dsp技术综述论文
DSP技术发展趋势的研究和探讨论文

DSP技术发展趋势的研究和探讨论文DSP技术发展趋势的研究和探讨论文在各领域中,说到论文,大家肯定都不陌生吧,通过论文写作可以培养我们独立思考和创新的能力。
写论文的注意事项有许多,你确定会写吗?以下是小编帮大家整理的DSP技术发展趋势的研究和探讨论文,仅供参考,希望能够帮助到大家。
一、引言数字信号处理(Digital Signal Processing,即DSP),起源于上个世纪80年代,是一门涉及到许多学科并且广泛应用在很多领域的热门学科。
它利用微型计算机、专用处理设备,以数字方式对信号的采集、变换、滤波、估值、增强、压缩、识别处理,得到人们需要的信号形式。
它紧紧围绕着数字信号处理的理论、实现以及应用发展。
二、DSP技术数字信号处理(DSP)的理论基础涉及的范围非常广泛。
比如微积分、概率统计、随机过程、数值分析等数学基础是数字信号处理的基本工具,同时它与网络理论、信号与系统、控制理论、通信原理、故障诊断,传感器技术等密切相关,还有近些年来蓬勃发展的一些学科:人工智能、模式识别、神经网络等,都与数字信号处理密不可分。
正是由于有这些理论发展的前提基础,和广泛的市场需求,DSP 处理的器件也应运而生,在广泛应用在各个领域的同时得到迅速的发展。
世界上第一个单片DSP芯片是1978年AMI公司发布的S2811,在这之后,1979年美国Intel公司发布的商用可编程器件2920是DSP 芯片的一个非常重要的里程碑。
即使这两种芯片内部没有现代DSP芯片的单周期乘法器,但是他们为DSP的蓬勃、迅速发展奠定了很重要的基础。
接着,1980年,日本NEC公司推出了第一个具有乘法器的商用DSP芯片,随后,美国德州仪器公司(TI公司)推出一系列DSPs 产品,广泛地应用在信号处理的各个领域。
三、DSP技术的优点和单片机比较而言,DSPs具有集成度高、CPU快速、存储器容量大,并内置了波特率发生器、FIFO缓冲器,可提供高速、同步串口、标准异步串口。
数字信号处理综述

数字信号处理综述数字信号处理(Digital Signal Processing,DSP)是指对数字信号进行采样、量化和运算等处理的技术领域。
它在现代通信、图像、音频、视频等领域中起着重要的作用。
本文将对数字信号处理的基本原理、应用领域和未来发展进行综述。
一、数字信号处理的基本原理数字信号处理基于离散时间信号,通过数学运算对信号进行处理。
其基本原理包括采样、量化和离散化等步骤。
1. 采样:将连续时间信号转换为离散时间信号,通过对连续时间信号进行等间隔采样,得到一系列的采样值。
2. 量化:将连续幅度信号转换为离散幅度信号。
量化是对连续幅度信号进行近似处理,将其离散化为一系列的离散值。
3. 离散化:将连续时间信号的采样值和离散幅度信号的量化值进行结合,形成离散时间、离散幅度的数字信号。
通过采样、量化和离散化等步骤,数字信号处理能够对原始信号进行数字化表示和处理。
二、数字信号处理的应用领域数字信号处理广泛应用于各个领域,其中包括但不限于以下几个方面。
1. 通信领域:数字信号处理在通信中起着重要作用。
它能够提高信号的抗干扰性能、降低信号传输误码率,并且能够实现信号压缩和编解码等功能。
2. 音频与视频处理:数字信号处理在音频与视频处理中具有重要应用。
它可以实现音频的降噪、音频编码和解码、语音识别等功能。
在视频处理中,数字信号处理可以实现视频压缩、图像增强和视频流分析等功能。
3. 生物医学工程:数字信号处理在生物医学工程中的应用越来越广泛。
它可以实现医学图像的增强和分析、生物信号的滤波和特征提取等功能,为医学诊断和治疗提供支持。
4. 雷达与成像技术:数字信号处理在雷达与成像技术中有重要的应用。
通过数字信号处理,可以实现雷达信号的滤波和目标检测、图像的恢复和重建等功能。
5. 控制系统:数字信号处理在控制系统中起着重要作用。
它可以实现控制信号的滤波、系统的辨识和控制算法的优化等功能。
三、数字信号处理的未来发展随着科技的进步和应用需求的不断增加,数字信号处理在未来有着广阔的发展空间。
DSP技术综述

DSP技术综述班级:7学号:姓名:【摘要】数字信号处理(DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。
它是一种通过使用数学技巧执行转换或提取信息,来处理现实信号的方法,这些信号由数字序列表示。
本文概述了数字信号处理技术的发展过程,分析了DSP处理器在多个领域应用状况,介绍了DSP的最新发展,对数字信号处理技术的发展前景进行了展望。
【Abstract】:Digital signal processing (DSP) is the one who is widely used in many disciplines involved in many areas of emerging disciplines. It is a through the use of mathematical skills execution conversion or extract information, to deal with real signal method, these signals by digital sequence said.This paper outlines the development of digital signal processing technology, processes, analyzes the DSP processor, application status in many areas, introduced the latest developments in DSP, digital signal processing technology for the future development prospects.【关键词】数字信号处理;DSP平台;DSP发展趋势【Key words】Signal digital signal processing ; DSP platform ; the development trend of DSP一、DSP技术的发展历程DSP的发展大致分为三个阶段:1.在数字信号处理技术发展的初期(二十世纪50-60年代),人们只能在微处理器上完成数字信号的处理。
dsp原理及应用的结课论文

DSP原理及应用的结课论文引言数字信号处理(Digital Signal Processing,DSP)是指将模拟信号转换为数字信号,并对数字信号进行处理和分析的技术。
DSP技术在现代通信、音视频处理、图像处理等领域有着广泛的应用。
本文将介绍DSP的基本原理以及其在实际应用中的一些案例。
DSP的基本原理1.数字信号处理的基本概念–数字信号:离散时间的信号,在时间上进行离散分布。
–连续时间信号:在时间上具有连续分布的信号。
–采样定理:它保证了模拟信号的采样频率要大于模拟信号频谱的带宽,才能在数字域中完整重建原始模拟信号。
2.数字信号处理的基本过程–信号采样:将模拟信号在时间上进行采样,转换为离散时间信号。
–数字滤波:对离散时间信号进行滤波,去除不需要的频率成分。
–数字变换:对滤波后的信号进行变换,如傅里叶变换、离散余弦变换等。
–数字重建:将变换后的数字信号进行反变换,恢复为模拟信号。
DSP在通信中的应用1.语音信号处理–信号压缩:对语音信号进行压缩,实现高效的传输和存储。
–语音增强:通过滤波和降噪技术,改善语音信号的质量。
2.图像处理–图像降噪:利用数字滤波技术去除图像中的噪声。
–图像增强:通过锐化滤波器和对比度增强算法,提高图像的清晰度和对比度。
3.无线通信–调制解调:将数字信息转换为适合传输的模拟信号,并在接收端进行解调。
–信道均衡:对信道中的失真进行补偿,提高信号质量。
DSP在音视频处理中的应用1.音频处理–声音合成:利用数字信号处理算法合成逼真的人声、乐器音色等。
–音频编码:将音频信号转换为数字数据流,实现高效的传输和存储。
2.视频处理–视频压缩:使用从模拟信号到数字信号的转换、DCT、运动补偿等技术,将视频信号压缩到较小的数据量。
–视频解码:将压缩后的视频信号进行解码,恢复为原始的视频图像。
结论DSP技术在现代通信、音视频处理等领域有着广泛的应用。
本文介绍了DSP的基本原理,以及在通信和音视频处理中的一些具体应用。
DSP技术论文(精)

DSP技术引领数字生活摘要:随着社会的发展和人们生活水平的日益提高,人们对生活的需求也在日渐增长,DSP 技术被越来越多的应用在我们的日常生活中。
市场的需求促进了技术的迅猛发展,越来越多的新产品出现在我们眼前,这一切都源于DSP 技术。
关键字:DSP 技术,数字电视,3G ,数字生活。
DSP 数字信号处理(Digital Signal Processing,简称DSP 是一门涉及许多学科而又广泛应用于许多领域的新兴学科。
20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。
数字信号处理是一种通过使用数学技巧执行转换或提取信息,来处理现实信号的方法,这些信号由数字序列表示。
在过去的二十多年时间里,数字信号处理已经在通信等领域得到极为广泛的应用。
随着社会的发展和人们生活水平的日益提高,人们对生活的需求也在日渐增长,DSP 技术被越来越多的应用在我们的日常生活中。
市场的需求促进了技术的迅猛发展,越来越多的新产品出现在我们眼前,这一切都源于DSP 技术。
下面我来介绍一下DSP 芯片,DSP 芯片也称数字信号处理器,是一种特别适合于进行数字信号处理运算的微处理器器,其主要应用是实时快速地实现各种数字信号处理算法。
根据数字信号处理的要求,DSP 芯片一般具有如下主要特点:1. 在一个指令周期内可完成一次乘法和一次加法;2. 程序和数据空间分开,可以同时访问指令和数据;3. 片内具有快速RAM ,通常可通过独立的数据总线在两块中同时访问;4. 具有低开销或无开销循环及跳转的硬件支持;5.快速的中断处理和硬件I/O支持;6. 具有在单周期内操作的多个硬件地址产生器;7. 可以并行执行多个操作;8. 支持流水线操作,使取指、译码和执行等操作可以重叠执行。
新近涌现的各种数字信号处理器的规格尺寸繁多,外形各式各样,令人难以胜数,其设计目标也是为了满足各种对性能要求高低不同的应用。
DSP应用论文(完成)

浅谈DSP技术的应用摘要:本文简要介绍了什么是DSP技术以及DSP技术的主要优缺点;详细介绍了DSP技术在当前信号处理、通信、语音处理、图像处理、军事、仪器仪表、自动控制、医疗、家用电器等领域的主要应用及其发展趋势。
关键字:DSP 优缺点应用趋势1 引言数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。
20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。
DSP数字信号处理技术(Digital Signal Processing)指理论上的技术,是一种通过使用数学技巧执行转换或提取信息,来处理现实信号的方法;而DSP数字信号处理器(Digital Signal Processor)是指一种对数字信号进行大量处理的微处理器,它具有强大的数据处理能力和较高的运行速度,是数字化电子世界中日益重要的电脑芯片。
因此,DSP既可以代表数字信号处理技术,也可以代表数字信号处理器,两者是不可分割的,前者要通过后者变成实际产品,而后者以前者的理论为基础。
2 DSP的主要优缺点DSP的优点包括以下几个部分:1)对元件值的容限不敏感,受温度、环境等外部因素影响小;2)容易实现集成;3)可以分时复用,共享处理器;4)方便调整处理器的系数实现自适应滤波;5)可实现模拟处理不能实现的功能:线性相位、多抽样率处理、级联、易于存储等;6)可用于频率非常低的信号;7)DSP可以工作在省电状态,节省能源。
DSP的缺点包括以下几个部分:1)需要模数转换;2)受采样频率的限制,处理频率范围有限;3)数字系统由耗电的有源器件构成,没有无源设备可靠。
虽然DSP目前还有一些缺点,但是它的优点远远超过其缺点,我相信随着科学技术的发展,DSP将会不断完善和壮大。
3 DSP的应用自从DSP芯片诞生以来,DSP芯片得到了飞速的发展。
DSP应用前景_综述

DSP应用前景_综述论文目录`摘要 (2)关键词 (2)前言 (2)1 DSP的发展历程 (3)2 DSP技术在数字化移动的应用 (3)3数据调制解调器 (4)4在虚拟现实领域的作用 (4)5在自动导航当中的应用 (5)6 DSP技术发展的未来 (5)7小结 (5)8参考文献 (6)9致 (6)DSP应用前景_综述论文摘要:数字信号处理简称为DSP,在当代科学技术的高速发展下,特别是计算机科学的应用与发展取得了很大的进步,并且在大规模电路和大量软件开发的推动下,计算机科学在当今许多的领域起到了不可替代的作用,其中受到快速傅里叶变换算法的推动,DSP技术迅速发展,并且在许多领域有着其不替代的价值,本文主要介绍DSP的发展历程,应用领域,未来展望。
关键词:发展;DSP技术;发展;领域;优点;展望。
前言:21世纪是属于计算机科学的实际,我们生活中已经离不开计算机科学,其中DSP作为计算机科学推动下,另外新兴发展的一门科学DSP也慢慢扮演着更加接近于应用的一门科学技术。
数字信号处理在当今的信号数字化传播中必然起到不可替代的作用。
特别是对于快速傅里叶变换技术的应用使得DSP技术更加成熟,应用更加方便。
在大学xx教授的讲堂中初步接触到DSP技术,其讲述了DSP技术的强大,使作者产生了很大的兴趣去阅读DSP技术的发展与应用,本文主要是探究并且简单谈一下DSP技术,其中不乏一些不少不妥之处,希望广大读者批评指正。
1 DSP技术的发展历程DSP即为数字信号处理(DSP,Digital Signal Processing),是利用计算机技术或者通用(专用)的信号处理设备,采用数值计算的方法对信号进行处理的一门学科,包括滤波、变换、压缩、扩展、增强、复原、估计、识别、分析、综合等加工处理,以达到提取有用信息、便于应用的目的。
直到70年代才提出DSP的理论与算法的基础,80年代开始进行实际的DSP应用的探索,并于90年代迎来辉煌的发展。
DSP综述论文

DSP应用综述摘要:数字信号处理(DSP)是一门涉及多门学科并广泛应用于很多科学和工程领域的新兴学科。
DSP技术已经在通信、网络、控制等诸多领域得到广泛的应用。
文中阐述了DSP 的基本原理,DSP的特点,DSP系统构成,DSP芯片的发展现状和趋势。
关键词:数字信号处理,DSP1 介绍随着计算机和信息技术的飞速发展,信息社会已经进入数字化时代,DSP技术已经成为数字化社会最重要的技术之一。
DSP可以代表数字信号处理技术,也可以代表数字信号处理器,其实两者是不可分割的。
前者是理论和计算方法上的技术,后者是指实现这些技术的的通用或专用可编程微处理器芯片。
随着DSP芯片的快速发展,DSP这一英文缩写已被大家公认为数字信号处理器的代名词。
数字信号处理是以众多学科为理论基础的,它所涉及的范围极其广泛。
例如,在数学领域,微积分、概率统计、随机过程、数值分析等都是数字信号处理的基本工具,与网络理论、信号与系统、控制论、通信理论、故障诊断等也密切相关。
近来新兴的一些学科,如人工智能、模式识别、神经网络等,都与数字信号处理密不可分。
数字信号处理包括两个方面的内容:1.1 算法的研究算法的研究是指如何以最小的运算量和存储空间来完成指定的任务。
如20世纪60年代出现的快速傅里叶变换,使数字信号处理技术发生了革命性的的变换。
到现今,数字信号处理的理论和方法得到快速发展,如:语音与图像的压缩编码、识别与鉴别,信号的调制与解调、加密和解密,信道的辨识和与均衡,智能天线,频谱分析等各种快速算法都成为研究的热点,并取得长足的进步,为各种实时处理的的应用提供了算法基础。
1.2 数字信号处理的实现数字信号处理的实现是用硬件、软件或软硬结合的方法来实现各种算法。
2 DSP的特点数字信号处理不同于普通的科学计算与分析,它强调运算的实时性。
除了具备普通微处理器所强调的高速运算和控制能力外,针对实时数字信号处理的特点,在处理器的结构、指令系统、指令流程上作了很大的改进,其主要特点如下:采用哈佛结构,采用多总线结构,采用流水线技术,配有专用的硬件乘法、累加器,具有特殊的DSP指令,快速的指令周期,硬件配置强,支持多处理器结构,省电管理和低功耗等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字信号处理(DSP)技术基础与应用摘要数字信号处理(DSP)相对于模拟信号处理有很大的优越性,表现在精度高、灵活性大、可靠性好、易于大规模集成等方面。
DSP技术已成为目前电子工业领域发展最迅速的技术,在各行各业的应用越来越广泛,在我国的市场全景也越来越广阔,了解和学习DSP技术知识也越来越重要。
本文简要介绍了DSP 的发展历史、DSP的特点、DSP技术的应用领域和其在我国的市场前景情况。
关键字数字信号处理DSP芯片数字信号处理是一门涉及许多学科而又广泛应用于许多领域的新兴学科。
20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并且得到迅速的发展,在过去的二十多年里,数字信号处理已经在通信等领域得到极为广泛的应用。
数字信号处理是利用计算机或专用处理设备,以数字形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需求的信号形式。
数字信号处理是围绕数字信号处理的理论、实现和应用等几个方面发展起来的。
数字信号处理在理论上的发展推动了数字信号处理应用的发展。
反过来,数字信号处理的应用有又促进了数字信号处理理论的提高。
而数字信号处理的实现则是理论和应用之间的桥梁。
数字信号处理以众多学科理论为基础,它涉及的范围也是极其广泛。
例如,在数学领域,微积分、概率统计、随机过程、数值分析等都是数字信号处理的基本工具,与网络理论、信号与系统、控制论、通信理论、故障诊断等也密切相关。
近来新兴的一些学科,如人工智能、模式识别、神经网络等,都与数字信号处理密不可分。
可以说,数字信号处理是把许多经典的理论体系作为自己的理论基础,同时又使自己成为一系列新兴学科的理论基础。
数字信号处理的实现方法一般有以下几种:1.在通用的计算机上用软件(如C语言、Fortran)实现;2.在通用计算机系统中加上专用的加速处理机实现;3.在通用的单片机(如MCS—51、96系列等)实现,这种方法可用于一些不太复杂的数字信号处理,如数字控制等;4.用通用的可编程DSP芯片实现。
5.用专用的DSP芯片实现。
6.用CPLD/FPGA实现.DSP的发展历史Digital Signal Processor是在模拟信号变换成数字信号以后进行高速实时处理的专用处理器,其处理速度比最快的CPU还快10-50倍。
在当今的数字化时代背景下,DSP已成为通信、计算机、消费类电子产品等领域的基础器件,被誉为信息社会革命的旗手。
业内人士预言,DSP将是未来集成电路中发展最快的电子产品,并成为电子产品更新换代的决定因素,它将彻底变变革人们的工作、学习和生活方式。
数字信号处理器(DSP)是1982年诞生的一个重要的微处理器类型,1982年由美国的德州仪器公司生产了第一枚单片数字信号处理器,到目前DSP已经应用的很广泛,也有很多著名的厂家,比如TI、ADI和Motorola等,还有专用的DSP厂家,像Philips等等,目前DSP的运算能力跨越了很大的范围,单片的DSP从10MIPS到1GMIPS,现在1G的产品已经从实验室出来,市场上卖的芯片性能也已经达到6000MIPS。
革人们的工作、学习和生活方式。
世界上第一个单片DSP 芯片应当是1978 年AMI 公司发布的S2811 ,1979 年美国Intel 公司发布的商用可编程器件2920 是DSP 芯片的一个主要里程碑。
这两种芯片内部都没有现代DSP 芯片所必须有的单周期乘法器。
1980 年,日本NEC公司推出的μPD7720 是第一个具有乘法器的商用DSP 芯片。
在这之后,最成功的DSP 芯片当数美国德州仪器公司(Texas Instruments,简称TI)的一系列产品。
自1982年第一片数字信号处理器TMS320C10产生以来,DSP发展大致经历了多个阶段,目前形成了DSP产品的三类档次:第一类:低成本、低功耗、高性价比的16bit定点DSP,应用最广泛,代表产品是TMS320C2000、TMS320C5000、ADSP21xx、Blackfin等型号;第二类:32bit浮点DSP,目前代表产品有TMS320C3x、ADSP2106x等型号;第三类:高性能DSP,如定点的TMS320C62xx、TMS320C64xx,浮点的TMS320C67xx、ADSP2116x、Tiger SAHRC等型号。
我国在DSP应用方面走得并不晚,在八十年代初,中期,我们就在用。
1987年召开了第一届信号处理学组联合会议,随后有了一系列会议,为国内DSP的研究和开发提供了交流的平台。
DSP作为专用的微处理器,尤其是早期诞生的时候,主要是用于数字信号处理,内部结构一开始采用了和普通的MCU不太一样的哈佛结构,主要特点就是分离数据流和指令流,并且在内部使用乘法累加器运算内核和流水线结构。
在MCU做乘法运算,需要数十个指令周期的时候,DSP一开始就拥有使用单指令的乘法运算能力。
自第一个微处理器问世以来,就被一些运算密集型的嵌入式或者脱机应用所关注,处理器技术也得到了十分迅速的提高,而快速傅立叶变换等实用算法的提出促进了专门实现数字信号处理的一类微处理器的分化和发展。
数字信号处理有别于普通的科学计算与分析,它强调运算处理的实时性,因此DSP 除了具备普通微处理器所强调的高速运算和控制功能外,针对实时数字信号处理,在处理器结构、指令系统、指令流程上做了很大的改动。
并行化是为高性能和高速运算设计的,目前的并行化体现在三个方面:第一,是提供了多处理器间通信和并行操作的能力,就是利用多处理器可以容易构成多处理器并行系统。
比如说像TI的40系列,像ADI公司的SHARC系列,都是为多片并行处理设置了很强的外围通信能力。
第二,就是片内的多处理器的集成,这使得在单芯片内部集成了多个处理器。
第三就是片内多运算器的结构。
在保持单一指令流与比较简单的编程技术的情况下,达到高速并行处理能力,典型技术是超长指令字技术(VLIW )。
第三,就是专业化。
就是针对一大类应用而优化的DSP。
比如说针对数码相机、MODEM、多媒体等应用的专用DSP,充分考虑了应用的特点,进行了外围和接13的设计。
DSP的应用现在已经很广泛了,这里有几个例子,像汽车、嵌入式的通信系统和安全加密,很多的安全加密产品,实际上加密算法是不占用计算机资源,是用DSP做的一个板子插到计算机里进行加密运算,还有就是显示图象的便携式设备等等。
数字信号处理不同于普通的科学计算与分析,它强调运算的实时性。
除了具备普通微处理器所强调的高速运算和控制能力外,针对实时数字信号处理的特点,在处理器的结构、指令系统、指令流程上作了很大的改进,其主要特点如下:1.采用哈佛结构DSP芯片普遍采用数据总线和程序总线分离的哈佛结构或改进的哈佛结构,比传统处理器的冯·诺伊曼结构有更快的指令执行速度。
2.采用多总线结构DSP芯片都采用多总线结构,可同时进行取指令和多个数据存取操作,并由辅助寄存器自动增减地址进行寻址,使CPU在一个机器周期内可多次对程序空间和数据空间进行访问,大大地提高了DSP的运行速度。
如:TMS320C54x系列内部有P、C、D、E等4组总线,每组总线中都有地址总线和数据总线,这样在一个机器周期内可以完成如下操作①从程序存储器中取一条指令;②从数据存储器中读两个操作数;③向数据存储器写一个操作数。
3.采用流水线技术利用这种流水线结构,加上执行重复操作,就能保证在单指令周期内完成数字信号处理中用得最多的乘法- 累加运算。
4. 配有专用的硬件乘法-累加器为了适应数字信号处理的需要,当前的DSP芯片都配有专用的硬件乘法-累加器,可在一个周期内完成一次乘法和一次累加操作,从而可实现数据的乘法-累加操作。
如矩阵运算、FIR和IIR滤波、FFT变换等专用信号的处理。
5. 具有特殊的DSP指令为了满足数字信号处理的需要,在DSP的指令系统中,设计了一些完成特殊功能的指令。
6.快速的指令周期由于采用哈佛结构、流水线操作、专用的硬件乘法器、特殊的指令以及集成电路的优化设计,使指令周期可在20ns以下。
如:TMS320C54x的运算速度为100MIPS,即100百万条/秒。
7.硬件配置强新一代的DSP芯片具有较强的接口功能,除了具有串行口、定时器、主机接口(HPI)、DMA控制器、软件可编程等待状态发生器等片内外设外,还配有中断处理器、PLL、片内存储器、测试接口等单元电路,可以方便地构成一个嵌入式自封闭控制的处理系统。
8.支持多处理器结构为了满足多处理器系统的设计,许多DSP芯片都采用支持多处理器的结构。
9.省电管理和低功耗DSP功耗一般为0.5~4W,若采用低功耗技术可使功耗降到0.25W,可用电池供电,适用于便携式数字终端设备。
DSP芯片的应用自从20世纪70年代末80年代初DSP芯片诞生以来,DSP芯片得到了飞速的发展。
DSP芯片的高速发展,一方面得益于集成电路技术的发展,另一方面也得益于巨大的市场。
在近20年时间里,DSP芯片已经在信号处理、通信、雷达等许多领域得到广泛的应用。
目前,DSP芯片的价格越来越低,性能价格比日益提高,具有巨大的应用潜力。
DSP芯片的应用主要有:1 、信号处理——如数字滤波、自适应滤波、快速傅立叶变换、相关运算、谱分析、卷积、模式匹配、加窗、波形产生等;2、通信——如调制解调器、自适应均衡、数据加密、数据压缩、回波抵消、多路复用、传真、扩频通信、纠错编码、可视电话等;3、语音——如语音编码、语音合成、语音识别、语音增强、说话人辨认、说话人确认、语音邮件、语音存储等;4、图形/图像——如二维和三维图形处理、图像压缩与传输、图像增强、动画、机器人视觉等;5、军事——如保密通信、雷达处理、声纳处理、导航、导弹制导等;6 、仪器仪表——如频谱分析、函数发生、锁相环、地震处理等;7 、自动控制——如引擎控制、声控、自动驾驶、机器人控制、磁盘控制等;8 、医疗——如助听、超声设备、诊断工具、病人监护等;9、家用电器——如高保_真音响、音乐合成、音调控制、玩具与游戏、数字电话/电视等。
随着DSP芯片性能价格比的不断提高,可以预见DSP芯片将会在更多的领域内得到更为广泛的应用。
DSP技术展望1、系统级集成DSP是潮流缩小DSP芯片尺寸始终是DSP的技术发展方向。
当前的DSP多数基于RISC (精简指令集计算)结构,这种结构的优点是尺寸小、功耗低、性能高。
各DSP 厂商纷纷采用新工艺,改进DSP芯核,并将几个DSP芯核、MPU芯核、专用处理单元、外围电路单元、存储单元统统集成在一个芯片上,成为DSP系统级集成电路。
TI公司的TMS320C80代表当今DSP领域中的最高水平,它在一块芯片上集成了4个DSP、1个RISC处理器、1个传输控制器、2个视频控制器。