树的基本概念
树结构知识点总结

树结构知识点总结一、树结构的基本概念1.1 树的定义与特点树是一种递归的数据结构,它由结点和边组成,具有以下特点:(1)每个结点都有一个父结点,除了根结点;(2)每个结点可能有零个或多个子结点;(3)从根结点到任意结点之间有且仅有一条路径。
1.2 结点、父结点、子结点、根结点、叶子结点在树结构中,结点是树的基本单位,可以包含数据和指向其他结点的指针。
树结构中有一些特殊的结点概念:(1)父结点:一个结点的直接上级结点称为它的父结点;(2)子结点:一个结点的直接下级结点称为它的子结点;(3)根结点:树的顶层结点称为根结点;(4)叶子结点:没有子结点的结点称为叶子结点。
1.3 深度和高度在树结构中,深度是指从根结点到某个结点的唯一路径的长度。
而高度是指树中结点的最大深度。
1.4 子树在树结构中,一个结点以及它的子结点以及它的子结点的子结点构成的树称为子树。
1.5 有序树和无序树树结构分为有序树和无序树。
有序树中子结点的相对位置是重要的,而在无序树中子结点之间的相对位置不重要。
1.6 二叉树二叉树是一种特殊的树结构,每个结点最多有两个子结点,分别称为左子结点和右子结点。
二叉树是计算机科学中最基本的树结构之一。
1.7 二叉树的特殊类型二叉树有很多特殊类型,如满二叉树、完全二叉树、平衡二叉树、二叉搜索树等,它们在不同的场景中有着不同的应用。
1.8 树结构的表示树结构可以用不同的方式来表示,如数组表示、链表表示、层次遍历表示等。
每种表示方式都有其特点和适用场景。
二、树结构的常见应用2.1 文件系统在计算机中,文件系统通常是以树结构来表示的,每个文件夹是一个结点,而文件夹中的文件是它的子结点。
2.2 组织结构组织结构也可以用树结构来表示,每个员工是一个结点,而领导和下属的关系就是结点之间的父子关系。
2.3 数据库索引在数据库中,经常需要对数据进行索引,以提高查询的效率。
索引通常是以树结构的方式来表示的。
2.4 XML文档XML文档是一种非常常见的数据格式,它本质上就是一棵树。
数据结构树的知识点总结

数据结构树的知识点总结一、树的基本概念。
1. 树的定义。
- 树是n(n ≥ 0)个结点的有限集。
当n = 0时,称为空树。
在任意一棵非空树中:- 有且仅有一个特定的称为根(root)的结点。
- 当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1、T2、…、Tm,其中每个集合本身又是一棵树,并且称为根的子树(sub - tree)。
2. 结点的度、树的度。
- 结点的度:结点拥有的子树个数称为结点的度。
- 树的度:树内各结点的度的最大值称为树的度。
3. 叶子结点(终端结点)和分支结点(非终端结点)- 叶子结点:度为0的结点称为叶子结点或终端结点。
- 分支结点:度不为0的结点称为分支结点或非终端结点。
- 除根结点之外,分支结点也称为内部结点。
4. 树的深度(高度)- 树的层次从根开始定义起,根为第1层,根的子结点为第2层,以此类推。
树中结点的最大层次称为树的深度(或高度)。
二、二叉树。
1. 二叉树的定义。
- 二叉树是n(n ≥ 0)个结点的有限集合:- 或者为空二叉树,即n = 0。
- 或者由一个根结点和两棵互不相交的、分别称为根结点的左子树和右子树的二叉树组成。
2. 二叉树的特点。
- 每个结点最多有两棵子树,即二叉树不存在度大于2的结点。
- 二叉树的子树有左右之分,次序不能颠倒。
3. 特殊的二叉树。
- 满二叉树。
- 一棵深度为k且有2^k - 1个结点的二叉树称为满二叉树。
满二叉树的特点是每一层上的结点数都是最大结点数。
- 完全二叉树。
- 深度为k的、有n个结点的二叉树,当且仅当其每一个结点都与深度为k的满二叉树中编号从1至n的结点一一对应时,称之为完全二叉树。
完全二叉树的叶子结点只可能在层次最大的两层上出现;对于最大层次中的叶子结点,都依次排列在该层最左边的位置上;如果有度为1的结点,只可能有一个,且该结点只有左孩子而无右孩子。
三、二叉树的存储结构。
1. 顺序存储结构。
- 二叉树的顺序存储结构就是用一组地址连续的存储单元依次自上而下、自左至右存储完全二叉树上的结点元素。
树的基本概念与特点

树的基本概念与特点树,被广泛应用于生物学、计算机科学、数学等领域,是一种重要的数据结构。
本文将介绍树的基本概念与特点,并对其进行详细论述。
一、概念树是一种由节点和边组成的非线性数据结构。
它以一个称为根节点的特殊节点作为起点,每个节点可以有零个或多个子节点,且子节点之间没有任何顺序关系。
二、特点1. 分层结构:树的节点可以按照层次分布。
根节点处于第一层,根节点的子节点处于第二层,依次类推。
2. 唯一路径:树中的任意两个节点之间只存在唯一的路径。
即从根节点到任意一个节点,只有一条路径可达。
3. 无环结构:树是无环的,即不存在环形路径。
每个节点只能通过一条路径与其他节点相连。
4. 子树概念:树中的每个节点都可以看作是一个子树的根节点。
子树是由其下属的节点及其子节点构成的一颗完整树。
三、常见类型树有许多常见的类型,每种类型都有其特定的应用场景和特点。
以下列举几种常见的树类型:1. 二叉树:每个节点最多只有两个子节点的树称为二叉树。
二叉树有许多变种,例如满二叉树、完全二叉树等。
2. 二叉搜索树:在二叉搜索树中,每个节点的值都大于其左子树中的任意节点的值,小于其右子树中的任意节点的值。
这个特性使得查找、插入和删除操作具有较高的效率。
3. 平衡二叉树:平衡二叉树是一种特殊的二叉搜索树,它的左右子树的高度差不超过1。
这保证了树的整体高度较低,提高了查找、插入和删除操作的效率。
4. B树:B树是一种自平衡的搜索树,它可以拥有多个子节点。
它的出色特性使得它被广泛应用于文件系统和数据库的设计中。
5. 红黑树:红黑树是一种特殊的二叉搜索树,具有一些平衡性质。
红黑树的高度近似于log(n),使得它的查找、插入和删除操作具有较好的性能。
四、应用场景树的应用场景非常广泛。
下面列举几个常见的应用场景:1. 文件系统:文件系统通常使用树的结构来组织文件和目录。
每个目录可以包含多个子目录或文件。
2. 数据库:数据库中的索引通常使用树的结构,如B树和红黑树,以提高查询效率。
数据结构树知识点总结大全

数据结构树知识点总结大全本文将对树结构的知识点进行详细的总结,包括树的基本概念、树的分类、树的遍历、树的应用以及一些相关的算法和数据结构。
通过本文的学习,读者将对树结构有一个全面的了解,并可以在实际的编程和问题解决中灵活运用树结构。
一、树的基本概念1.1 节点和边1.2 根节点、叶子节点和内部节点1.3 子树和森林1.4 高度和深度1.5 有序树和无序树1.6 二叉树二、树的分类2.1 二叉搜索树2.2 平衡二叉树2.3 B树和B+树2.4 红黑树2.5 AVL树2.6 Trie树2.7 堆和堆排序2.8 Huffman树2.9 伸展树2.10 Splay树三、树的遍历3.1 深度优先遍历3.1.1 前序遍历3.1.2 中序遍历3.1.3 后序遍历3.2 广度优先遍历四、树的应用4.1 数据库索引4.2 文件系统4.3 图形学中的场景图4.4 解析树4.5 代码优化4.6 线段树4.7 树状数组4.8 字典树4.9 贝叶斯分类器中的朴素贝叶斯算法五、树的相关算法和数据结构5.1 查找5.1.1 二叉搜索树的插入和删除5.1.2 二叉搜索树的查找5.1.3 递归查找和非递归查找5.2 排序5.2.1 二叉搜索树的中序遍历5.2.2 堆排序5.2.3 AVL树的平衡调整5.2.4 红黑树的插入和删除5.3 最短路径5.3.1 二叉堆的应用5.3.2 AVL树的应用5.4 动态规划5.4.1 线段树的应用5.4.2 树状数组的应用六、结语树结构是数据结构中非常重要的一部分,它有着广泛的应用领域。
通过本文的学习,读者可以对树结构有一个全面的了解,并可以在实际的编程和问题解决中灵活运用树结构。
希望本文对读者有所帮助,也希望读者可以通过学习树结构,提高自己在算法和数据结构方面的能力,为未来的编程之路打下坚实的基础。
树的组成结构

树的组成结构一、引言树是一种重要的数据结构,在计算机科学中被广泛应用。
它具有分支结构和层次关系,可以用于表示各种实际问题的数据和关系。
本文将探讨树的组成结构,包括根节点、子节点、叶节点和边。
二、树的基本概念1. 根节点:树的最顶层节点,是整个树的起点,没有父节点。
2. 子节点:根节点的直接后继节点,可以有多个子节点。
3. 叶节点:没有子节点的节点,也称为终端节点。
4. 边:连接节点的线段,表示节点之间的关系。
三、树的分类树可以分为多种类型,常见的有二叉树、平衡二叉树、B树和红黑树等。
1. 二叉树:每个节点最多有两个子节点,分为左子节点和右子节点。
2. 平衡二叉树:左右子树的高度差不超过1的二叉树,目的是提高树的查找效率。
3. B树:多路搜索树,每个节点可以有多个子节点,用于数据库和文件系统的索引结构。
4. 红黑树:一种自平衡二叉查找树,通过节点的颜色和旋转操作来保持平衡。
四、树的表示方法1. 嵌套列表表示法:用嵌套的列表来表示树的层次结构,每个子列表表示一个节点及其子节点的列表。
2. 链表表示法:每个节点包含一个值和指向其子节点的指针。
五、树的遍历方式遍历树是指按照一定的规则访问树的所有节点,常见的遍历方式有前序遍历、中序遍历和后序遍历。
1. 前序遍历:先访问根节点,然后递归地遍历左子树和右子树。
2. 中序遍历:先递归地遍历左子树,然后访问根节点,最后递归地遍历右子树。
3. 后序遍历:先递归地遍历左子树和右子树,然后访问根节点。
六、树的应用场景树作为一种灵活的数据结构,被广泛应用于各个领域。
1. 文件系统:文件系统通常使用树的结构来表示目录和文件的层次关系。
2. 数据库索引:B树和红黑树等平衡树结构被用于数据库索引,提高数据的检索效率。
3. 表达式求值:树结构可以用于表示数学表达式和逻辑表达式,方便求值和计算。
4. 组织结构:树可以用于表示组织结构,如公司的部门和员工关系等。
七、总结树是一种重要的数据结构,具有分支结构和层次关系。
树的实现及其应用

树的实现及其应用树(Tree)是一种非常重要的数据结构,它在计算机科学中有着广泛的应用。
树是由节点(Node)和边(Edge)组成的一种层次结构,其中一个节点可以有零个或多个子节点。
树结构中最顶层的节点称为根节点(Root),最底层的节点称为叶节点(Leaf),除了根节点外,每个节点有且仅有一个父节点。
一、树的基本概念在树的结构中,每个节点可以有多个子节点,这些子节点又可以有自己的子节点,以此类推,形成了树的层次结构。
树的基本概念包括以下几个要点:1. 根节点(Root):树结构的最顶层节点,没有父节点。
2. 叶节点(Leaf):树结构的最底层节点,没有子节点。
3. 父节点(Parent):一个节点的直接上级节点。
4. 子节点(Child):一个节点的直接下级节点。
5. 兄弟节点(Sibling):具有相同父节点的节点互为兄弟节点。
6. 子树(Subtree):树中的任意节点和它的子节点以及这些子节点的子节点构成的子树。
7. 深度(Depth):从根节点到某个节点的唯一路径的边的数量。
8. 高度(Height):从某个节点到叶节点的最长路径的边的数量。
二、树的实现树的实现可以通过多种方式来完成,其中最常见的是使用节点和指针的方式来表示树结构。
在实际编程中,可以通过定义节点类(NodeClass)来表示树的节点,然后通过指针来连接各个节点,从而构建出完整的树结构。
下面是一个简单的树节点类的示例代码:```pythonclass TreeNode:def __init__(self, value):self.value = valueself.children = []```在上面的示例中,TreeNode类表示树的节点,每个节点包含一个值(value)和一个子节点列表(children)。
通过不断地创建节点对象并将它们连接起来,就可以构建出一棵完整的树。
三、树的遍历树的遍历是指按照一定顺序访问树中的所有节点。
树的基本概念

树的基本概念树是一种非常常见的数据结构,它在计算机科学中起着重要的作用。
树由节点和边组成,节点之间通过边相连接。
在树中,有一个称为根节点的特殊节点,其他节点通过边与根节点相连。
树可以用于表示层次结构,例如文件系统、组织结构、网络等。
它的结构类似于自然界中的树,有一个根部和多个分支。
每个节点可以有若干个子节点,但每个节点只有一个父节点,除了根节点没有父节点。
树的形状可以是任意的,取决于节点之间的连接方式。
树有几个重要的特点:无环、有序且可分解。
无环表示树中不存在回路,即从一个节点出发,沿着任意边不会再返回到原始节点。
有序表示树中每个节点都有一个特定的位置,每个节点和它的子节点之间都有一定的顺序关系。
可分解表示树可以被分解成若干个子树,每个子树也是一个树。
树的节点可以分为几个不同的类型。
首先是根节点,它是整个树的起点,树中只有一个根节点。
其次是叶节点,也称为叶子节点,它是树中没有子节点的节点。
叶节点位于树的末端,不再向下延伸。
除了根节点和叶节点外,其他节点都有一个父节点和若干个子节点。
节点和节点之间通过边相连接,边类似于树的分支,连接节点和节点。
树的高度表示树的层数,也即是从根节点到叶节点的最长路径的长度。
树的深度是树中任意节点到根节点的最长路径的长度。
树的高度和深度是相等的。
树还有一些重要的概念。
其中之一是子树,子树是由一个父节点及其所有子节点和边组成的树。
对于树中任意一个节点,可以将它和它的子节点以及相应的边看作一个子树。
另一个重要的概念是森林,森林是由若干个独立的树组成的集合。
树的操作包括插入、删除、查找等。
插入操作用于在树中添加新的节点。
删除操作用于删除树中的某个节点及其子树。
查找操作用于在树中查找某个节点。
树有几种常见的类型,包括二叉树、平衡树、二叉搜索树等。
二叉树是一种特殊的树,每个节点最多有两个子节点。
平衡树是指树中每个节点的左子树和右子树的高度之差不超过一个常数。
二叉搜索树是一种有序的二叉树,对于树中的每个节点,它的左子树的所有节点的值都小于该节点的值,右子树的所有节点的值都大于该节点的值。
树的基本概念和特点

树的基本概念和特点树是一种重要的数据结构,在计算机科学领域被广泛应用。
它是由节点(node)和边(edge)组成的一种非线性数据结构。
树的基本概念和特点对于理解和使用树结构至关重要。
本文将介绍树的基本概念和特点,并探讨其在实际应用中的重要性。
一、树的基本概念树是由节点和边组成的一种层次结构。
它包含一个根节点,根节点可以有零或多个子节点,每个子节点又可以有自己的子节点。
树的节点分为内部节点和叶节点。
内部节点是有子节点的节点,而叶节点是没有子节点的节点。
树的节点之间通过边连接。
树中的节点可以有任意多个子节点,但每个节点只能有一个父节点。
除了根节点之外,其它节点都有且只有一个父节点。
树中的节点和边之间满足以下关系:1. 每个节点有且只有一个父节点,除了根节点;2. 每个节点可以有零或多个子节点;3. 树中的任意两个节点之间存在唯一的路径。
树结构的层次性使得我们可以轻松地对树进行遍历和搜索操作。
常用的树遍历方法有前序遍历、中序遍历和后序遍历。
在实际应用中,树的层次结构常用于组织和管理数据,例如文件系统、数据库索引等。
二、树的特点1. 层次性:树的节点分为不同的层次,根节点位于最顶层,其它节点根据其与根节点的距离划分不同的层次。
2. 唯一性:树中的任意两个节点之间存在唯一的路径。
这使得我们可以通过路径快速找到任意节点。
3. 递归性:树的结构具有递归性质。
每个节点都可以看作一个子树的根节点。
通过递归的方式,可以对整棵树进行遍历和操作。
4. 有序性:树中的各个节点之间存在明确定义的父子关系。
每个节点有其在树中的位置和顺序。
5. 分支性:树的节点可以有任意多个子节点,每个子节点可以有自己的子节点。
这种分支性使得树结构非常灵活,适用于各种数据组织和管理的场景。
三、树的应用树结构在计算机科学中应用广泛,几乎可以在各个领域找到其身影。
1. 文件系统:文件系统通常使用树的结构来组织文件和文件夹。
根节点是文件系统的根目录,每个文件夹是一个子节点,文件夹中的文件是叶节点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本概念结点的层次(Level)从根开始定义,根为第一层,根的孩子为第二层。
二叉树的高度:树中结点的最大层次称为树的深度(Depth)或高度。
二叉树在计算机科学中,二叉树是每个结点最多有两个子树的有序树。
通常子树的根被称作“左子树”(left subtree)和“右子树”(right subtree)。
二叉树常被用作二叉查找树和二叉堆。
二叉树的每个结点至多只有二棵子树(不存在度大于2的结点),二叉树的子树有左右之分,次序不能颠倒。
二叉树的第i层至多有2的(i-1)次方个结点;深度为k的二叉树至多有2的k次− 1个结点;对任何一棵二叉树T,如果其终端结点数为n0,度为2的结点数为n2,则n0 = n2 + 1。
树和二叉树的2个主要差别:1. 树中结点的最大度数没有限制,而二叉树结点的最大度数为2;2. 树的结点无左、右之分,而二叉树的结点有左、右之分。
……树是一种重要的非线性数据结构,直观地看,它是数据元素(在树中称为结点)按分支关系组织起来的结构,很象自然界中的树那样。
树结构在客观世界中广泛存在,如人类社会的族谱和各种社会组织机构都可用树形象表示。
树在计算机领域中也得到广泛应用,如在编译源程序如下时,可用树表示源源程序如下的语法结构。
又如在数据库系统中,树型结构也是信息的重要组织形式之一。
一切具有层次关系的问题都可用树来描述。
一、树的概述树结构的特点是:它的每一个结点都可以有不止一个直接后继,除根结点外的所有结点都有且只有一个直接前趋。
以下具体地给出树的定义及树的数据结构表示。
(一)树的定义树是由一个或多个结点组成的有限集合,其中:⒈必有一个特定的称为根(ROOT)的结点;⒉剩下的结点被分成n>=0个互不相交的集合T1、T2、......Tn,而且,这些集合的每一个又都是树。
树T1、T2、......Tn被称作根的子树(Subtree)。
树的递归定义如下:(1)至少有一个结点(称为根)(2)其它是互不相交的子树1.树的度——也即是宽度,简单地说,就是结点的分支数。
以组成该树各结点中最大的度作为该树的度,如上图的树,其度为3;树中度为零的结点称为叶结点或终端结点。
树中度不为零的结点称为分枝结点或非终端结点。
除根结点外的分枝结点统称为内部结点。
2.树的深度——组成该树各结点的最大层次,如上图,其深度为4;3.森林——指若干棵互不相交的树的集合,如上图,去掉根结点A,其原来的二棵子树T1、T2、T3的集合{T1,T2,T3}就为森林;4.有序树——指树中同层结点从左到右有次序排列,它们之间的次序不能互换,这样的树称为有序树,否则称为无序树。
5.树的表示树的表示方法有许多,常用的方法是用括号:先将根结点放入一对圆括号中,然后把它的子树由左至右的顺序放入括号中,而对子树也采用同样的方法处理;同层子树与它的根结点用圆括号括起来,同层子树之间用逗号隔开,最后用闭括号括起来。
如上图可写成如下形式:(A(B(E(K,L),F),C(G),D(H(M),I,J)))5. 2 二叉树1.二叉树的基本形态:二叉树也是递归定义的,其结点有左右子树之分,逻辑上二叉树有五种基本形态:(1)空二叉树——(a);(2)只有一个根结点的二叉树——(b);(3)只有右子树——(c);(4)只有左子树——(d);(5)完全二叉树——(e)注意:尽管二叉树与树有许多相似之处,但二叉树不是树的特殊情形。
2.两个重要的概念:(1)完全二叉树——只有最下面的两层结点度小于2,并且最下面一层的结点都集中在该层最左边的若干位置的二叉树;(2)满二叉树——除了叶结点外每一个结点都有左右子叶且叶结点都处在最底层的二叉树,。
3.二叉树的性质(1) 在二叉树中,第i层的结点总数不超过2^(i-1);(2) 深度为h的二叉树最多有2^h-1个结点(h>=1),最少有h个结点;(3) 对于任意一棵二叉树,如果其叶结点数为N0,而度数为2的结点总数为N2,则N0=N2+1;(4) 具有n个结点的完全二叉树的深度为int(log2n)+1(5)有N个结点的完全二叉树各结点如果用顺序方式存储,则结点之间有如下关系:若I为结点编号则如果I<>1,则其父结点的编号为I/2;如果2*I<=N,则其左儿子(即左子树的根结点)的编号为2*I;若2*I>N,则无左儿子;如果2*I+1<=N,则其右儿子的结点编号为2*I+1;若2*I+1>N,则无右儿子。
(6)给定N个节点,能构成h(N)种不同的二叉树。
h(N)为卡特兰数的第N项。
h(n)=C(n,2*n)/(n+1)。
4.二叉树的存储结构:(1)顺序存储方式type node=recorddata:datatypel,r:integer;end;var tr:array[1..n] of node;(2)链表存储方式,如:type btree=^node;node=recorddata:datatye;lchild,rchild:btree;end;5.普通树转换成二叉树:凡是兄弟就用线连起来,然后去掉父亲到儿子的连线,只留下父母到其第一个子女的连线。
二叉树很象一株倒悬着的树,从树根到大分枝、小分枝、直到叶子把数据联系起来,这种数据结构就叫做树结构,简称树。
树中每个分叉点称为结点,起始结点称为树根,任意两个结点间的连接关系称为树枝,结点下面不再有分枝称为树叶。
结点的前趋结点称为该结点的"双亲",结点的后趋结点称为该结点的"子女"或"孩子",同一结点的"子女"之间互称"兄弟"。
二叉树:二叉树是一种十分重要的树型结构。
它的特点是,树中的每个结点最多只有两棵子树,即树中任何结点的度数不得大于2。
二叉树的子树有左右之分,而且,子树的左右次序是重要的,即使在只有一棵子树的情况下,也应分清是左子树还是右子树。
定义:二叉树是结点的有限集合,这个集合或是空的,或是由一个根结点和两棵互不相交的称之为左子树和右子树的二叉树组成。
(三)完全二叉树对满二叉树,从第一层的结点(即根)开始,由下而上,由左及右,按顺序结点编号,便得到满二叉树的一个顺序表示。
据此编号,完全二叉树定义如下:一棵具有n个结点,深度为K的二叉树,当且仅当所有结点对应于深度为K的满二叉树中编号由1至n的那些结点时,该二叉树便是完全二叉树。
图4是一棵完全二叉树。
平衡二叉树当且仅当两个子树的高度差不超过1时,这个树是平衡二叉树。
(同时是排序二叉树)平衡二叉树,又称AVL树。
它或者是一棵空树,或者是具有下列性质的二叉树:它的左子树和右子树都是平衡二叉树,且左子树和右子树的高度之差之差的绝对值不超过1.。
常用算法有:红黑树、AVL树、Treap等。
平衡二叉树的调整方法平衡二叉树是在构造二叉排序树的过程中,每当插入一个新结点时,首先检查是否因插入新结点而破坏了二叉排序树的平衡性,若是,则找出其中的最小不平衡子树,在保持二叉排序树特性的前提下,调整最小不平衡子树中各结点之间的链接关系,进行相应的旋转,使之成为新的平衡子树。
具体步骤如下:⑴每当插入一个新结点,从该结点开始向上计算各结点的平衡因子,即计算该结点的祖先结点的平衡因子,若该结点的祖先结点的平衡因子的绝对值均不超过1,则平衡二叉树没有失去平衡,继续插入结点;⑵若插入结点的某祖先结点的平衡因子的绝对值大于1,则找出其中最小不平衡子树的根结点;⑶判断新插入的结点与最小不平衡子树的根结点的关系,确定是哪种类型的调整;⑷如果是LL型或RR型,只需应用扁担原理旋转一次,在旋转过程中,如果出现冲突,应用旋转优先原则调整冲突;如果是LR型或LR型,则需应用扁担原理旋转两次,第一次最小不平衡子树的根结点先不动,调整插入结点所在子树,第二次再调整最小不平衡子树,在旋转过程中,如果出现冲突,应用旋转优先原则调整冲突;⑸计算调整后的平衡二叉树中各结点的平衡因子,检验是否因为旋转而破坏其他结点的平衡因子,以及调整后的平衡二叉树中是否存在平衡因子大于1的结点。
(b)左边的图左子数的高度为3,右子树的高度为1,相差超过1(b)右边的图-2的左子树高度为0 右子树的高度为2,相差超过1完全二叉树(Complete Binary Tree) 完全二叉树定义完全二叉树若设二叉树的高度为h,除第h 层外,其它各层(1~h-1) 的结点数都达到最大个数,第h 层从右向左连续缺若干结点,这就是完全二叉树。
完全二叉树特点一、叶子结点只可能在最大的两层上出现,对任意结点,若其右分支下的子孙最大层次为L,则其左分支下的子孙的最大层次必为L 或L+1;二、出于简便起见,完全二叉树通常采用数组而不是链表存储,其存储结构如下:var tree:array[1..n]of longint;{n:integer;n>=1}对于tree[i],有如下特点:(1)若i为奇数且i>1,那么tree[i]的左兄弟为tree[i-1];(2)若i为偶数且i<n,那么tree[i]的右兄弟为tree[i+1];(3)若i>1,tree[i]的双亲为tree[i div 2];(4)若2*i<=n,那么tree[i]的左孩子为tree[2*i];若2*i+1<=n,那么tree[i]的右孩子为tree[2*i+1];(5)若i>n div 2,那么tree[i]为叶子结点(对应于(3));(6)若i<(n-1) div 2.那么tree[i]必有两个孩子(对应于(4))。
特别地:满二叉树一定是完全二叉树,完全二叉树不一定是满二叉树完全二叉树叶子节点的算法如果一棵具有n个结点的深度为k的二叉树,它的每一个结点都与深度为k的满二叉树中编号为1~n的结点一一对应,这棵二叉树称为完全二叉树。
可以根据公式进行推导,假设n0是度为0的结点总数(即叶子结点数),n1是度为1的结点总数,n2是度为2的结点总数,由二叉树的性质可知:n0=n2+1,则n= n0+n1+n2(其中n为完全二叉树的结点总数),由上述公式把n2消去得:n= 2n0+n1-1,由于完全二叉树中度为1的结点数只有两种可能0或1,由此得到n0=(n+1)/2或n0=n/2,合并成一个公式:n0=(n+1)/2 ,就可根据完全二叉树的结点总数计算出叶子结点数。
满二叉树一棵深度为k,且有2的(k)次方-1个节点的二叉树特点:每一层上的结点数都是最大结点数完全二叉树的定义:深度为k,有n个结点的二叉树当且仅当其每一个结点都与深度为k的满二叉树中编号从1至n的结点一一对应时,称为完全二叉树。
特点:叶子结点只可能在层次最大的两层上出现;对任一结点,若其右分支下子孙的最大层次为l,则其左分支下子孙的最大层次必为l 或l+1 满二叉树:一棵深度为k,且有2的(k)次方-1个节点的二叉树特点:每一层上的结点数都是最大结点数满二叉树肯定是完全二叉树完全二叉树不一定是满二叉树分享到:。