超深井钻柱粘滑振动特征的测量与分析
钻柱黏滑振动特性仿真与产生机理分析

钻柱黏滑振动特性仿真与产生机理分析付蒙;李江红;吴亚锋;李嫣然【摘要】针对钻探作业中产生的钻柱黏滑振动现象,研究了仿真环境下钻柱系统的黏滑振动特性与振动产生机理.基于振动理论,建立了井下钻进系统的双自由度弹性模型,提出了一种模拟钻头-岩石摩擦力矩的算法;构造了钻进系统结构图,模拟了钻柱黏滑振动的变化规律,并通过极限环分析钻柱黏滑振动的产生机理;绘制钻井参数与振动幅值和周期的关系曲线,讨论了钻井参数对钻柱黏滑振动的影响.仿真结果表明,钻柱黏滑振动主要表现为钻头周期性地黏滞和滑动,属于一种由非线性摩擦力引起的自激振动;钻井参数的改变影响钻柱黏滑振动的剧烈程度.【期刊名称】《西北工业大学学报》【年(卷),期】2016(034)003【总页数】6页(P467-472)【关键词】钻柱;黏滑振动;弹性模型;特性仿真;产生机理【作者】付蒙;李江红;吴亚锋;李嫣然【作者单位】西北工业大学动力与能源学院,陕西西安710072;西北工业大学动力与能源学院,陕西西安710072;西北工业大学动力与能源学院,陕西西安710072;西北工业大学航海学院,陕西西安710072【正文语种】中文【中图分类】TE92石油与天然气的勘探作业中,钻井设备受到摩擦、压强、岩石质地等不确定因素影响,容易引发钻柱黏滑振动现象。
钻柱的剧烈振动是引起钻柱失效事故占钻井事故的主要原因[1]。
剧烈的黏滑振动发生时,井底钻具组合(BHA)的瞬时速度会增加到正常转速的3~9倍,非常容易破坏钻井设备[2]。
因此研究钻柱黏滑振动的动力学特性,分析振动产生机理具有现实的经济效益。
近年来,随着随钻测井技术的发展,钻柱动力学的研究取得了很大的进展。
Richard 和Detournay基于振动扭摆原理,用弹簧来模拟钻柱,用刚性飞轮来模拟BHA,建立了钻柱黏滑模型[3-4]。
Khulief通过拉普拉斯变换求解钻柱动力模型的方程式,解释了扭转向弯曲惯性组合引发钻柱黏滑振动的原因[5]。
油气深井随钻扩眼钻柱扭转振动分析

文章编号:1000-2634(2008)06-0081-04油气深井随钻扩眼钻柱扭转振动分析*石晓兵,陈平,熊继有( 油气藏地质及开发工程 国家重点实验室 西南石油大学,四川成都610500)摘 要:针对深井、超深井、高压油气井等钻井作业中安全高效的扩眼问题,研究随钻扩眼钻具组合在井下的实际受力情况,对随钻扩眼钻进钻柱扭转振动进行了三维有限元模拟,提出了研究扩眼器的质量偏心、钻机顶部支撑等因素对扭转振动作用的力学分析模型,并讨论了随钻扩眼钻具组合的扭转振动频率和动力学强度等力学问题。
通过分析提出了在实际施工作业中减少扭转振动带来危害的技术措施,为油气深井高效随钻扩眼的钻井参数的优化和安全钻进提供了理论基础和参考依据。
关键词:油气深井;钻井;随钻扩眼;扭转振动中图分类号:TE245 文献标识码:A DO I:10 3863/j i ssn 1000-2634 2008 06 019引 言随着石油工业的发展,油气勘探面临越来越复杂的地质问题,钻井难度越来越大,特别在深井和超深井中,钻井作业的复杂性、高压油气井的钻井作业等都使安全高效的扩眼作业技术需求不断增长,扩大井眼直径使其超过钻头尺寸可以解决复杂问题,例如盐层蠕变缩径、钻屑沉积、井壁形成虚泥饼。
在深井钻井中要求下多层套管,为了扩大井眼尺寸、降低钻井成本,增加了对更可靠的井下扩眼器的应用需求[1-2]。
随钻扩眼(R W D)是解决复杂深井阻卡、非常规井身结构应用和提高固井质量的有效手段。
目前这项技术掌握在国外技术服务公司手中,只做技术服务,工具研制和钻具组合设计原理没有公开报道过。
近年来国内开始了这类工具的研制与现场试验[3]。
加快国内随钻扩眼技术的发展与应用,进行随钻扩眼钻具组合设计及其受力分析研究,从而为油气深井高效随钻扩眼的钻井参数的优化和安全钻进提供理论基础和参考依据,以适应复杂深井超深井钻井的发展,具有重要的现实意义。
1 随钻扩眼钻柱扭转振动有限元分析钻头的周期性运动导致扭矩成周期性变化,引起周期性的扭转振动。
油气深井随钻扩眼钻柱扭转振动分析

关 键 词 : 气 深 井 ; 井 ; 钻扩 眼 ; 转振 动 油 钻 随 扭
中图 分类 号 : E 4 T 25
文献标识码 : A
D I 1 .8 3ji n 10 2 3 .08 0 . 1 O : 0 36 /.s .0 0— 6 4 20 .6 09 s
引 言
起周期性 的扭转 振动 。钻 柱 的扭 转振 动 主要是 由钻 头 的粘滑 运动造 成 的 , 即钻头旋转 速度 变化 很大 , 在
过 随着 石油工业 的发 展 , 气勘 探 面 临 越来 越 复 某一 瞬时钻头 可 能静 止不 动 , 一段 时间 后便 以数 油 这 杂的地质 问题 , 钻井 难度越来 越大 , 特别 在深 井 和超 倍于平 均转速 的速 度 旋转 , 样 就 可能 导 致钻 柱 的
摘
要:针对深井、 超深 井、 高压油 气井等钻井作业 中安全高效的扩眼 问题 , 究随钻 扩眼钻具组合在 井下的实际受 研
力情况, 对随钻扩眼钻进钻柱扭转振动进行 了三维有限元模拟 , 出了研 究扩眼器的质量偏心、 提 钻机 顶部 支撑 等因素 对扭转振动作用的力学分析模型 , 并讨论 了随钻扩眼钻具组合的扭转振动频 率和 动力学强度等力学 问题。通过分析 提 出了在 实际施工作业中减 少扭转振动 带来危 害的技 术措施 , 为油气深 井高效随钻扩 眼的钻井参数 的优 化和安全钻
问题 处理起来 较为方 便 。为了便于 分析 钻头及 钻柱
基金项 目:国家 自然科学基金项 目(0 10 3 。 9 60 1 )
作者简介: 石晓兵( 97一 , ( 16 ) 男 汉族 ) 重庆酉 阳人 , , 副教授 , 博士 , 从事石油工程教学与科研工作 。
钻柱的黏滑与高频扭转耦合振动测量与分析

钻柱的黏滑与高频扭转耦合振动测量与分析李玉梅;邓杨林;张涛;于丽维;刘明【期刊名称】《石油机械》【年(卷),期】2024(52)5【摘要】钻井系统的自激扭转振动会导致钻头和地层之间的接触力或切削力相对速度出现下降特征。
为减轻这种机制的影响,通过对三轴振动的时域、频域分析,研究了钻柱扭转振动特征。
研究结果发现,低频的扭转振动会引发黏滑振动,黏滑振动频率为0.128 Hz,三轴振动和转速会出现周期性波动。
钻柱发生高频扭转振动(HFTO)时,三轴加速度都出现了177.2 Hz的主频率。
时域分析发现,切向加速度远大于轴向和法向加速度峰值,均方根值也较高,表明切向振动波动较大、能量高,说明此时井下正发生扭转振动。
黏滑与HFTO发生耦合时,法向加速度会出现2个主频,即黏滑时的主频和HFTO的主频。
高扭转频率会提高扭矩和机械转速导致钻具疲惫。
研究结果对描述扭转振动的特征,判断钻井过程是否发生黏滑、HFTO和及时采取消除黏滑振动、缓解钻具疲惫技术措施具有指导作用。
【总页数】7页(P40-46)【作者】李玉梅;邓杨林;张涛;于丽维;刘明【作者单位】北京信息科技大学高动态导航技术北京市重点实验室;北京信息科技大学现代测控技术教育部重点实验室;新疆油田公司工程技术研究院;天津开发区鑫昌达船舶工程有限公司【正文语种】中文【中图分类】TE242【相关文献】1.钻柱系统黏滑振动的自激振动特性研究2.钻柱黏滑振动特性仿真与产生机理分析3.水平井钻柱-井壁摩擦诱导黏滑振动机理研究4.扭力冲击器对钻柱黏滑振动的影响分析5.深井钻柱纵-扭耦合下的黏滑振动特性分析因版权原因,仅展示原文概要,查看原文内容请购买。
深井钻柱粘滑振动特性分析

深井钻柱粘滑振动特性分析贾晓丽;钟晓玲;刘书海;计朝晖【摘要】粘滑振动严重影响钻柱系统的机械钻速,进而增加钻井成本,影响完井周期.为研究深井钻柱系统的粘滑振动特性,采用集中参数模型,通过钻头与岩石相互作用原则,既考虑钻头的摩擦作用,又考虑钻头的切削作用,建立钻柱系统轴向和扭转的耦合振动无量纲控制方程.基于MATLAB/Simulink软件对钻柱系统振动响应进行数值求解,分析了无量纲化控制参数,即转盘角速度、钻压以及粘性阻尼比、刀翼数对钻柱粘滑振动特性的影响.结果表明,确定的钻柱结构和系统参数存在发生粘滑振动的临界值,增大转盘转速、减小钻压、增大阻尼比到临界值时,钻头粘滑振动消失,同时增加刀翼数也会使粘滑振动得到抑制.【期刊名称】《石油矿场机械》【年(卷),期】2018(047)006【总页数】7页(P1-7)【关键词】钻柱系统;切削作用;耦合振动;粘滑振动【作者】贾晓丽;钟晓玲;刘书海;计朝晖【作者单位】中国石油大学(北京),北京102249;中国石油大学(北京),北京102249;中国石油大学(北京),北京102249;中国石油大学(北京),北京102249【正文语种】中文【中图分类】TE921.2钻具在切割岩层时受到摩擦、压强、岩石质地等因素影响,经常会出现钻柱振动现象,造成严重的钻井问题,例如脱扣、跳钻、钻头的提前失效、较低的机械钻速以及BHA的失效等[1]。
通常,钻柱振动被分为纵向、横向及扭转振动3种形式。
本文研究的钻柱系统为旋转钻井系统,其广泛用于深层油气资源的勘探开发。
在深井的钻井过程中,随着井深的增加,岩石硬度增加,塑性增加,地质条件更加错综复杂,并且随着钻柱长度的增加,钻柱的等效转矩刚度降低,传递转矩不足,在钻柱、钻头与井壁、井底的摩擦作用下,钻柱系统极易产生粘滑振动。
钻柱粘滑振动被视为一种破坏性极大的扭转振动,将导致钻头及井下钻具的加速失效,严重影响钻井效率和钻井成本[2]。
1980年代,大位移钻井过程中出现的“粘滑”现象引起了钻井研究人员的注意,认为粘滑振动为扭转振动的一种特殊情况。
钻井液中钻柱振动分析

2 0 1 7年 1月
能 源 与 环 保
Ch i n a En e r g y a nd En v i r o nme n t a l P r o t e c t i o n
V0 l _ 3 9 No .1
J a n .
2 0 1 7
Ab s t r a c t : Dr i l l i n g s t i r n g v i b r a t i o n i n d i r l l i n g l f u i d h a s b e e n a p r o b l e m t h a t c a n n o t b e i g n o r e d i n d il r l i n g, i t wi l l c a u s e t h e d i r l l s t i r n g f a — t i g u e d a ma g e, r e d u c e e q u i p me n t l i f e, b u t ls a o w i l l b in r g u n e x p e c t e d b e n e i f t s t o d r i l l i n g c o n s t r u c t i o n . I n n a k e d we l l s , c o l l i s i o n d u e t o v i — b r a t i o n b e t w e e n d i r l l s t in r g a n d w e l l b o r e wi l l e n l a r g e b o r e h o l e d i a me t e r , o r c a n f o r m e l l i p t i c a l h o l e, w h i c h c a n b r i n g g r e a t i n l f u e n c e s o n l a t e c o n s t uc r t i o n . B u t i n t h e h o i r z o n t a l s e c t i o n o f t h e h o i r z o n t a l we l l c o n s t uc r t i o n o r l a r g e d i s p l a c e me n t w e l l s a n d we l l s wi t h l a r g e i n — c l i n e d a n g l e , t h e v i b r a t i o n o f d il r l i n g s t in r g c a n p r o p e r l y r e d u c e t h e b o t t o m s u p p o r t i n g e f f e c t o n t h e d i r l l i n g p r e s s u r e , a l s o c a n i mp r o v e t h e h o l e c l e a n i n g , r e d u c e t h e g r i t a n d a v o i d a l o t o f c o mp l e x a c c i d e n t s . T h e c o r r e l a t i o n f a c t o r s o f t h e v i b r a t i o n o f d i r l l s t in r g i n t h e w e l l i n c l u d e t h e a d d i t i o n a l ma s s c o e ic f i e n t , t h e v i s c o u s d a mp i n g c o e ic f i e n t a n d t h e n a t u r l a re f q u e n c y o f t h e v i b r a t i o n . I n t h i s p a p e r , t h e e x — p e r i me n t a l a n a l y s i s w e r e c a  ̄i e d o u t o n t h e i n l f u e n c e o f v i b r a t i o n f a c t o r s , o p t i mi z e d s u g g e s t i o n s w e r e a l s o p u t f o r w a r d, a n d a l s o h a s a g u i d i n g s i g n i i f c a n c e f o r f u t u r e c o n s t uc r t i o n .
PDC钻头涡动和粘滑震动现场识别方法及消除措施

2020年11月第36卷第11期石油工业技术监督Technology Supervision in Petroleum IndustryNov. 2020V ol.36N o.llP D C钻头涡动和粘滑震动现场识别方法及消除措施阴治平,朱剑飞,尚钲凯,李兴鑫,王关锁中国石油塔里木油田分公司安全环保与T程监督中心(新疆库尔勒841000)摘要塔里木油田的勘探开发重点逐步转向深层、超深层油气藏,7000m以上的超深井的开发已常态化…随着井深的增加地层可钻性越来越差,在深部硬地层经常出现钻头涡动和粘滑震动介绍了钻井现场快速识别钻头涡动和粘滑震动的方法,提出了消除这两种P D C钻头非正常工作状况的措施关键词P D C钻头;超深井;涡动;粘滑On-site Identification Method and Elimination Measures of Eddyand Stick Slip Vibration of PDC BitYin Zhiping, Zhu Jianfei, Shang Zhengkai, Li Xingxin, Wang GuansuoSafety, Environmental Protection and Engineering Supervision Center, PetroChina Tarim Oilfield Company(Korla, Xinjiang 841000, China)A bstract The exploration and development focus of Tarim Oilfield has gradually shifted to deep and ultra deep reservoirs, and the depth of oil wells is over 7 (X K) m. With the increase of well depth, the formation drillahility has become more and more bad, and the whirl and stick slip vibration of l)it often appear in the deep hard formation. The method to quickly identify the whirl and stick slip vibration of hit in drilling site is introduced, and thr measures to eliminate the abnormal working state of these two kinds of PDC hil are put forward.Key words PDC bit; ultra deep well; whirl; stick slip阴治平,朱剑飞,尚钲凯,等.PI)C:钻头涡动和粘滑震动现场识别方法及消除措施U|.石油工业技术监督,2()2(),36( 11L52-54. Yin Zhiping. Zhu Jianfei, Shang Zhengkai, et al. C^)n—site identification method and elimination measures o f eddy and stick slip vibration ot PDC' bit LI].Technolog\r Superv-ision in Petroleum Industr%-, 2〇2〇, 36(11):52—54.P D C钻头瞬时旋转中心发生位移的现象称为 钻头涡动。
钻柱的粘滑振动

。
中提 到 的特性 而
,
,
K
和 相对 于 转 轴 的转
。
这是 粘滑 振动 之 关键
(2 )
多项 式模 型在粘 滑
。
I
的单 自由度 扭摆 模 型
。
摆 上端 被
,
振动 大 的速度 范 围 中 与摩 擦 力 不 符 尽 管 此
) 分段 线 模 型 在小 的速度 范 围 中相 当有 效 ( 3
第 6 卷第 1 期
国 外 石 油 机械
钻 柱 的 粘 滑 振 动
艾 志文
摘要
,
Байду номын сангаас冯斌
译
( 西 南 石 油 学院 )
枯 滑振 动 作 为 一 种 新 的 机 理 被 用 来 解 释 油 气 井 钻 探 中 的 大 幅 扭 转 振 动
。
。
按照新的
机理 油 田 数 据 记 录 被 确 证 与 模 拟
一致
。
19 pm )
l
6 2 60 rp m (
8
.
8
8 ( 6
r
)
( 6 6r P m )
9 p
)8
类型
侧量值
粘滑 分 析值
0 87
。 .
粘滑
误差 1 0
.
粘滑 误差 1 0 0
.
粘滑
误差 %
.
非粘滑
侧 量值 8 0
赞
分 析值 值
0
.
测量 值 0 6
。
分析 值
0 8
.
频率 ( 弧/ 秒 幅度 ( 弧 均值 ( 弧
( 7)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超深井钻柱粘滑振动特征的测量与分析滕学清;狄勤丰;李宁;陈锋;周波;王敏【摘要】粘滑振动是引起钻具失效、影响钻井时效的复杂振动形式,国内外学者对其产生机理进行了大量研究,但至今没有定论.采用ESM钻柱振动测量工具测量了某超深井井下钻柱的三轴加速度,通过分析三轴加速度的特征,研究了井下钻柱的粘滑振动特征.结果表明:实测井段发生了大量的粘滑振动,粘滑振动频率约为0.11 Hz,粘滑振动周期约为9.0 s,粘滞时长达4.0 s,滑脱阶段井下钻柱转速最大达330.0r/min,约为地面转速的2.75倍;粘滑振动与地面测量扭矩波动具有很好的对应关系,说明可以通过地面测量扭矩特征初步判断井下钻柱是否产生粘滑振动.频域分析结果表明,当发生滑脱运动时,径向加速度的频谱中粘滑振动频率对应的能量幅值最大,同时还包含横向共振频率和与井壁接触产生的外激励频率等,但轴向振动的频谱中粘滑振动频率对应的能量幅值较小,表明钻柱粘滑振动过程中扭转振动最为突出,并存在强烈的横向振动和较弱的轴向振动.研究结果对描述粘滑振动的特征、判断超深井钻井过程是否发生粘滑振动和及时采取消除粘滑振动技术措施具有指导作用.%Complicated stick-slip vibration might induce drilling tool failure and negatively impact drilling efficiency.Much research has been conducted on the mechanisms that cause the generation of such a vibration but they have not been able to arrive at a confirmed conclusion.In this paper,we present a study in which we used ESM drill string vibration measuring devices and tri-axial accelerations of a downhole drill string in an ultra-deep well.Through the analysis of tri-axial acceleration,the stick-slip vibration features of the drill string were reviewed.Research results showed that massive stick-slip vibration occurred in the concerned interval with astick-slip frequency of 0.11 Hz,period of 9.0 s and a total stick time up to 4.0 s.During the slip stage,the maximum rotation speed of the downhole drill strings reached 330.0 r/min,approximately 2.75 times higher than that on the ground surface;Generally speaking,the stick-slip vibration was in accordance with fluctuations in surface torque.In other words,features of surface torque might be used for preliminary determination of stick-slip vibration of drill string in the borehole.Analysis of frequency show that stick-slip frequencies of radial acceleration were in accordance with the highest amplitude in energy during stick-slip.There were also horizontal resonance frequency and external exciting frequency generated by drilling string contact with the sidewall.But stick-slip frequencies of axial vibrations corresponded well with minor energy amplitudes.In conclusion,the stick-slip of the drill string may be characterized by torsional vibration.At the same time,there were intensive horizontal vibration and relatively weak axial vibrations.This study can provide as reference in stick-slip vibration characterization and removal strategy for eliminating it in ultra-deep wells drilling.【期刊名称】《石油钻探技术》【年(卷),期】2017(045)002【总页数】8页(P32-39)【关键词】超深井;钻柱;粘滑振动;加速度;扭矩;频率【作者】滕学清;狄勤丰;李宁;陈锋;周波;王敏【作者单位】中国石油塔里木油田分公司,新疆库尔勒 841000;上海大学上海市应用数学和力学研究所,上海 200072;中国石油塔里木油田分公司,新疆库尔勒841000;上海大学机电工程与自动化学院,上海 200072;中国石油塔里木油田分公司,新疆库尔勒 841000;中国石油塔里木油田分公司,新疆库尔勒 841000【正文语种】中文【中图分类】TE21钻井过程中,粘滑振动(stick-slip vibration)是引起钻头和钻具组合失效破坏的重要原因,其本质为自激产生的强烈扭转振动。
对于深井、超深井,由于钻柱长径比很大,扭转刚度较低,而且钻柱与井壁的摩阻也较大,这使钻柱在井下的运动特征十分复杂,其中之一就是粘滞-滑动现象,即粘滑振动。
钻柱的粘滑振动包括粘滞和滑脱2个阶段,而钻柱与井壁、钻头与岩石间的摩擦是引起粘滑振动的直接原因。
钻柱发生粘滑振动时,钻头的瞬时转速可以达到地面转速的2倍以上,高速转动的钻头与井底岩石或井壁发生强烈的撞击,会加速其磨损,同时剧烈的周期性交变应力也将导致井下钻具过早疲劳失效。
此外,粘滑振动过程中井下钻柱的扭矩通常波动较大,不仅会大幅度降低钻井效率,也会威胁到钻井安全,甚至可能达到钻杆接头丝扣的极限扭矩而导致钻具断裂[1]。
如塔里木油田某井在钻井过程中地面测量扭矩持续产生周期性剧烈波动,为保证钻具安全不得不频繁调整转速和钻压来控制钻柱振动,在4 840.00~6 200.00 m井段钻进过程中,地面转速和钻压调整次数高达372次,严重降低了钻井时效。
为探明原因,利用储存式测量装置对井下振动进行了测试,结果发现井下钻柱产生了持续的粘滑振动。
为有效避免粘滑振动,保证钻井作业的安全和高效,需从本质上分析粘滑振动的产生机理[2]。
为此,笔者利用ESM(environmental severity measurement)钻柱振动测量工具对塔里木油田某超深井钻井过程中的井下振动进行了测量分析,以确定超深井钻柱粘滑振动的特征及频率,为探索超深井钻柱粘滑振动的控制方法、提高超深井钻井井下安全提供依据。
因为粘滑振动对钻头和钻柱具有严重的破坏性,多年来,国内外学者对钻柱粘滑振动形成的机理进行了大量研究。
祝效华等人[3]对国内外钻柱粘滑振动的研究进行了较为详细的评述,具有重要的参考价值。
总体讲,国内外学者研究粘滑振动的手段分为理论分析法和测量法2种。
理论分析法采用的数学模型主要包括基于摩擦效应的单、多自由度扭摆模型和集中参数模型[3-4],利用这些模型能够初步模拟出钻柱的粘滑现象,并分析相关参数对粘滑振动的影响。
然而,粘滑振动是典型的非线性力学问题,钻头与岩石之间非稳态摩擦力的量化十分困难,因此采用摩擦力模型无法准确描述钻柱与井壁间的真实摩擦力,导致数值解与真实钻柱运动状态存在一定误差[5]。
为此,通过测量井下钻柱振动来研究粘滑振动。
测量井下钻柱振动可以获得钻柱的振动状态,并可借助振动信号处理技术较为准确地研究钻柱粘滑振动的诱发机理及影响因素[6-10]。
测量钻柱振动的方式主要有地面测量和井下测量2种。
由于振动在钻柱中传播时衰减效应严重,地面测量难以获得井下钻柱的实际运动状态,因此目前主要采用井下测量的方式来研究钻柱振动的机理。
井下振动测量工具均是基于加速度传感器研发的,按照加速度计的安装方式可分为3类:第一类是沿钻柱轴心安装的三轴加速度传感器和配套的磁力计,如Schlumberger公司的MVC(multi-axis vibration chassis)工具[11]、Baker Hughes公司的近钻头测量工具[12]以及Weatherford公司的TVM(true-vibration monitor)工具[13];第二类是偏心安装的三轴加速度传感器,如Halliburton公司的DDS(drillstring dynamics sensor)工具[14]和ESM工具;第三类是在测量短节横截面径向上呈辐射状安装多个加速度计,在轴向上安装一个独立加速度计,同时配套磁力计,如APS公司的DVMCS(drilling vibration monitoring & control system)振动监控系统[15]。
由于国内生产的测量传感器质量达不到要求,对钻柱粘滑振动的试验研究还主要停留在室内试验阶段[9-10]。
ESM钻柱振动测量工具由密封外壳、电池组和三轴加速度计组成。
ESM钻柱振动测量工具偏心安装于测量短节内,其偏心距r为4.7 cm。
ax和ay分别为沿钻柱切向、径向的测量加速度,az为轴向测量加速度(见图1)。
根据加速度计的安装方式,可得3个加速度计测量加速度的表达式为:式中:ω为钻柱井下转速,rad/s;acx和acy为钻柱横向振动加速度的2个正交分量,m/s2;acz为钻柱的轴向加速度,m/s2;t为时间,s。