两根分别接到铂电阻所在的桥臂及与其相邻的桥臂上,当桥路平衡时,通过计算可知:r R rR R R R R t -+=21231 (4) 当R 1=R 2时,导线电阻的变化对测量结果没有任何影响,这样就消除了导线电阻带来的测量误差。

图1 三线制电路图2、Cu50铜电阻温度特性原理铜电阻测温原理与铂电阻一样,利用导体电阻随温度变化的特性。

而铜热电阻测温范围小,在-50~150℃范围内,稳定性好,便宜;但体积大,机械强度较低。

铜电阻在测温范围内电阻值和温度呈线性关系,温度系数大,适用于无腐蚀介质。

通常用于测量精度不高的场合。

铜电阻有R 0=50Ω和R 0=100Ω两种,它们的分度号为Cu50和Cu100。

常用的铜电阻Cu50在-50~150℃以内,电阻R t 与温度t 的关系为:Rt=R0(1+αt)(5)式中R0为温度为0℃时的电阻值(Cu50在0℃时的电阻值为R0=50Ω)。

α是电阻温度系数,α=4.25~4.28×10-3/℃。

铜电阻通常是用直径为0.1mm的绝缘铜丝绕在绝缘骨架上,再用树脂保护,当被测介质中有温度梯度存在时,所测得的温度是感温元件所在范围内介质层中的平均温度。

铜电阻与铂电阻测温接线方法相同,一般也是三线制。

【实验仪器】DH-SJ型温度传感器实验装置,DH-VC1直流恒压恒流源,九孔板,数字万用表。

一.DH-SJ5温度传感器实验装置DH-SJ5型温度传感器(图2)实验装置是以分离的温度传感器探头元器件,单个电子元件,以九孔板为实验平台来测量温度的设计性实验装置。

该实验装置提供了多种测温方法,自行设计测温电路来测量温度传感器的温度特性。

实验配有铂电阻Pt100、热敏电阻(NTC和PTC)、铜电阻Cu50、铜-康铜热电偶、PN结、AD590和LM35等温度传感器。

图 2 DH-SJ5型温度传感器1. 本实验装置采用智能温度控制器控温。

具有以下的特点:1、控温精度高、范围广、加热所需的温度可自由设定,采用数字显示。

2、使用低电压恒流加热、安全可靠、无污染。

加热电流连续可调。

3、本仪器提供的是单个分离的温度传感器,形象直观,给实验带来了很大的方便,可对不同传感器的温度特性进行比较,更易于掌握它们的温度特性。

4、采用九孔板作为实验平台,提供设计性实验。

5、加热炉配有风扇,在做降温实验过程中可采用风扇快速降温。

2. 温控仪与恒温炉的连线连线见上图2所示:Pt100带红色端头的做控温用,控温Pt100的插头与温控仪上的插座颜色对应得相连接。

红→红;黄→黄;蓝→蓝。

警告:在做实验中或做完实验后,禁止打开恒温炉的外罩恒温炉!二、DH-VC1直流恒压恒流源该电源是专门为九孔板物理设计性实验而设计的。

该电源可以提供:①0~30V,0.5A 的电压源;②0~240mA的电流源;③±3.3V, ±5V, ±8V, ±12V, ±15V的电压源。

并且其体积小,重量轻,避免了使用多种电源带来的管理和使用上的不便。

主要技术指标:1、工作环境条件:温度范围5℃~35℃,相对湿度25%~85%。

2、额定工作电源电压:~220V±10%,50Hz。

3、0~30V,0.5A电压源:短路电流0.5A,电压范围0~30±1V,电压纹波Vp-p<1mV。

4、0~240mA,19V电流源:电流范围0~240±10mA,开路电压19±1V,电流纹波<1µA。

5、±3.3V, ±5V,±8V, ±12V, ±15V电压源:精度±0.1V,最大输出电流250mA,纹波Vp-p<1mV。

三、九孔板九孔板的面板结构如下图3所示。

日字型的结构中每个插孔都是相互连通的。

但任何两个日字型结构之间是不导通的。

田字型的结构中每个插孔都是相互连通的。

但两任何个田字型结构之间是不导通的。

一字型的结构中每个插孔都是相互连通的。

但两个一字型结构之间是不导通的。

我们可以用元器件,导线和连接器等连接成我们需要的电路。

图3 九孔板结构图【实验内容与步骤】图4 恒流法接线图1. 按照图4接线。

带红色端头的控温Pt100放入恒温炉中,三色引线连接到温度传感实验装置对应位置上。

用DH-VC1直流恒压恒流源来提供I0=1mA直流电流,用万用表测量取样电阻R0两端电压为1V。

(调节DH-VC1上恒流源的电流粗调、细调旋钮使其两端的电压为1V,注意:将电压由0~1V缓慢调节。

)2. 将温度传感器(热电阻)直接插在温度传感器实验装置的恒温炉中。

通过数字万用表测量热电阻两端的电压进而得出不同温度下的电阻(由U Rt/I0=R t)。

通过温控仪加热,在不同的温度下,观察Pt100铂电阻和Cu50铜电阻的阻值的变化,从室温到100℃,每隔5℃(或自定度数)测一个数据,将测量数据逐一记录在表格内。

3. 以温度为横轴,以电阻值为纵轴,按等精度作图的方法,用所测的各对应数据作出R t -t 曲线。

4.分析比较它们的温度特性。

注:由于降温过程时间较长,所以可以Pt100铂电阻升温过程中测量,Cu50铜电阻降温过程中测量,以节省实验时间。

【注意事项】1、开机前要将DH-VC1直流恒压恒流源的电流粗调、电流细调旋钮逆时针旋到底。

2、DH-SJ温度传感器实验装置设定温度时,温度上限不能超过120℃;加热到预设温度后,即刻将加热电流档位打到关,然后风扇电流档位打到开,加热电流逆时针调节到最小,再把温度设定到室温或室温以下。

3、Pt100铂电阻和Cu50铜电阻两个电阻的导线严禁拉扯,以免断线,影响测量。

【预习思考题】1.比较Pt100铂电阻和Cu50铜电阻作为温度传感器的优缺点?2.在实验操作过程中,为什么要用万用表测量取样电阻R0两端电压并使之调整为1V?3.实验过程中如何消除引线电阻对测量结果的影响?【数据处理】1.列表记录Pt100铂电阻和Cu50铜电阻的温度和电压值。

2.计算Pt100铂电阻和Cu50铜电阻在不同温度下的电阻值。

3.绘制两种材料电阻随温度变化的曲线。

4.用逐差法计算Cu50铜电阻的电阻随温度变化的线性方程Rt=R0(1+αt)。

Pt100铂电阻数据记录室温℃Cu50铜电阻数据记录室温℃【分析讨论题】1.在采用三线制的电路中,如何用万用表检测温度传感器是否正常工作?2.为什么实验过程中使用1mA直流电流而不用100mA的电流?。

相关文档
最新文档