第三章力系的平衡条件及其应用

合集下载

第三章平面力系的合成与平衡

第三章平面力系的合成与平衡
【解】杆AB和BC都是二力杆,假设杆AB受拉力、杆BC 受压力,如图3.10(b)所示。
滑轮的受力图如图3.10(c)所示。
为了避免解联立方程,选直角坐标系如图所示,使x、 y轴分别与反力NBC、NAB垂直。
∑Fx=0,-NAB+Tcos60°-TBDcos30°=0 得 NAB=Tcos60°-TBDcos30°=-7.33kN NAB为负值,表示该力的实际指向与受力图中所假设 的指向相反。即杆AB受压力作用。再由
R Rx2 Ry2 ( Fx )2 ( Fy )2
tan Ry Fy
Rx
Fx
上式表明了合力在任一轴上的投影,等于各分 力在同一轴上投影的代数和。我们称之为合力投影 定理。
【例3.3】图3.7所示的吊环上作用有3个共面的拉力,各 力的大小分别是T1=3kN、T2=1kN、T3=1.5kN,方向如图
【解】绳AB作用于桩上的拉力是由绳BD传来的。因此先 取结点D为研究对象求出绳BD的拉力。
作用在结点D上的力有已知力F、绳DE的拉力TDE和 绳BD的拉力TDB,这三个力组成一平面汇交力系。结点D 的受力图如图3.11(b)所示。
选直角坐标系如图,使y轴与TDE垂直。列平衡方程
∑Fy=0,TDBsinα-Fcosα=0 得 TDB=Fcotα=4000N 再取结点B为研究对象。作用在结点B上的力有绳BC、 BD和BA的拉力TBC、TBD、TBA,绳BD给两结点D和B的 作用力应大小相等、方向相反,即有TBD=TDB=4000N。 力TBC、TBD、TBA组成一个平面汇交力系,结点B的受力 图如图3.11(c)所示。
3.1 平面汇交力系 3.1.1 力在坐标轴上的投影
设力F作用于物体的A点,如图3.4所示。

建筑力学-第三章(全)

建筑力学-第三章(全)

建筑力学
3.5 平面一般力系平衡条件和平衡方程
众所周知,当主矢 FR 0 时,为力平衡;当主矩 MO 0 时,为力偶平衡。
故平面任意力系平衡的充要条件为: 力系的主矢 FR和 主矩 都M O等于零。
上述平衡条件可表示为
FR ( Fx )2 ( Fy )2 0
Mo Mo (Fi ) 0
YA
XA
A
Q1=12kN
300 S
Q2=7kN 三力矩方程:再去掉Σ X=0方程 B
mC 0, X A60tg300 30Q1 60Q2 0
D
(二)力系的平衡
示例:斜梁。求支座反力
300
2kN/m B
2kN/m B
300
RB
A
300
A
2m
YA XA
C
X 0, X A RB sin 300 0
30cm
30cm Q1=12kN
Q2=7kN
X 0, X A S cos 300 0

X A 22.5kN
A
600
B
Y 0,YA Q1 Q2 S sin 300 0

YA 6kN
二力矩方程:去掉Σ Y=0方程
C
mB 0, 60YA 30Q1 0
FBl cos M 0
从而有:
FB

M l cos

20 kN 5 c os30

4.62kN
故:
FA FB 4.26kN
建筑力学
[例] 求图中荷载对A、B两点之矩.
解:
(a)
(b)
图(a): MA = - 8×2 = -16 kN ·m MB = 8×2 = 16 kN ·m

理论力学第3章 力系的平衡条件与平衡方程

理论力学第3章 力系的平衡条件与平衡方程

10
例题二的解答
解:选取研究对象:杆CE(带有销 钉D)以及滑轮、绳索、重物组成 的系统(小系统)受力分析如图, 列平衡方程:
M D (F ) 0 M C (F ) 0 M B (F ) 0
( F C cos ) CD F ( DE R ) PR 0 F Dx DC F ( CE R ) PR 0 F BD F ( DE R ) P ( DB R ) 0 Dy
2012年11月3日星期六
北京邮电大学自动化学院
29
滚动摩擦力偶的性质
滚动摩擦力偶M 具有如下性质(与滑动摩擦力性质类似): ◆ 其大小由平衡条件确定; ◆ 转向与滚动趋势相反; ◆ 当滚子处于将滚未滚的平衡临界状态时, M = M max =δFN
式中:δ —滚动摩擦系数,它的量纲为长度; FN —法向反力(一般由平衡条件确定)。
q (2a b) 2a
2
YA q (2a b)
16
2012年11月3日星期六
北京邮电大学自动化学院
课堂练习3
多跨静定梁由AB梁和BC梁用中间铰B连接而成,支撑和荷 载情况如图所示,已知P = 20kN,q=5kN⋅m,α = 45°。求 支座A、C的反力和中间铰B处的反力。
2012年11月3日星期六
x
xC
x
2012年11月3日星期六
北京邮电大学自动化学院
5
平行分布线载荷的简化
Q
q
1、均布荷载 Q=ql
l 2
l 2
Q
q
2、三角形荷载 Q=ql /2
2l 3
l 3
Q
3、梯形荷载 Q=(q1+q2)l /2 (自己求合力的位置)

第三章 力系简化的基础知识

第三章  力系简化的基础知识


【例3-8】梁AB受力偶m的作用,m=80N.m,如图320(a)所示;求A、B的支座反力。
(a)
(b)
(c) 图3-20
【解】: 取AB梁为研究对象,受力如图3-20(b) 所示;根据力偶必须和力偶平衡的特性,A、B处 的反力必然组成一个力偶。列平衡方程:
Mi 0
m 4RA 0
RA
m 4
80 4
20 N
RB RA 20 N
四、力的等效平移
➢ 力的平移定理:作用于刚体某点的力,可以平行移 动到刚体内任一点,而不改变原力对刚体的作用效 果,但是必须附加一个力偶,其力偶矩等于原力对
新作用点之力矩。
【例3-8】如图3-23(a)所示,厂房立柱的A点受到 吊车梁传来的偏心力F=50KN作用,A点距立柱轴线的 偏心距e=400mm。试分析力对立柱的作用。
2 sin 30 5 3 0 4 sin 60 5 12.3KN m
【例3-7】如图3-17所示每1m长挡土墙所受土压力 的合力R,它的大小R=150KN,方向如图所示 。求 土压力R使墙倾覆的力矩。
图3-17
【解】:土压力R欲使墙绕A点倾覆,故求R使墙 倾覆的力矩即求R对A点的力矩。
量和,即
n
R F1 F2 Fn Fi
式(3-2)
i 1
合力的作用线通过各力的汇交点。
❖ 作力多边形时,改变各力的顺序,可得不同形状的力多 边形,但合力矢的大小和方向并不改变
➢ 力在轴上的投影,合力投影定理
❖ 力在轴上的投影
1.定义:在所在平面内建立一个直角坐标xoy,从力F的 起点和终点分别作垂直线垂直于x轴和y轴,在坐标轴上 得交点a1b1与 a2b2
(2)建立直角坐标系Oxy,列平衡方程并求解

第3章力系平衡方程

第3章力系平衡方程
FR
F F
2 x y
2

38.822 3.82
(kN) 33
主矢FR′的方向为
tan
F F
y

3.8 32.82
0.1158
6 .6
x
主矢FR′在第四象限内,与x轴的夹角为6.6°。
2019/1/5
(2)求主矩MO 力系对点O的主矩为 MO=∑MO(F) =-F1sin20°· b-F2cos30°· b + F2sin30°· a +m =-20×0.342×10- 30×0.866×10+30×0.5×6+100 =-138(kN· m) 顺时针方向。
图3-5
2019/1/5
【例3-2】图
【解】 (1)建立直角坐标系,计算合力在x轴和y轴 上的投影
FRx Fx F1 cos30 F2 cos60 F3 cos45 F4 cos45
=200×0.866-300×0.5-100×0.707+250×0.707 =129.25N
MO(FR)= MO(F1)+ MO(F2)+…+ MO(Fn) =∑MO(F)
(3-6)
2019/1/5
【例3-5】 如图3-9所示,每1m长挡土墙所受土压 力的合力为FR,如FR=200kN,求土压力FR使挡土墙倾覆的 力矩。 【解】土压力FR可使挡土墙绕 A点倾覆,故求土压力FR使墙倾覆 的力矩,就是求FR对A点的力矩。 由已知尺寸求力臂d比较麻烦,但 如果将FR分解为两个力F1和F2,则 两分力的力臂是已知的,故由式 (3-6)可得
图3-16
力的平移定理
2019/1/5

-建筑力学第三章平面力系的合成与平衡

-建筑力学第三章平面力系的合成与平衡

平面汇交力系合成与平衡的几何法小 结
几何法解题步骤:1. 取研究对象;2. 画受力图; 3. 作力多边形;4. 选比例尺; 5. 解出未知数。
几何法解题不足: 1. 精度不够,误差大; 2. 作图要求精度高; 3. 不能表达各个量之间的函数关系。
平面汇交力系合成与平衡的另一种方法: 解析法(重点掌 握)。
R0
Rx2

R
2 y
0
或:力系中所有力在各个坐标轴上投影的代
数和分别等于零。
Rx Fx 0 Ry Fy 0
为平衡的充要条件, 也叫平衡方程
解析法求解汇交力系平衡问题的一般步骤:
1.选-对像;即依需选分离体,分离体选取应最好含题设
的已知条件; 2.画-分离体受力图,作到准确无误;
应用力线平移定理,可将刚体上平面任意力系中各个力
的作用线全部平行移到作用面内某一给定点O 。从而这
力系被分解为平面汇交力系和平面力偶系。这种变换的
方法称为力系向给定点O 的简化。点O 称为简化中心。 R0 -----主矢,与简化中心选取无关; M0 ---主矩,与简化中心有关。
2、主矢和主矩 (1)主矢R0
F3 F2
D
C
F2 F4 F3
R
F4
R
F4
E
E
3、汇交力系的合成结果
汇交力系可以合成为一个力,合力作用在力系
的公共作用点,它等于这些力的矢量和,并可由这
力系的力多边形的封闭边表示。
矢量的表达式:R F1 F 2
F1
A F2
F4 F3
F1
A
B F2
R
C
F3
D
F4
n

第三章.平面力系的合成与平衡


各力首尾相接
§3-1 平面汇交力系的合成与平衡
例4
已知:
系统如图,不计杆、轮自重,忽略滑轮大小,P=20kN; 求:系统平衡时,杆AB、BC受力。 解:AB、BC杆为二力杆, 取滑轮B(或点B),画受力图。
用解析法,建图示坐标系。
F
x
0
FBA F1 cos 60 F2 cos 30 0
Fy F cos F Fx Fy
Fx cos F
Fx
x
O
Fx
F Fx2 Fy2
cos
Fy F
§3-1 平面汇交力系的合成与平衡 3)合力投影定理 平面汇交力系,由三个力组成的力多边形 合力投影定理建立了合力投影与各分力投影的关系
FRx Fix
当 x轴与 y 轴不是正交轴时 :
F Fx Fy
力在坐标轴上的投影不等于力在这个轴上的分量。
§3-1 平面汇交力系的合成与平衡 2、平面汇交力系的解析法 2)力沿坐标轴的分解 当
Fx Fx
x y
y
Fy Fy
B
Fy
Fx F cos
Fy
A
β α
矢量和
θ
P
FNA 11.4kN FNB 10kN
F
FNB
F
θ P FNA
§3-1 平面汇交力系的合成与平衡 2、平面汇交力系的解析法 1)力在坐标轴上的投影 F力在 x 轴上的投影:
Fx F cosθ
Fy
Fx
F力在 y 轴上的投影:
Fy F cosβ
3 FR 2 FR1 F3 Fi i 1

G3

17
⒋ 列平衡方程求解:
X 0, Y 0,
X A P cosa 0 YA Q P sin a 0 l M A Q P sin a l 0 2
① ②
mA ( F ) 0,

将 Q = q l= 3 kN 及 P , a 之值代入相应方程, 解得:
三个独立的 X 0 Y 0 方程,只能求解 Z 0 三个未知量
例3—3 已知:AB=3m,AE=AF=4m,
Q=20kN; 求T2=?, T3=?N2 =?
10
解:分别研究C点和B点作受力图 对C点: Y 0, T1 ' sin 15 T sin 45 0, T Q 对B点:
注意: 力偶在力矩方程中出现,是把力偶当成矢量后, 再在坐标轴上投影,得到了力偶对矩轴之矩。 二、平面一般力系 ⒈ 解析法平衡充要条件(平面一般力系的平衡方程) 设各力作用线都 位于Oxy平面内,且⊥ z 轴,由空间一般 力系平衡方程: 则
Z 0 mx ( F ) 0 my ( F ) 0
4 4 3 cos , sin 2 2 5 3 4 5 T2 T3 419 ( kN ) , N 2 230 ( kN )
12
⑵ 空间平行力系的平衡方程
设各力线都 // z 轴 因此
m z ( F ) 0 X 0 Y 0
均成为了恒等式,而自然 满足。
2 2 x y z
2
0
空间一般 力系平衡
必要 充分
R 0 MO 0
⒉ 解析法平衡充要条件(空间一般力系的平衡方程解析形 式)
X 0, Y 0, Z 0,
mx ( F ) 0 mz ( F ) 0

第三章 力系的平衡条件


解: 取AB梁,画受力图。 梁 画受力图。
∑F =0 x
F + F cos450 = 0 Ax c
F + F sin450 −F = 0 Ay c
∑Fy =0
MA = 0 F cos450 ⋅l − F ⋅ 2l = 0 ∑ c
解得
F = 28.28kN FAx = −20kN FAy = −10kN , , C
例3 - 8
M 已知: F=20kN, q=10kN/m, = 20kN⋅m, L=1m; 已知:
求: A,B处的约束力. 处的约束力. 解: 取CD梁,画受力图. 画受力图.
∑M =0
c
l F sin 60 ⋅l −ql ⋅ − F cos300 ⋅ 2l = 0 B 2
0
解得
FB=45.77kN
∑MA = 0
F ⋅ 2a + F x ⋅ a = 0 Bx D

F =−F Bx
例3-19 已知: 荷载与尺寸如图; 已知: 荷载与尺寸如图; 每根杆所受力。 求: 每根杆所受力。 取整体,画受力图。 解: 取整体,画受力图。
∑F = 0 ix
F =0 Ax
F = 20kN Ay
∑MB = 0 −8FAy +5*8+10*6+10*4+10*2 = 0
q= 20kN , m
l =1 ; F = 400kN, m
解得 F = 316.4kN Ax
o F =0 FAy − P−Fcos60 = 0 ∑ y
解得 FAy =300kN
∑M
A
=0
A 解得 M = −1188kN⋅ m
M − M − F1⋅l + F cos60o ⋅l + Fsin 60o ⋅3l = 0 A

第3章力系的平衡条件与平衡方程

第3章 力系的平衡条件与平衡方程3.1 平面力系的平衡条件与平衡方程3.1.1 平面一般力系的平衡条件与平衡方程如果一个平面一般力系的主矢和力系对任一点的主矩同时都等于零,物体将不会移动也不会转动,则该物体处于平衡状态。

力系平衡的充分必要条件:力系的主矢和力系对任一点的主矩都分别等于零,即 110()0i n R i n O O ii F F M M F ==⎫==⎪⎪⎬⎪==⎪⎭∑∑平衡条件的解析式:11100()0nix i niy i n O i i F F M F ===⎫=⎪⎪⎪=⎬⎪⎪=⎪⎭∑∑∑ 或 00()0x y O F F M F ⎫=⎪⎪=⎬⎪=⎪⎭∑∑∑ 平面一般力系的平衡方程该式表明,平面一般力系的平衡条件也可叙述为:力系中各力在任选的坐标轴上的投影的代数和分别等于零,以及各力对任一点的矩的代数和也等于零。

平面汇交力系:平面汇交力系对平面内任意一点的主矩都等于零,即恒满足()0O M F ≡∑物体在平面汇交力系作用下平衡方程:00x yF F ⎫=⎪⎬=⎪⎭∑∑例题3-1 图所示为悬臂式吊车结构图。

其中AB 为吊车大梁,BC为钢索,A 处为固定铰支座,B 处为铰链约束。

已知起重电动机E 与重物的总重量为PF (因为两滑轮之间的距离很小,PF 可视为集中力作用在大梁上)梁的重力为QF 已知角度30θ=。

求:1、电动机处于任意位置时,钢索BC所受的力和支座A处的约束力;2、分析电动机处于什么位置时。

钢索受力最大,并确定其数值。

解:1、选择研究对象以大梁为研究对象,对其作受力分析,并建立图示坐标系。

建立平衡方程 取A 为矩心。

根据()0A M F =∑sin 02Q P TB lF F x F l θ-⨯-⨯+⨯=222sin 2sin30P Q P Q P TB QlF x F F x F l F x F F l l l θ⨯+⨯+===+由xF =∑cos 0Ax TB F F θ-=2()cos303()2Q P P Ax Q F F x F x F F l l =+=+由yF =∑sin 0Ay Q P TB F F F F θ---+=122[()]2Q P Ay Q P TB Q P Q P F F x F F F F F F l F l xF l =--+=--++-=-+由 2P TB QF x F F l =+ 可知当x l =时钢索受力最大, 其最大值为 22P TB Q P QF lF F F F l =+=+在平面力系的情形下,力矩中心应尽量选在两个或多个未知力的交点上,这样建立的力矩平衡方程中将不包含这些未知力;坐标系中坐标轴取向应尽量与多数未知力相垂直,从而这些未知力在这一坐标轴上的投影等于零,这样可减少力的平衡方程中未知力的数目。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档