2020高考数学 全国各地模拟试题分类汇编1 集合 文 精品

合集下载

2020年全国各地高考数学试卷分类汇编—函数(含解析)全文

2020年全国各地高考数学试卷分类汇编—函数(含解析)全文

2020年全国各地⾼考真题分类汇编—函数1.(2020•海南)已知函数f(x)=lg(x2﹣4x﹣5)在(a,+∞)上单调递增,则a的取值范围是()A.(2,+∞)B.[2,+∞)C.(5,+∞)D.[5,+∞)2.(2020•天津)函数y=的图象⼤致为()A.B.C.D.3.(2020•新课标Ⅱ)设函数f(x)=x3﹣,则f(x)()A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减4.(2020•新课标Ⅱ)若2x﹣2y<3﹣x﹣3﹣y,则()A.ln(y﹣x+1)>0B.ln(y﹣x+1)<0C.ln|x﹣y|>0D.ln|x﹣y|<05.(2020•浙江)函数y=x cos x+sin x在区间[﹣π,π]上的图象可能是()A.B.C.D.6.(2020•海南)若定义在R的奇函数f(x)在(﹣∞,0)单调递减,且f(2)=0,则满⾜xf(x﹣1)≥0的x的取值范围是()A.[﹣1,1]∪[3,+∞)B.[﹣3,﹣1]∪[0,1]C.[﹣1,0]∪[1,+∞)D.[﹣1,0]∪[1,3]7.(2020•新课标Ⅱ)设函数f(x)=ln|2x+1|﹣ln|2x﹣1|,则f(x)()A.是偶函数,且在(,+∞)单调递增B.是奇函数,且在(﹣,)单调递减C.是偶函数,且在(﹣∞,﹣)单调递增D.是奇函数,且在(﹣∞,﹣)单调递减8.(2020•天津)设a=30.7,b=()﹣0.8,c=log0.70.8,则a,b,c的⼤⼩关系为()A.a<b<c B.b<a<c C.b<c<a D.c<a<b9.(2020•新课标Ⅰ)设a log34=2,则4﹣a=()A.B.C.D.10.(2020•新课标Ⅲ)设a=log32,b=log53,c=,则()A.a<c<b B.a<b<c C.b<c<a D.c<a<b11.(2020•新课标Ⅲ)已知55<84,134<85.设a=log53,b=log85,c=log138,则()A.a<b<c B.b<a<c C.b<c<a D.c<a<b12.(2020•新课标Ⅰ)若2a+log2a=4b+2log4b,则()A.a>2b B.a<2b C.a>b2D.a<b213.(2020•天津)已知函数f(x)=若函数g(x)=f(x)﹣|kx2﹣2x|(k∈R)恰有4个零点,则k的取值范围是()A.(﹣∞,﹣)∪(2,+∞)B.(﹣∞,﹣)∪(0,2)C.(﹣∞,0)∪(0,2)D.(﹣∞,0)∪(2,+∞)14.(2020•⼭东)基本再⽣数R0与世代间隔T是新冠肺炎的流⾏病学基本参数.基本再⽣数指⼀个感染者传染的平均⼈数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以⽤指数模型:I(t)=e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增⻓率r与R0,T近似满⾜R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为()(ln2≈0.69)A.1.2天B.1.8天C.2.5天D.3.5天15.(2020•新课标Ⅲ)Logistic模型是常⽤数学模型之⼀,可应⽤于流⾏病学领域.有学者根据公布数据建⽴了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t)=,其中K为最⼤确诊病例数.当I(t*)=0.95K时,标志着已初步遏制疫情,则t*约为()(ln19≈3)A.60B.63C.66D.69 16.(2020•北京)函数f(x)=+lnx的定义域是.17.(2020•北京)为满⾜⼈⺠对美好⽣活的向往,环保部⻔要求相关企业加强污⽔治理,排放未达标的企业要限期整改.设企业的污⽔排放量W与时间t的关系为W=f(t),⽤﹣的⼤⼩评价在[a,b]这段时间内企业污⽔治理能⼒的强弱.已知整改期内,甲、⼄两企业的污⽔排放量与时间的关系如图所示.给出下列四个结论:①在[t1,t2]这段时间内,甲企业的污⽔治理能⼒⽐⼄企业强;②在t2时刻,甲企业的污⽔治理能⼒⽐⼄企业强;③在t3时刻,甲,⼄两企业的污⽔排放都已达标;④甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污⽔治理能⼒最强.其中所有正确结论的序号是.18.(2020•江苏)已知y=f(x)是奇函数,当x≥0时,f(x)=x,则f(﹣8)的值是.19.(2020•上海)若函数y=a•3x+为偶函数,则a=.20.(2020•上海)已知f(x)=,其反函数为f﹣1(x),若f﹣1(x)﹣a=f(x+a)有实数根,则a的取值范围为.21.(2020•上海)设a∈R,若存在定义域为R的函数f(x)同时满⾜下列两个条件:(1)对任意的x0∈R,f(x0)的值为x0或x02;(2)关于x的⽅程f(x)=a⽆实数解,则a的取值范围是.22.(2020•上海)已知⾮空集合A⊆R,函数y=f(x)的定义域为D,若对任意t∈A且x∈D,不等式f(x)≤f(x+t)恒成⽴,则称函数f(x)具有A性质.(1)当A={﹣1},判断f(x)=﹣x、g(x)=2x是否具有A性质;(2)当A=(0,1),f(x)=x+,x∈[a,+∞),若f(x)具有A性质,求a的取值范围;(3)当A={﹣2,m},m∈Z,若D为整数集且具有A性质的函数均为常值函数,求所有符合条件的m的值.23.(2020•上海)在研究某市场交通情况时,道路密度是指该路段上⼀定时间内通过的⻋辆数除以时间,⻋辆密度是该路段⼀定时间内通过的⻋辆数除以该路段的⻓度,现定义交通流量为v=,x为道路密度,q为⻋辆密度.v=f(x)=.(1)若交通流量v>95,求道路密度x的取值范围;(2)已知道路密度x=80,交通流量v=50,求⻋辆密度q的最⼤值.24.(2020•上海)有⼀条⻓为120⽶的步⾏道OA,A是垃圾投放点ω1,若以O为原点,OA 为x轴正半轴建⽴直⻆坐标系,设点B(x,0),现要建设另⼀座垃圾投放点ω2(t,0),函数f t(x)表示与B点距离最近的垃圾投放点的距离.(1)若t=60,求f60(10)、f60(80)、f60(95)的值,并写出f60(x)的函数解析式;(2)若可以通过f t(x)与坐标轴围成的⾯积来测算扔垃圾的便利程度,⾯积越⼩越便利.问:垃圾投放点ω2建在何处才能⽐建在中点时更加便利?参考答案与试题解析⼀.选择题(共15⼩题)1.(2020•海南)已知函数f(x)=lg(x2﹣4x﹣5)在(a,+∞)上单调递增,则a的取值范围是()A.(2,+∞)B.[2,+∞)C.(5,+∞)D.[5,+∞)【解答】解:由x2﹣4x﹣5>0,得x<﹣1或x>5.令t=x2﹣4x﹣5,∵外层函数y=lgt是其定义域内的增函数,∴要使函数f(x)=lg(x2﹣4x﹣5)在(a,+∞)上单调递增,则需内层函数t=x2﹣4x﹣5在(a,+∞)上单调递增且恒⼤于0,则(a,+∞)⊆(5,+∞),即a≥5.∴a的取值范围是[5,+∞).故选:D.2.(2020•天津)函数y=的图象⼤致为()A.B.C.D.【解答】解:函数y=的定义域为实数集R,关于原点对称,函数y=f(x)=,则f(﹣x)=﹣=﹣f(x),则函数y=f(x)为奇函数,故排除C,D,当x>0是,y=f(x)>0,故排除B,故选:A.3.(2020•新课标Ⅱ)设函数f(x)=x3﹣,则f(x)()A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减【解答】解:因为f(x)=x3﹣,则f(﹣x)=﹣x3+=﹣f(x),即f(x)为奇函数,根据幂函数的性质可知,y=x3在(0,+∞)为增函数,故y1=在(0,+∞)为减函数,y2=﹣在(0,+∞)为增函数,所以当x>0时,f(x)=x3﹣单调递增,故选:A.4.(2020•新课标Ⅱ)若2x﹣2y<3﹣x﹣3﹣y,则()A.ln(y﹣x+1)>0B.ln(y﹣x+1)<0C.ln|x﹣y|>0D.ln|x﹣y|<0【解答】解:⽅法⼀:由2x﹣2y<3﹣x﹣3﹣y,可得2x﹣3﹣x<2y﹣3﹣y,令f(x)=2x﹣3﹣x,则f(x)在R上单调递增,且f(x)<f(y),所以x<y,即y﹣x>0,由于y﹣x+1>1,故ln(y﹣x+1)>ln1=0.⽅法⼆:取x=﹣1,y=0,满⾜2x﹣2y<3﹣x﹣3﹣y,此时ln(y﹣x+1)=ln2>0,ln|x﹣y|=ln1=0,可排除BCD.故选:A.5.(2020•浙江)函数y=x cos x+sin x在区间[﹣π,π]上的图象可能是()A.B.C.D.【解答】解:y=f(x)=x cos x+sin x,则f(﹣x)=﹣x cos x﹣sin x=﹣f(x),∴f(x)为奇函数,函数图象关于原点对称,故排除C,D,当x=π时,y=f(π)=πcosπ+sinπ=﹣π<0,故排除B,故选:A.6.(2020•海南)若定义在R的奇函数f(x)在(﹣∞,0)单调递减,且f(2)=0,则满⾜xf(x﹣1)≥0的x的取值范围是()A.[﹣1,1]∪[3,+∞)B.[﹣3,﹣1]∪[0,1]C.[﹣1,0]∪[1,+∞)D.[﹣1,0]∪[1,3]【解答】解:∵定义在R的奇函数f(x)在(﹣∞,0)单调递减,且f(2)=0,f(x)的⼤致图象如图:∴f(x)在(0,+∞)上单调递减,且f(﹣2)=0;故f(﹣1)<0;当x=0时,不等式xf(x﹣1)≥0成⽴,当x=1时,不等式xf(x﹣1)≥0成⽴,当x﹣1=2或x﹣1=﹣2时,即x=3或x=﹣1时,不等式xf(x﹣1)≥0成⽴,当x>0时,不等式xf(x﹣1)≥0等价为f(x﹣1)≥0,此时,此时1<x≤3,当x<0时,不等式xf(x﹣1)≥0等价为f(x﹣1)≤0,即,得﹣1≤x<0,综上﹣1≤x≤0或1≤x≤3,即实数x的取值范围是[﹣1,0]∪[1,3],故选:D.7.(2020•新课标Ⅱ)设函数f(x)=ln|2x+1|﹣ln|2x﹣1|,则f(x)()A.是偶函数,且在(,+∞)单调递增B.是奇函数,且在(﹣,)单调递减C.是偶函数,且在(﹣∞,﹣)单调递增D.是奇函数,且在(﹣∞,﹣)单调递减【解答】解:由,得x.⼜f(﹣x)=ln|﹣2x+1|﹣ln|﹣2x﹣1|=﹣(ln|2x+1|﹣ln|2x﹣1|)=﹣f(x),∴f(x)为奇函数;由f(x)=ln|2x+1|﹣ln|2x﹣1|=,∵==.可得内层函数t=||的图象如图,在(﹣∞,)上单调递减,在(,)上单调递增,则(,+∞)上单调递减.⼜对数式y=lnt是定义域内的增函数,由复合函数的单调性可得,f(x)在(﹣∞,﹣)上单调递减.故选:D.8.(2020•天津)设a=30.7,b=()﹣0.8,c=log0.70.8,则a,b,c的⼤⼩关系为()A.a<b<c B.b<a<c C.b<c<a D.c<a<b【解答】解:a=30.7,b=()﹣0.8=30.8,则b>a>1,log0.70.8<log0.70.7=1,∴c<a<b,故选:D.9.(2020•新课标Ⅰ)设a log34=2,则4﹣a=()A.B.C.D.【解答】解:因为a log34=2,则log34a=2,则4a=32=9则4﹣a==,故选:B.10.(2020•新课标Ⅲ)设a=log32,b=log53,c=,则()A.a<c<b B.a<b<c C.b<c<a D.c<a<b【解答】解:∵a=log 32=<=,b=log53=>=,c=,∴a<c<b.故选:A.11.(2020•新课标Ⅲ)已知55<84,134<85.设a=log53,b=log85,c=log138,则()A.a<b<c B.b<a<c C.b<c<a D.c<a<b【解答】解:∵==log53•log58<=<1,∴a<b;∵55<84,∴5<4log58,∴log58>1.25,∴b=log85<0.8;∵134<85,∴4<5log138,∴c=log138>0.8,∴c>b,综上,c>b>a.故选:A.12.(2020•新课标Ⅰ)若2a+log2a=4b+2log4b,则()A.a>2b B.a<2b C.a>b2D.a<b2【解答】解:因为2a+log2a=4b+2log4b=22b+log2b;因为22b+log2b<22b+log22b=22b+log2b+1即2a+log2a<22b+log22b;令f(x)=2x+log2x,由指对数函数的单调性可得f(x)在(0,+∞)内单调递增;且f(a)<f(2b) a<2b;故选:B.13.(2020•天津)已知函数f(x)=若函数g(x)=f(x)﹣|kx2﹣2x|(k∈R)恰有4个零点,则k的取值范围是()A.(﹣∞,﹣)∪(2,+∞)B.(﹣∞,﹣)∪(0,2)C.(﹣∞,0)∪(0,2)D.(﹣∞,0)∪(2,+∞)【解答】解:若函数g(x)=f(x)﹣|kx2﹣2x|(k∈R)恰有4个零点,则f(x)=|kx2﹣2x|有四个根,即y=f(x)与y=h(x)=|kx2﹣2x|有四个交点,当k=0时,y=f(x)与y=|﹣2x|=2|x|图象如下:两图象只有两个交点,不符合题意,当k<0时,y=|kx2﹣2x|与x轴交于两点x1=0,x2=(x2<x1)图象如图所示,两图象有4个交点,符合题意,当k>0时,y=|kx2﹣2x|与x轴交于两点x1=0,x2=(x2>x1)在[0,)内两函数图象有两个交点,所以若有四个交点,只需y=x3与y=kx2﹣2x在(,+∞)还有两个交点,即可,即x3=kx2﹣2x在(,+∞)还有两个根,即k=x+在(,+∞)还有两个根,函数y=x+≥2,(当且仅当x=时,取等号),所以,且k>2,所以k>2,综上所述,k的取值范围为(﹣∞,0)∪(2,+∞).故选:D.14.(2020•⼭东)基本再⽣数R0与世代间隔T是新冠肺炎的流⾏病学基本参数.基本再⽣数指⼀个感染者传染的平均⼈数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以⽤指数模型:I(t)=e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增⻓率r与R0,T近似满⾜R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为()(ln2≈0.69)A.1.2天B.1.8天C.2.5天D.3.5天【解答】解:把R0=3.28,T=6代⼊R0=1+rT,可得r=0.38,∴I(t)=e0.38t,当t=0时,I(0)=1,则e0.38t=2,两边取对数得0.38t=ln2,解得t=≈1.8.故选:B.15.(2020•新课标Ⅲ)Logistic模型是常⽤数学模型之⼀,可应⽤于流⾏病学领域.有学者根据公布数据建⽴了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t)=,其中K为最⼤确诊病例数.当I(t*)=0.95K时,标志着已初步遏制疫情,则t*约为()(ln19≈3)A.60B.63C.66D.69【解答】解:由已知可得=0.95K,解得e﹣0.23(t﹣53)=,两边取对数有﹣0.23(t﹣53)=﹣ln19,解得t≈66,故选:C.⼆.填空题(共6⼩题)16.(2020•北京)函数f(x)=+lnx的定义域是{x|x>0}.【解答】解:要使函数有意义,则,所以,所以x>0,所以函数的定义域为{x|x>0},故答案为:{x|x>0}.17.(2020•北京)为满⾜⼈⺠对美好⽣活的向往,环保部⻔要求相关企业加强污⽔治理,排放未达标的企业要限期整改.设企业的污⽔排放量W与时间t的关系为W=f(t),⽤﹣的⼤⼩评价在[a,b]这段时间内企业污⽔治理能⼒的强弱.已知整改期内,甲、⼄两企业的污⽔排放量与时间的关系如图所示.给出下列四个结论:①在[t1,t2]这段时间内,甲企业的污⽔治理能⼒⽐⼄企业强;②在t2时刻,甲企业的污⽔治理能⼒⽐⼄企业强;③在t3时刻,甲,⼄两企业的污⽔排放都已达标;④甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污⽔治理能⼒最强.其中所有正确结论的序号是①②③.【解答】解:设甲企业的污⽔排放量W与时间t的关系为W=f(t),⼄企业的污⽔排放量W与时间t的关系为W=g(t).对于①,在[t1,t2]这段时间内,甲企业的污⽔治理能⼒为,⼄企业的污⽔治理能⼒为﹣.由图可知,f(t1)﹣f(t2)>g(t1)﹣g(t2),∴>﹣,即甲企业的污⽔治理能⼒⽐⼄企业强,故①正确;对于②,由图可知,f(t)在t2时刻的切线的斜率⼩于g(t)在t2时刻的切线的斜率,但两切线斜率均为负值,∴在t2时刻,甲企业的污⽔治理能⼒⽐⼄企业强,故②正确;对于③,在t3时刻,甲,⼄两企业的污⽔排放都⼩于污⽔达标排放量,∴在t3时刻,甲,⼄两企业的污⽔排放都已达标,故③正确;对于④,由图可知,甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[t1,t2]的污⽔治理能⼒最强,故④错误.∴正确结论的序号是①②③.故答案为:①②③.18.(2020•江苏)已知y=f(x)是奇函数,当x≥0时,f(x)=x,则f(﹣8)的值是﹣4.【解答】解:y=f(x)是奇函数,可得f(﹣x)=﹣f(x),当x≥0时,f(x)=x,可得f(8)=8=4,则f(﹣8)=﹣f(8)=﹣4,故答案为:﹣4.19.(2020•上海)若函数y=a•3x+为偶函数,则a=1.【解答】解:根据题意,函数y=a•3x+为偶函数,则f(﹣x)=f(x),即a•3(﹣x)+=a•3x+,变形可得:a(3x﹣3﹣x)=(3x﹣3﹣x),必有a=1;故答案为:1.20.(2020•上海)已知f(x)=,其反函数为f﹣1(x),若f﹣1(x)﹣a=f(x+a)有实数根,则a的取值范围为[,+∞).【解答】解:因为y=f﹣1(x)﹣a与y=f(x+a)互为反函数,若y=f﹣1(x)﹣a与y=f(x+a)有实数根,则y=f(x+a)与y=x有交点,所以,即a=x2﹣x+1=(x﹣)2+≥,故答案为:[,+∞).21.(2020•上海)设a∈R,若存在定义域为R的函数f(x)同时满⾜下列两个条件:(1)对任意的x0∈R,f(x0)的值为x0或x02;(2)关于x的⽅程f(x)=a⽆实数解,则a的取值范围是(﹣∞,0)∪(0,1)∪(1,+∞).【解答】解:根据条件(1)可得f(0)=0或f(1)=1,⼜因为关于x的⽅程f(x)=a⽆实数解,所以a≠0或1,故a∈(﹣∞,0)∪(0,1)∪(1,+∞),故答案为:(﹣∞,0)∪(0,1)∪(1,+∞).三.解答题(共3⼩题)22.(2020•上海)已知⾮空集合A⊆R,函数y=f(x)的定义域为D,若对任意t∈A且x∈D,不等式f(x)≤f(x+t)恒成⽴,则称函数f(x)具有A性质.(1)当A={﹣1},判断f(x)=﹣x、g(x)=2x是否具有A性质;(2)当A=(0,1),f(x)=x+,x∈[a,+∞),若f(x)具有A性质,求a的取值范围;(3)当A={﹣2,m},m∈Z,若D为整数集且具有A性质的函数均为常值函数,求所有符合条件的m的值.【解答】解:(1)∵f(x)=﹣x为减函数,∴f(x)<f(x﹣1),∴f(x)=﹣x具有A性质;∵g(x)=2x为增函数,∴g(x)>g(x﹣1),∴g(x)=2x不具有A性质;(2)依题意,对任意t∈(0,1),f(x)≤f(x+t)恒成⽴,∴为增函数(不可能为常值函数),由双勾函数的图象及性质可得a≥1,当a≥1时,函数单调递增,满⾜对任意t∈(0,1),f(x)≤f(x+t)恒成⽴,综上,实数a的取值范围为[1,+∞).(3)∵D为整数集,具有A性质的函数均为常值函数,∴当t=﹣2,f(x)=f(x﹣2)恒成⽴,即f(2k)=p(k∈Z),f(2n﹣1)=q(n∈Z),由题意,p=q,则f(2k)=f(2n﹣1),当x=2k,f(x)=f(x+2n﹣2k﹣1),∴m=2n﹣2k﹣1(n,k∈Z),当x=2n﹣1,f(x)=f(x+2k﹣2n+1),∴m=2k﹣2n+1(n,k∈Z),综上,m为奇数.23.(2020•上海)在研究某市场交通情况时,道路密度是指该路段上⼀定时间内通过的⻋辆数除以时间,⻋辆密度是该路段⼀定时间内通过的⻋辆数除以该路段的⻓度,现定义交通流量为v=,x为道路密度,q为⻋辆密度.v=f(x)=.(1)若交通流量v>95,求道路密度x的取值范围;(2)已知道路密度x=80,交通流量v=50,求⻋辆密度q的最⼤值.【解答】解:(1)∵v=,∴v越⼤,x越⼩,∴v=f(x)是单调递减函数,k>0,当40≤x≤80时,v最⼤为85,于是只需令,解得x>3,故道路密度x的取值范围为(3,40).(2)把x=80,v=50代⼊v=f(x)=﹣k(x﹣40)+85中,得50=﹣k•40+85,解得k=.∴q=vx=,①当0<x<40时,令y=,则y'=,若0<x<<1,则y'>0,y单调递增,由于y>0,所以q=100x﹣135•<100;若<x<40,则y'<0,y单调递减,此时有q单调递增,所以q<100×40﹣135×≈4000>100.②当40≤x≤80时,q是关于x的⼆次函数,开⼝向下,对称轴为x=,此时q有最⼤值,为>4000.综上所述,⻋辆密度q的最⼤值为.24.(2020•上海)有⼀条⻓为120⽶的步⾏道OA,A是垃圾投放点ω1,若以O为原点,OA 为x轴正半轴建⽴直⻆坐标系,设点B(x,0),现要建设另⼀座垃圾投放点ω2(t,0),函数f t(x)表示与B点距离最近的垃圾投放点的距离.(1)若t=60,求f60(10)、f60(80)、f60(95)的值,并写出f60(x)的函数解析式;(2)若可以通过f t(x)与坐标轴围成的⾯积来测算扔垃圾的便利程度,⾯积越⼩越便利.问:垃圾投放点ω2建在何处才能⽐建在中点时更加便利?【解答】解:(1)投放点ω1(120,0),ω2(60,0),f60(10)表示与B(10,0)距离最近的投放点(即ω2)的距离,所以f60(10)=|60﹣10|=50,同理分析,f60(80)=|60﹣80|=20,f60(95)=|120﹣95|=25,由题意得,f60(x)={|60﹣x|,|120﹣x|}min,则当|60﹣x|≤|120﹣x|,即x≤90时,f60(x)=|60﹣x|;当|60﹣x|>|120﹣x|,即x>90时,f60(x)=|120﹣x|;综上f60(x)=;(2)由题意得f t(x)={|t﹣x|,|120﹣x|}min,所以f t(x)=,则f t(x)与坐标轴围成的⾯积如阴影部分所示,所以S=t2+=t2﹣60t+3600,由题意,S<S(60),即t2﹣60t+3600<2700,解得20<t<60,即垃圾投放点ω2建在(20,0)与(60,0)之间时,⽐建在中点时更加便利.考点卡⽚1.函数的定义域及其求法【知识点的认识】函数的定义域就是使函数有意义的⾃变量的取值范围.求解函数定义域的常规⽅法:①分⺟不等于零;②根式(开偶次⽅)被开⽅式≥0;③对数的真数⼤于零,以及对数底数⼤于零且不等于1;④指数为零时,底数不为零.⑤实际问题中函数的定义域;【解题⽅法点拨】求函数定义域,⼀般归结为解不等式组或混合组.(1)当函数是由解析式给出时,其定义域是使解析式有意义的⾃变量的取值集合.(2)当函数是由实际问题给出时,其定义域的确定不仅要考虑解析式有意义,还要有实际意义(如⻓度、⾯积必须⼤于零、⼈数必须为⾃然数等).(3)若⼀函数解析式是由⼏个函数经四则运算得到的,则函数定义域应是同时使这⼏个函数有意义的不等式组的解集.若函数定义域为空集,则函数不存在.(4)抽象函数的定义域:①对在同⼀对应法则f下的量“x”“x+a”“x﹣a”所要满⾜的范围是⼀样的;②函数g (x)中的⾃变量是x,所以求g(x)的定义域应求g(x)中的x的范围.【命题⽅向】⾼考会考中多以⼩题形式出现,也可以是⼤题中的⼀⼩题.2.函数的图象与图象的变换【函数图象的作法】函数图象的作法:通过如下3个步骤(1)列表;(2)描点;(3)连线.解题⽅法点拨:⼀般情况下,函数需要同解变形后,结合函数的定义域,通过函数的对应法则,列出表格,然后在直⻆坐标系中,准确描点,然后连线(平滑曲线).命题⽅向:⼀般考试是以⼩题形式出现,或⼤题中的⼀问,常⻅考题是,常⻅函数的图象,有时结合函数的奇偶性、对称性、单调性知识结合命题.【图象的变换】1.利⽤描点法作函数图象其基本步骤是列表、描点、连线.⾸先:①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性、对称性等).其次:列表(尤其注意特殊点、零点、最⼤值点、最⼩值点、与坐标轴的交点等),描点,连线.2.利⽤图象变换法作函数的图象(1)平移变换:y=f(x)a>0,右移a个单位(a<0,左移|a|个单位) y=f(x﹣a);y=f(x)b>0,上移b个单位(b<0,下移|b|个单位) y=f(x)+b.(2)伸缩变换:y=f(x)y=f(ωx);y=f(x)A>1,伸为原来的A倍(0<A<1,缩为原来的A倍) y=Af(x).(3)对称变换:y=f(x)关于x轴对称 y=﹣f(x);y=f(x)关于y轴对称 y=f(﹣x);y=f(x)关于原点对称 y=﹣f(﹣x).(4)翻折变换:y=f(x)去掉y轴左边图,保留y轴右边图,将y轴右边的图象翻折到左边 y=f(|x|);y=f(x)留下x轴上⽅图将x轴下⽅图翻折上去y=|f(x)|.解题⽅法点拨1、画函数图象的⼀般⽅法(1)直接法:当函数表达式(或变形后的表达式)是熟悉的基本函数或解析⼏何中熟悉的曲线时,可根据这些函数或曲线的特征直接作出.(2)图象变换法:若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利⽤图象变换作出,但要注意变换顺序,对不能直接找到熟悉函数的要先变形,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.(3)描点法:当上⾯两种⽅法都失效时,则可采⽤描点法.为了通过描少量点,就能得到⽐较准确的图象,常常需要结合函数的单调性、奇偶性等性质讨论.2、寻找图象与函数解析式之间的对应关系的⽅法(1)知图选式:①从图象的左右、上下分布,观察函数的定义域、值域;②从图象的变化趋势,观察函数的单调性;③从图象的对称性⽅⾯,观察函数的奇偶性;④从图象的循环往复,观察函数的周期性.利⽤上述⽅法,排除错误选项,筛选正确的选项.(2)知式选图:①从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;②从函数的单调性,判断图象的变化趋势;③从函数的奇偶性,判断图象的对称性.④从函数的周期性,判断图象的循环往复.利⽤上述⽅法,排除错误选项,筛选正确选项.注意联系基本函数图象和模型,当选项⽆法排除时,代特殊值,或从某些量上寻找突破⼝.3、(1)利有函数的图象研究函数的性质从图象的最⾼点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的⾛向趋势,分析函数的单调性、周期性等.(2)利⽤函数的图象研究⽅程根的个数有关⽅程解的个数问题常常转化为两个熟悉的函数的交点个数;利⽤此法也可由解的个数求参数值.4、⽅法归纳:(1)1个易错点﹣﹣图象变换中的易错点在解决函数图象的变换问题时,要遵循“只能对函数关系式中的x,y变换”的原则,写出每⼀次的变换所得图象对应的解析式,这样才能避免出错.(2)3个关键点﹣﹣正确作出函数图象的三个关键点为了正确地作出函数图象,必须做到以下三点:①正确求出函数的定义域;②熟练掌握⼏种基本函数的图象,如⼆次函数、反⽐例函数、指数函数、对数函数、幂函数、形如y=x+的函数;③掌握平移变换、伸缩变换、对称变换、翻折变换、周期变换等常⽤的⽅法技巧,来帮助我们简化作图过程.(3)3种⽅法﹣﹣识图的⽅法对于给定函数的图象,要能从图象的左右、上下分布范围、变化趋势、对称性等⽅⾯来获取图中所提供的信息,解决这类问题的常⽤⽅法有:①定性分析法,也就是通过对问题进⾏定性的分析,从⽽得出图象的上升(或下降)的趋势,利⽤这⼀特征来分析解决问题;②定量计算法,也就是通过定量的计算来分析解决问题;③函数模型法,也就是由所提供的图象特征,联想相关函数模型,利⽤这⼀函数模型来分析解决问题.3.函数单调性的性质与判断【知识点的认识】⼀般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个⾃变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数;当x1>x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是减函数.若函数f(x)在区间D上是增函数或减函数,则称函数f(x)在这⼀区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.【解题⽅法点拨】证明函数的单调性⽤定义法的步骤:①取值;②作差;③变形;④确定符号;⑤下结论.利⽤函数的导数证明函数单调性的步骤:第⼀步:求函数的定义域.若题设中有对数函数⼀定先求定义域,若题设中有三次函数、指数函数可不考虑定义域.第⼆步:求函数f(x)的导数f′(x),并令f′(x)=0,求其根.第三步:利⽤f′(x)=0的根和不可导点的x的值从⼩到⼤顺次将定义域分成若⼲个⼩开区间,并列表.第四步:由f′(x)在⼩开区间内的正、负值判断f(x)在⼩开区间内的单调性;求极值、最值.第五步:将不等式恒成⽴问题转化为f(x)max≤a或f(x)min≥a,解不等式求参数的取值范围.第六步:明确规范地表述结论【命题⽅向】从近三年的⾼考试题来看,函数单调性的判断和应⽤以及函数的最值问题是⾼考的热点,题型既有选择题、填空题,⼜有解答题,难度中等偏⾼;客观题主要考查函数的单调性、最值的灵活确定与简单应⽤,主观题在考查基本概念、重要⽅法的基础上,⼜注重考查函数⽅程、等价转化、数形结合、分类讨论的思想⽅法.预测明年⾼考仍将以利⽤导数求函数的单调区间,研究单调性及利⽤单调性求最值或求参数的取值范围为主要考点,重点考查转化与化归思想及逻辑推理能⼒.4.复合函数的单调性【知识点的认识】所谓复合函数就是由两个或两个以上的基本函数构成,这种函数先要考虑基本函数的单调性,然后再考虑整体的单调性.平常常⻅的⼀般以两个函数的为主.【解题⽅法点拨】求复合函数y=f(g(x))的单调区间的步骤:(1)确定定义域;(2)将复合函数分解成两个基本初等函数;(3)分别确定两基本初等函数的单调性;(4)按“同增异减”的原则,确定原函数的单调区间.【命题⽅向】理解复合函数的概念,会求复合函数的区间并判断函数的单调性.5.函数奇偶性的性质与判断【知识点的认识】①如果函数f(x)的定义域关于原点对称,且定义域内任意⼀个x,都有f(﹣x)=﹣f(x),那么函数f(x)就叫做奇函数,其图象特点是关于(0,0)对称.②如果函数f(x)的定义域关于原点对称,且定义域内任意⼀个x,都有f(﹣x)=f(x),那么函数f(x)就叫做偶函数,其图象特点是关于y轴对称.【解题⽅法点拨】①奇函数:如果函数定义域包括原点,那么运⽤f(0)=0解相关的未知量;②奇函数:若定义域不包括原点,那么运⽤f(x)=﹣f(﹣x)解相关参数;③偶函数:在定义域内⼀般是⽤f(x)=f(﹣x)这个去求解;④对于奇函数,定义域关于原点对称的部分其单调性⼀致,⽽偶函数的单调性相反.例题:函数y=x|x|+px,x∈R是()A.偶函数B.奇函数C.⾮奇⾮偶D.与p有关解:由题设知f(x)的定义域为R,关于原点对称.因为f(﹣x)=﹣x|﹣x|﹣px=﹣x|x|﹣px=﹣f(x),所以f(x)是奇函数.故选B.【命题⽅向】函数奇偶性的应⽤.本知识点是⾼考的⾼频率考点,⼤家要熟悉就函数的性质,最好是结合其图象⼀起分析,确保答题的正确率.6.奇偶性与单调性的综合【知识点的认识】对于奇偶函数综合,其实也并谈不上真正的综合,⼀般情况下也就是把它们并列在⼀起,所以说关键还是要掌握奇函数和偶函数各⾃的性质,在做题时能融会贯通,灵活运⽤.在重复⼀下它们的性质①奇函数f(x)的定义域关于原点对称,且定义域内任意⼀个x,都有f(﹣x)=﹣f(x),其图象特点是关于(0,0)对称.②偶函数f(x)的定义域关于原点对称,且定义域内任意⼀个x,都有f(﹣x)=f(x),其图象特点是关于y轴对称.【解题⽅法点拨】参照奇偶函数的性质那⼀考点,有:①奇函数:如果函数定义域包括原点,那么运⽤f(0)=0解相关的未知量;②奇函数:若定义域不包括原点,那么运⽤f(x)=﹣f(﹣x)解相关参数;③偶函数:在定义域内⼀般是⽤f(x)=f(﹣x)这个去求解;④对于奇函数,定义域关于原点对称的部分其单调性⼀致,⽽偶函数的单调性相反例题:如果f(x)=为奇函数,那么a=.解:由题意可知,f(x)的定义域为R,由奇函数的性质可知,f(x)==﹣f(﹣x) a=1【命题⽅向】奇偶性与单调性的综合.不管出什么样的题,能理解运⽤奇偶函数的性质是⼀个基本前提,另外做题的时候多多总结,⼀定要重视这⼀个知识点.7.抽象函数及其应⽤【知识点的认识】抽象函数是指没有给出函数的具体解析式,只给出了⼀些体现函数特征的式⼦的⼀类函数.由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之⼀.【解题⽅法点拨】①尽可能把抽象函数与我们数学的具体模型联系起来,如f (x +y )=f (x )+f (y ),它的原型就是y =kx ;②可通过赋特殊值法使问题得以解决例:f (xy )=f (x )+f (y ),求证f (1)=f (﹣1)=0令x =y =1,则f (1)=2f (1) f (1)=0令x =y =﹣1,同理可推出f (﹣1)=0③既然是函数,也可以运⽤相关的函数性质推断它的单调性;【命题⽅向】抽象函数及其应⽤.抽象函数是⼀个重点,也是⼀个难点,解题的主要⽅法也就是我上⾯提到的这两种.⾼考中⼀般以中档题和⼩题为主,要引起重视.8.指数函数的图象与性质【知识点的认识】1、指数函数y =a x (a >0,且a ≠1)的图象和性质:y =a xa >10<a <1图象定义域R 值域(0,+∞)性质过定点(0,1)当x >0时,y >1;x <0时,0<y <1当x >0时,0<y <1;x <0时,y >1在R上是增函数在R上是减函数2、底数对指数函数的影响:①在同⼀坐标系内分别作函数的图象,易看出:当a>l时,底数越⼤,函数图象在第⼀象限越靠近y轴;同样地,当0<a<l时,底数越⼩,函数图象在第⼀象限越靠近x轴.②底数对函数值的影响如图.③当a>0,且a≠l时,函数y=a x与函数y=的图象关于y轴对称.3、利⽤指数函数的性质⽐较⼤⼩:若底数相同⽽指数不同,⽤指数函数的单调性⽐较:若底数不同⽽指数相同,⽤作商法⽐较;若底数、指数均不同,借助中间量,同时要注意结合图象及特殊值.9.对数的运算性质【知识点的认识】对数的性质:①=N;②log a a N=N(a>0且a≠1).log a(MN)=log a M+log a N;log a=log a M﹣log a N;log a M n=n log a M;log a=log a M.10.对数值⼤⼩的⽐较【知识点归纳】1、若两对数的底数相同,真数不同,则利⽤对数函数的单调性来⽐较.2、若两对数的底数和真数均不相同,通常引⼊中间变量(1,﹣1,0)进⾏⽐较3、若两对数的底数不同,真数也不同,则利⽤函数图象或利⽤换底公式化为同底的再进⾏⽐较.(画图的⽅法:在第⼀象限内,函数图象的底数由左到右逐渐增⼤)11.对数函数的图象与性质【知识点归纳】12.反函数【知识点归纳】【定义】⼀般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y的关系,⽤y 把x表示出,得到x=g(y).若对于y在中的任何⼀个值,通过x=g(y),x在A中都有唯⼀的值和它对应,那么,x=g(y)就表示y是⾃变量,x是因变量是y的函数,这样的函数y=g(x)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f(﹣1)(x)反函数y=f(﹣1)(x)的定义域、值域分别是函数y=f(x)的值域、定义域.【性质】反函数其实就是y=f(x)中,x和y互换了⻆⾊(1)函数f(x)与他的反函数f﹣1(x)图象关于直线y=x对称;函数及其反函数的图形关于直线y=x对称(2)函数存在反函数的重要条件是,函数的定义域与值域是⼀⼀映射;(3)⼀个函数与它的反函数在相应区间上单调性⼀致;(4)⼤部分偶函数不存在反函数(当函数y=f(x),定义域是{0}且f(x)=C(其中C。

2020高考真题数学分类汇编—集合、常用逻辑用语含答案

2020高考真题数学分类汇编—集合、常用逻辑用语含答案

2020高考真题数学分类汇编—集合、常用逻辑用语一、选择题(共19小题)1.(2020•天津)设全集{3U =-,2-,1-,0,1,2,3},集合{1A =-,0,1,2},{3B =-,0,2,3},则()(U A B =⋂ )A .{3-,3}B .{0,2}C .{1-,1}D .{3-,2-,1-,1,3 }2.(2020•北京)已知集合{1A =-,0,1,2},{|03}B x x =<<,则(A B = )A .{1-,0,1}B .{0,1}C .{1-,1,2}D .{1,2}3.(2020•山东)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( )A .62%B .56%C .46%D .42%4.(2020•新课标Ⅲ)已知集合{(,)|A x y x =,*y N ∈,}y x ,{(,)|8}B x y x y =+=,则AB 中元素的个数为()A .2B .3C .4D .65.(2020•新课标Ⅲ)已知集合{1A =,2,3,5,7,11},{|315}B x x =<<,则A B 中元素的个数为( )A .2B .3C .4D .5 6.(2020•浙江)已知集合{|14}P x x =<<,{|23}Q x x =<<,则(P Q = )A .{|12}x x <B .{|23}x x <<C .{|34}x x <D .{|14}x x <<7.(2020•新课标Ⅲ)已知集合{|||3A x x =<,}x Z ∈,{|||1B x x =>,}x Z ∈,则(A B = )A .∅B .{3-,2-,2,3}C .{2-,0,2}D .{2-,2}8.(2020•新课标Ⅲ)已知集合2{|340}A x x x =--<,{4B =-,1,3,5},则(A B = )A .{4-,1}B .{1,5}C .{3,5}D .{1,3} 9.(2020•山东)设集合{|13}A x x =,{|24}B x x =<<,则(A B = )A .{|23}x x <B .{|23}x xC .{|14}x x <D .{|14}x x <<10.(2020•新课标Ⅲ)设集合2{|40}A x x =-,{|20}B x x a =+,且{|21}A B x x =-,则(a = )A .4-B .2-C .2D .411.(2020•新课标Ⅲ)已知集合{2U =-,1-,0,1,2,3},{1A =-,0,1},{1B =,2},则()(UA B =)A .{2-,3}B .{2-,2,3)C .{2-,1-,0,3}D .{2-,1-,0,2,3}12.(2020•天津)设a R ∈,则“1a >”是“2a a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件13.(2020•天津)已知函数()sin()3f x x π=+.给出下列结论:①()f x 的最小正周期为2π; ②()2f π是()f x 的最大值;③把函数sin y x =的图象上的所有点向左平移3π个单位长度,可得到函数()y f x =的图象. 其中所有正确结论的序号是( ) A .①B .①③C .②③D .①②③14.(2020•上海)命题p :存在a R ∈且0a ≠,对于任意的x R ∈,使得()()f x a f x f +<+(a );命题1:()q f x 单调递减且()0f x >恒成立;命题2:()q f x 单调递增,存在00x <使得0()0f x =, 则下列说法正确的是( ) A .只有1q 是p 的充分条件 B .只有2q 是p 的充分条件C .1q ,2q 都是p 的充分条件D .1q ,2q 都不是p 的充分条件15.(2020•北京)已知α,R β∈,则“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件16.(2020•浙江)设集合S ,T ,*S N ⊆,*T N ⊆,S ,T 中至少有2个元素,且S ,T 满足:①对于任意的x ,y S ∈,若x y ≠,则xy T ∈; ②对于任意的x ,y T ∈,若x y <,则yS x∈.下列命题正确的是( ) A .若S 有4个元素,则S T 有7个元素 B .若S 有4个元素,则S T 有6个元素 C .若S 有3个元素,则S T 有5个元素 D .若S 有3个元素,则ST 有4个元素17.(2020•新课标Ⅲ)已知函数1()sin sin f x x x=+,则( ) A .()f x 的最小值为2B .()f x 的图象关于y 轴对称C .()f x 的图象关于直线x π=对称D .()f x 的图象关于直线2x π=对称18.(2020•浙江)已知空间中不过同一点的三条直线l ,m ,n .则“l ,m ,n 共面”是“l ,m ,n 两两相交”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件19.(2020•上海)“αβ=”是“22sin cos 1αβ+=”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分又非必要条件二.多选题(共1小题)20.(2020•山东)信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,⋯,n ,且()0(1i P X i p i ==>=,2,⋯,)n ,11ni i p ==∑,定义X 的信息熵21()log ni i i H X p p ==-∑.( )A .若1n =,则()0H X =B .若2n =,则()H X 随着1p 的增大而增大C .若1(1i p i n==,2,⋯,)n ,则()H X 随着n 的增大而增大D .若2n m =,随机变量Y 所有可能的取值为1,2,⋯,m ,且21()(1j m j P Y j p p j +-==+=,2,⋯,)m ,则()()H X H Y三.填空题(共5小题)21.(2020•上海)已知集合{1A =,2,4},集合{2B =,4,5},则A B = . 22.(2020•江苏)已知集合{1A =-,0,1,2},{0B =,2,3},则AB = .23.(2020•上海)集合{1A =,3},{1B =,2,}a ,若A B ⊆,则a = . 24.(2020•新课标Ⅲ)关于函数1()sin sin f x x x=+有如下四个命题: ①()f x 的图象关于y 轴对称. ②()f x 的图象关于原点对称. ③()f x 的图象关于直线2x π=对称.④()f x 的最小值为2. 其中所有真命题的序号是 . 25.(2020•新课标Ⅲ)设有下列四个命题:1p :两两相交且不过同一点的三条直线必在同一平面内.2p :过空间中任意三点有且仅有一个平面. 3p :若空间两条直线不相交,则这两条直线平行. 4p :若直线l ⊂平面α,直线m ⊥平面α,则m l ⊥.则下述命题中所有真命题的序号是 . ①14p p ∧ ②12p p ∧ ③23p p ⌝∨④34p p ⌝∨⌝2020高考真题数学分类汇编—集合、常用逻辑用语参考答案一、选择题(共19小题)1.(2020•天津)设全集{3U =-,2-,1-,0,1,2,3},集合{1A =-,0,1,2},{3B =-,0,2,3},则()(U A B =⋂ )A .{3-,3}B .{0,2}C .{1-,1}D .{3-,2-,1-,1,3 }【解答】解:全集{3U =-,2-,1-,0,1,2,3},集合{1A =-,0,1,2},{3B =-,0,2,3}, 则{2UB =-,1-,1},(){1U A B ∴=-⋂,1},故选:C .2.(2020•北京)已知集合{1A =-,0,1,2},{|03}B x x =<<,则(AB = )A .{1-,0,1}B .{0,1}C .{1-,1,2}D .{1,2} 【解答】解:集合{1A =-,0,1,2},{|03}B x x =<<,则{1A B =,2},故选:D .3.(2020•山东)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( )A .62%B .56%C .46%D .42%【解答】解:设只喜欢足球的百分比为x ,只喜欢游泳的百分比为y ,两个项目都喜欢的百分比为z ,由题意,可得60x z +=,96x y z ++=,82y z +=,解得46z =. ∴该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是46%.故选:C .4.(2020•新课标Ⅲ)已知集合{(,)|A x y x =,*y N ∈,}y x ,{(,)|8}B x y x y =+=,则AB 中元素的个数为()A .2B .3C .4D .6【解答】解:集合{(,)|A x y x =,*y N ∈,}y x ,{(,)|8}B x y x y =+=, {(A B x ∴=,*)|,}{(1,7)8,y xy x y N x y ⎧∈=⎨+=⎩,(2,6),(3,5),(4,4)}. AB ∴中元素的个数为4.故选:C .5.(2020•新课标Ⅲ)已知集合{1A =,2,3,5,7,11},{|315}B x x =<<,则AB 中元素的个数为( )A .2B .3C .4D .5【解答】解:集合{1A =,2,3,5,7,11},{|315)B x x =<<, {5A B ∴=,7,11}, AB ∴中元素的个数为3.故选:B .6.(2020•浙江)已知集合{|14}P x x =<<,{|23}Q x x =<<,则(PQ = )A .{|12}x x <B .{|23}x x <<C .{|34}x x <D .{|14}x x <<【解答】解:集合{|14}P x x =<<,{|23}Q x x =<<, 则{|23}PQ x x =<<.故选:B .7.(2020•新课标Ⅲ)已知集合{|||3A x x =<,}x Z ∈,{|||1B x x =>,}x Z ∈,则(AB = )A .∅B .{3-,2-,2,3}C .{2-,0,2}D .{2-,2}【解答】解:集合{|||3A x x =<,}{|33x Z x x ∈=-<<,}{2x Z ∈=-,1-,1,2}, {|||1B x x =>,}{|1x Z x x ∈=<-或1x >,}x Z ∈,{2A B ∴=-,2}.故选:D .8.(2020•新课标Ⅲ)已知集合2{|340}A x x x =--<,{4B =-,1,3,5},则(AB = )A .{4-,1}B .{1,5}C .{3,5}D .{1,3}【解答】解:集合2{|340}(1,4)A x x x =--<=-,{4B =-,1,3,5}, 则{1AB =,3},故选:D .9.(2020•山东)设集合{|13}A x x =,{|24}B x x =<<,则(AB = )A .{|23}x x <B .{|23}x xC .{|14}x x <D .{|14}x x <<【解答】解:集合{|13}A x x =,{|24}B x x =<<, {|14}AB x x ∴=<.故选:C .10.(2020•新课标Ⅲ)设集合2{|40}A x x =-,{|20}B x x a =+,且{|21}AB x x =-,则(a = )A .4-B .2-C .2D .4【解答】解:集合2{|40}{|22}A x x x x =-=-,1{|20}{|}2B x x a x x a =+=-,由{|21}AB x x =-,可得112a -=,则2a =-. 故选:B .11.(2020•新课标Ⅲ)已知集合{2U =-,1-,0,1,2,3},{1A =-,0,1},{1B =,2},则()(UA B =)A .{2-,3}B .{2-,2,3)C .{2-,1-,0,3}D .{2-,1-,0,2,3}【解答】解:集合{2U =-,1-,0,1,2,3},{1A =-,0,1},{1B =,2}, 则{1A B =-,0,1,2}, 则(){2UAB =-,3},故选:A .12.(2020•天津)设a R ∈,则“1a >”是“2a a >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解答】解:由2a a >,解得0a <或1a >, 故1a >”是“2a a >”的充分不必要条件, 故选:A .13.(2020•天津)已知函数()sin()3f x x π=+.给出下列结论:①()f x 的最小正周期为2π; ②()2f π是()f x 的最大值;③把函数sin y x =的图象上的所有点向左平移3π个单位长度,可得到函数()y f x =的图象. 其中所有正确结论的序号是( ) A .①B .①③C .②③D .①②③【解答】解:因为()sin()3f x x π=+,①由周期公式可得,()f x 的最小正周期2T π=,故①正确;②51()sin()sin 22362f ππππ=+==,不是()f x 的最大值,故②错误;③根据函数图象的平移法则可得,函数sin y x =的图象上的所有点向左平移3π个单位长度,可得到函数()y f x =的图象,故③正确.故选:B .14.(2020•上海)命题p :存在a R ∈且0a ≠,对于任意的x R ∈,使得()()f x a f x f +<+(a );命题1:()q f x 单调递减且()0f x >恒成立;命题2:()q f x 单调递增,存在00x <使得0()0f x =, 则下列说法正确的是( ) A .只有1q 是p 的充分条件 B .只有2q 是p 的充分条件C .1q ,2q 都是p 的充分条件D .1q ,2q 都不是p 的充分条件【解答】解:对于命题1q :当()f x 单调递减且()0f x >恒成立时, 当0a >时,此时x a x +>, 又因为()f x 单调递减, 所以()()f x a f x +< 又因为()0f x >恒成立时, 所以()()f x f x f <+(a ), 所以()()f x a f x f +<+(a ), 所以命题1q ⇒命题p ,对于命题2q :当()f x 单调递增,存在00x <使得0()0f x =, 当00a x =<时,此时x a x +<,f (a )0()0f x ==, 又因为()f x 单调递增, 所以()()f x a f x +<, 所以()()f x a f x f +<+(a ), 所以命题2p ⇒命题p , 所以1q ,2q 都是p 的充分条件, 故选:C .15.(2020•北京)已知α,R β∈,则“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解答】解:当2k n =,为偶数时,2n απβ=+,此时sin sin(2)sin n απββ=+=, 当21k n =+,为奇数时,2n αππβ=+-,此时sin sin()sin απββ=-=,即充分性成立,当sin sin αβ=,则2n απβ=+,n Z ∈或2n αππβ=+-,n Z ∈,即(1)k k απβ=+-,即必要性成立, 则“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的充要条件, 故选:C .16.(2020•浙江)设集合S ,T ,*S N ⊆,*T N ⊆,S ,T 中至少有2个元素,且S ,T 满足:①对于任意的x ,y S ∈,若x y ≠,则xy T ∈; ②对于任意的x ,y T ∈,若x y <,则yS x∈.下列命题正确的是( ) A .若S 有4个元素,则S T 有7个元素 B .若S 有4个元素,则ST 有6个元素C .若S 有3个元素,则S T 有5个元素D .若S 有3个元素,则ST 有4个元素【解答】解:取:{1S =,2,4},则{2T =,4,8},{1S T =,2,4,8},4个元素,排除C .{2S =,4,8},则{8T =,16,32},{2ST =,4,8,16,32},5个元素,排除D ;{2S =,4,8,16}则{8T =,16,32,64,128},{2ST =,4,8,16,32,64,128},7个元素,排除B ;故选:A .17.(2020•新课标Ⅲ)已知函数1()sin sin f x x x=+,则( ) A .()f x 的最小值为2B .()f x 的图象关于y 轴对称C .()f x 的图象关于直线x π=对称D .()f x 的图象关于直线2x π=对称【解答】解:由sin 0x ≠可得函数的定义域为{|x x k π≠,}k Z ∈,故定义域关于原点对称;设sin x t =,则1()y f x t t ==+,[1t ∈-,1],由双勾函数的图象和性质得,2y 或2y -,故A 错误;又有11()sin()(sin )()sin()sin f x x x f x x x-=-+=-+=--,故()f x 是奇函数,且定义域关于原点对称,故图象关于原点中心对称;故B 错误; 11()sin()sin sin()sin f x x x x xπππ+=++=--+;11()sin()sin sin()sin f x x x x xπππ-=-+=+-,故()()f x f x ππ+≠-,()f x 的图象不关于直线x π=对称,C 错误;又11()sin()cos 22cos sin()2f x x x xx πππ+=++=++;11()sin()cos 22cos sin()2f x x x xx πππ-=-+=+-,故()()22f x f x ππ+=-,定义域为{|x x k π≠,}k Z ∈,()f x 的图象关于直线2x π=对称;D 正确;故选:D .18.(2020•浙江)已知空间中不过同一点的三条直线l ,m ,n .则“l ,m ,n 共面”是“l ,m ,n 两两相交”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【解答】解:空间中不过同一点的三条直线m ,n ,l ,若m ,n ,l 在同一平面,则m ,n ,l 相交或m ,n ,l 有两个平行,另一直线与之相交,或三条直线两两平行.而若“m ,n ,l 两两相交”,则“m ,n ,l 在同一平面”成立. 故m ,n ,l 在同一平面”是“m ,n ,l 两两相交”的必要不充分条件, 故选:B .19.(2020•上海)“αβ=”是“22sin cos 1αβ+=”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件【解答】解:(1)若αβ=,则2222sin cos sin cos 1αβαα+=+=, ∴ “αβ= “是“22sin cos 1αβ+= “的充分条件;(2)若22sin cos 1αβ+=,则22sin sin αβ=,得不出αβ=, ∴ “αβ=”不是“22sin cos 1αβ+=”的必要条件, ∴ “αβ=”是“22sin cos 1αβ+=”的充分非必要条件.故选:A .二.多选题(共1小题)20.(2020•山东)信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,⋯,n ,且()0(1i P X i p i ==>=,2,⋯,)n ,11ni i p ==∑,定义X 的信息熵21()log ni i i H X p p ==-∑.( )A .若1n =,则()0H X =B .若2n =,则()H X 随着1p 的增大而增大C .若1(1i p i n==,2,⋯,)n ,则()H X 随着n 的增大而增大D .若2n m =,随机变量Y 所有可能的取值为1,2,⋯,m ,且21()(1j m j P Y j p p j +-==+=,2,⋯,)m ,则()()H X H Y【解答】解:A .若1n =,则11P =,故1212()log 1log 10H x p p =-=-⨯=,故A 正确;B .若2n =,则121p p +=,121222121121()(log log )[log (1)log (1)]H x p p p p p p p p =-+=-+--,设22()[log (1)log (1)]f p p p p p =-+--,01p <<, 则22211()[(1)(1)]2(1)21pf p log p p log p p log ln p p ln p-'=-+--+-=---, 令()0f p '<,解得112p <<,此时函数()f p 单调递减, 令()0f p '>,解得102p <<,此时函数()f p 单调递增,故B 错误; C .若1(1,2,,)i P i n n ==⋯,则2211()H x n log log n n n=-=, 由对数函数的单调性可知,()H x 随着n 的增大而增大,故C 正确;D .依题意知,12(1)m P Y p p ==+,221(2)m P Y p p -==+,322(3)m P Y p p -==+,⋯,1()m m P Y m p p +==+,122122212221()[()log ()()log ()m m m m H Y p p p p p p p p --∴=-+++++ 121()log ()]m m m m p p p p +++⋯+++,又1212222222()(log log log log )m m m m H X p p p p p p p p =-++⋯++⋯+, ∴2121222221222112()()m m m m m p p p H Y H X p log p log p log p p p p p p --=++⋯++++, 又21212221121,1,,1m m m mp p p p p p p p p -<<⋯<+++, ()()0H Y H X ∴-<,()()H X H Y ∴>,故D 错误.故选:AC .三.填空题(共5小题)21.(2020•上海)已知集合{1A =,2,4},集合{2B =,4,5},则AB = {2,4} .【解答】解:因为{1A =,2,3},{2B =,4,5},则{2A B =,4}. 故答案为:{2,4}.22.(2020•江苏)已知集合{1A =-,0,1,2},{0B =,2,3},则AB = {0,2} .【解答】解:集合{0B =,2,3},{1A =-,0,1,2},则{0A B =,2}, 故答案为:{0,2}.23.(2020•上海)集合{1A =,3},{1B =,2,}a ,若A B ⊆,则a = 3 .【解答】解:3A ∈,且A B ⊆,3B ∴∈,3a ∴=,故答案为:3.24.(2020•新课标Ⅲ)关于函数1()sin sin f x x x =+有如下四个命题: ①()f x 的图象关于y 轴对称.②()f x 的图象关于原点对称.③()f x 的图象关于直线2x π=对称.④()f x 的最小值为2.其中所有真命题的序号是 ②③ .【解答】解:对于①,由sin 0x ≠可得函数的定义域为{|x x k π≠,}k Z ∈,故定义域关于原点对称,由11()sin()sin ()sin()sin f x x x f x x x -=-+=--=--; 所以该函数为奇函数,关于原点对称,所以①错②对; 对于③,由11()sin()sin ()sin()sin f x x x f x x x πππ-=-+=+=-,所以该函数()f x 关于2x π=对称,③对; 对于④,令sin t x =,则[1t ∈-,0)(0⋃,1],由双勾函数1()g t t t =+的性质,可知,1()(g t t t=+∈-∞,2][2-,)+∞,所以()f x 无最小值,④错;故答案为:②③.25.(2020•新课标Ⅲ)设有下列四个命题:1p :两两相交且不过同一点的三条直线必在同一平面内.2p :过空间中任意三点有且仅有一个平面.3p :若空间两条直线不相交,则这两条直线平行.4p :若直线l ⊂平面α,直线m ⊥平面α,则m l ⊥.则下述命题中所有真命题的序号是 ①③④ .①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【解答】解:设有下列四个命题:1p :两两相交且不过同一点的三条直线必在同一平面内.根据平面的确定定理可得此命题为真命题,2p :过空间中任意三点有且仅有一个平面.若三点在一条直线上则有无数平面,此命题为假命题,3p :若空间两条直线不相交,则这两条直线平行,也有可能异面的情况,此命题为假命题,4p :若直线l ⊂平面α,直线m ⊥平面α,则m l ⊥.由线面垂直的定义可知,此命题为真命题; 由复合命题的真假可判断①14p p ∧为真命题,②12p p ∧为假命题,③23p p ⌝∨为真命题,④34p p ⌝∨⌝为真命题,故真命题的序号是:①③④,故答案为:①③④,。

历年(2020-2023)全国高考数学真题分类(集合与常用逻辑用语)汇编(附答案)

历年(2020-2023)全国高考数学真题分类(集合与常用逻辑用语)汇编(附答案)

历年(2020‐2023)全国高考数学真题分类(集合与常用逻辑用语)汇编【2023年真题】1.(2023·新课标I 卷 第1题) 已知集合{2,1,0,1,2}M =--,2{|60}N x x x =--…,则M N ⋂=( ) A. {2,1,0,1}--B. {0,1,2}C. {2}-D. {2}2. (2023·新课标I 卷 第7题) 记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列:乙:{}n sn为等差数列,则( )A. 甲是乙的充分条件但不是必要条件B. 甲是乙的必要条件但不是充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件也不是乙的必要条件3.(2023·新课标II 卷 第2题)设集合{0,}A a =-,{1,2,22}B a a =--,若A B ⊆,则a =( ) A. 2B. 1C.23D. 1-【2022年真题】4.(2022·新高考I 卷 第1题)若集合{4}M x =<,{|31}N x x =…,则M N ⋂=( ) A. {|02}x x <…B. 1{|2}3x x <…C. {|316}x x <…D. 1{|16}3x x <…5.(2022·新高考II 卷 第1题)已知集合{1,1,2,4}A =-,{||1|1}B x x =-…,则A B ⋂=( ) A. {1,2}-B. {1,2}C. {1,4}D. {1,4}-【2021年真题】6.(2021·新高考I 卷 第1题)设集合{|24}A x x =-<<,{2,3,4,5}B =,则A B ⋂=( ) A. {2}B. {2,3}C. {3,4}D. {2,3,4}7.(2021·新高考II 卷 第2题)设集合{1,2,3,4,5,6},U = {1,3,6},{2,3,4}A B ==,则()U A B ⋂=ð( ) A. {3}B. {1,6}C. {5,6}D. {1,3}【2020年真题】8.(2020·新高考I 卷 第1题)设集合{|13}A x x =剟,{|24}B x x =<<,则A B ⋃=( ) A. {|23}x x <…B. {|23}x x 剟C. {|14}x x <…D. {|14}x x <<9.(2020·新高考II 卷 第2题)设集合{2,3,5,7}A =,{1,2,3,5,8}B =,则A B ⋂=( ) A. {1,3,5,7} B. {2,3} C. {2,3,5} D. {1,2,3,5,7,8}参考答案1.(2023·新课标I 卷 第1题)解:(,2][3,)N =-∞-⋃+∞,所以{2};M N ⋂=-故选.C 2. (2023·新课标I 卷 第7题) 解:方法1:为等差数列,设其首项为1a ,公差为d ,则1(1)2n n n S na d -=+,111222n S n d da d n a n -=+=+-,112n n S S dn n +-=+, 故{}nS n为等差数列,则甲是乙的充分条件,, 反之,{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t 即1(1)n nna S t n n +-=+,故1(1)n n S na t n n +=-⋅+故1(1)(1)n n S n a t n n -=--⋅-,2n …两式相减有:11(1)22n n n n n a na n a tn a a t ++=---⇒-=,对1n =也成立,故{}n a 为等差数列, 则甲是乙的必要条件, 故甲是乙的充要条件,故选.C 方法2:因为甲:{}n a 为等差数列,设数列{}n a 的首项1a ,公差为.d 即1(1)2n n n S na d -=+, 则11(1)222n S n d d a d n a n -=+=+-,故{}n S n为等差数列,即甲是乙的充分条件. 反之,乙:{}n S n为等差数列.即11n n S S D n n +-=+,1(1).n SS n D n =+-即1(1).n S nS n n D =+-当2n …时,11(1)(1)(2).n S n S n n D -=-+-- 上两式相减得:112(1)n n n a S S S n D -=-=+-, 所以12(1).n a a n D =+-当1n =时,上式成立.又1112(2(1))2n n a a a nD a n D D +-=+-+-=为常数.所以{}n a 为等差数列. 则甲是乙的必要条件, 故甲是乙的充要条件,故选C3.(2023·新课标II 卷 第2题)解:A B ⊆,则220a -=,1a =,{0,1}A =-,{1,1,0}B =-,满足,选.B 4.(2022·新高考I 卷 第1题)解:因为{|016}M x x =<…,1{|}3N x x =…, 故1{|16}.3M N x x ⋂=<… 5.(2022·新高考II 卷 第1题)解:方法一:通过解不等式可得集合{|02}B x x =剟,则{1,2}A B ⋂=,故B 正确. 法二:代入排除法.1x =-代入集合{||1|1}B x x =-…,可得|1||11|21x -=--=>,1x =-,不满足,排除A 、;4D x =代入集合{||1|1}B x x =-…,可得|1||41|31x -=-=>,4x =,不满足,排除 C ,故B 正确.6.(2021·新高考I 卷 第1题)解:因为集合{}{}24,2,3,4,5A x x B =-<<=,所以{2,3}.A B ⋂= 故选.B7.(2021·新高考II 卷 第2题) 解:由题设可得U {1,5,6}B =ð, 故U (){1,6}.A B ⋂=ð 故选.B8.(2020·新高考I 卷 第1题)解:因为集合{|13}A x x =剟,{|24}B x x =<<, ={|14}.A B x x ⋃<…故选.C9.(2020·新高考II 卷 第2题)解:因为集合A ,B 的公共元素为:2,3,5 故{2,3,5}.A B ⋂= 故选:.C。

2020年高考数学真题汇编 1:集合与简易逻辑 理

2020年高考数学真题汇编 1:集合与简易逻辑 理

2020高考真题分类汇编:集合与简易逻辑1.【2020高考真题浙江理1】设集合A={x|1<x <4},集合B ={x|2x -2x-3≤0}, 则A ∩(C R B )=A .(1,4)B .(3,4) C.(1,3) D .(1,2)∪(3,4) 【答案】B 2.【2020高考真题新课标理1】已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6 ()C 8 ()D 10【答案】D3.【2020高考真题陕西理1】集合{|lg 0}M x x =>,2{|4}N x x =≤,则M N =( )A. (1,2)B. [1,2)C. (1,2]D. [1,2] 【答案】C.4.【2020高考真题山东理2】已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则U C AB 为(A ){}1,2,4 (B ){}2,3,4 (C ){}0,2,4 (D ){}0,2,3,4 【答案】C5.【2020高考真题辽宁理1】已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则)()(B C A C U U 为(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6} 【答案】B【点评】本题主要考查集合的交集、补集运算,属于容易题。

采用解析二能够更快地得到答案。

6.【2020高考真题辽宁理4】已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则⌝p 是(A) ∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0(B) ∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 (C) ∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 (D) ∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 【答案】C【点评】本题主要考查含有量词的命题的否定,属于容易题。

上海2020高三数学一模分类汇编-集合、命题、不等式

上海2020高三数学一模分类汇编-集合、命题、不等式

上海2020高三数学一模分类汇编-集合、命题、不等式(详答版)(总10页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2020年一模汇编——集合命题与不等式一、填空题【徐汇1】 已知集合{|2}M x x =>,集合{|1}N x x =≤,则M N =【答案】(](),12,-∞+∞【解析】考察集合的并集,易得(](),12,MN =-∞+∞【长宁,嘉定,金山1】已知集合{1,2,3,4,5}A =,{1,3,5,7}B =,则A B = 【答案】{1,3,5}【解析】本题考察了集合的交集 【松江1】已知集合10A x x ,0,1,2B ,则A B .【答案】1,2 【解析】由10Ax x 得到1Ax x ,又因为0,1,2B ,所以1,2A B【黄浦1】设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则A B = 【答案】(1,3)-【解析】由题集合{12}A x =-<<,集合{|13}B x x =<<,所以(1,3)A B =- 【崇明1】已知集合0123{}A =,,,,02{|}B x x =<≤,则A B = .【答案】{12},【青浦1】已知集合{1,3,5,9}U =,{1,3,9}A =,{1,9}B =,则()U A B = 【答案】{5}【解析】}9,3,1{=B A ,所以5}{)(=B A C U【解析】B 集合里面的整数为1、2,所以A B ={12}, 【浦东1】若集合{|03}A x x =<<,集合{|2}B x x =<,则A B =____________.【答案】)2,0(【解析】考察集合的运算。

【闵行1】已知集合{3,1,0,1,2}A =--,{|||1}B x x =>,则A B = 【答案】{3,2}-【解析】{|||1}={|11}B x x x x x =>>或<-{3,2}A B ∴=- 【虹口1】设全集U =R ,若21{|1}x A x x-=>,则UA =【答案】[]10, 【解析】0112>--xx 【崇明2】不等式21x -<的解集是 . 【答案】13(,)【解析】12<-x 12-1<<-∴x 31<<x ∴【普陀3】不等式11x >的解集为____________.【答案】()01, 【解析】不等式的性质【虹口3】设x +∈R ,则21x x ++的最小值为 【答案】122-【解析】211x x ++≥+【闵行4】已知01x <<x =【答案】12【解析】已知01x <<,()1122x x +-=,当且仅当112x x =-=时取等12【宝山7】不等式63|2|22-->--x x x x 的解集是 . 【答案】),4(-∞-【解析】63222-->+-x x x x ⇒4->x 【青浦7】设,x y +∈R ,若141x y+=,则x y 的最大值为【答案】116【解析】由基本不等式可得:161414414412=⎪⎪⎭⎫ ⎝⎛+⨯≤⨯=y x y x y x 【徐汇7】已知x ∈R ,条件2:p x x <,条件1:q a x≥(0a >),若p 是q 的充分不必要条件,则实数a 的取值范围是 【答案】(]0,1【解析】由题求得,()0,1p =,10,q a ⎛⎤= ⎥⎝⎦,因为p 是q 的充分不必要条件,可知p q ⇒,则实数a 的取值范围是(]0,1【奉贤10】根据相关规定,机动车驾驶人血液中的酒精含量大于(等于)20毫克/100毫升的行为属于饮酒驾车,假设饮酒后,血液中的酒精含量为0p 毫克/100毫升,经过x 个小时,酒精含量为p 毫克/100毫升,且满足关系式0rx p p e =⋅(r 为常数),若某人饮酒后血液中的酒精含量为89毫克/100毫升,2小时后,测得其血液中酒精含量降为61毫克/100毫升,则此人饮酒后需经过____________小时方可驾车。

2020年全国普通高等学校招生高考数学模拟试卷(文科)(一)(有解析)

2020年全国普通高等学校招生高考数学模拟试卷(文科)(一)(有解析)

2020年全国普通高等学校招生高考数学模拟试卷(文科)(一)一、单项选择题(本大题共12小题,共60.0分)1.设i是虚数单位,若z2−i=1+i,则复数z=()A. 2+iB. 1+iC. 3+iD. 3−i2.设集合A={0,2,4},集合B={x∈N|log2x≤1},则A∪B=()A. {2,4}B. {0,1,4}C. {1,2,4}D. {0,1,2,4}3.设a∈R,则|a|>1是1|a|<1的()A. 充分但不必要条件B. 必要但不充分条件C. 充要条件D. 既不充分也不必要条件4.下图给出的是某市2017年2月至2018年1月二手房单价的大致情况,则下列说法错误的是()A. 这段时间该市的二手房的平均单价高于17500元/平方米B. 由图可知,2017年4月的二手房单价最低C. 2017年4月到5月二手房单价的增长率是这12个月份中最高的D. 2017年3月到4月二手房单价呈现负增长5.在等比数列{a n}中,a3=2,a3+a5+a7=26,则a7=()A. 12B. 18C. 24D. 366.已知a⃗为单位向量,b⃗ =(0,2),且a⃗⋅b⃗ =1,则向量a⃗与b⃗ 的夹角为()A. π6B. π4C. π3D. π27.已知α是第二象限的角,tan(π−α)=512,则sinα=()A. 15B. −15C. 513D. −5138.执行图的程序框图,若输出的S是62,则①应为()A. n≤5?B. n≤6?C. n≤7?D. n≤8?9.已知函数f(x)=e x+e−x,则y=f(x)的图象大致为()A. B.C. D.10.某三棱锥的三视图如图所示,则该几何体的体积为()A. 2B. 43C. 23D. 1311.设双曲线x2−y29=1的左、右焦点分别为F1,F2,直线x=1与双曲线的其中一条渐近线交于点P,则△PF1F2的面积是()A. 3√10B. 13√10 C. 6√2 D. 23√212.若函数f(x)={alnx−x2−2(x>0)x+1x+a(x<0)的最大值为f(−1),则实数a的取值范围()A. [0,2e2]B. [0,2e3]C. (0,2e2]D. (0,2e3]二、填空题(本大题共4小题,共20.0分)13.曲线y=xe x−2x2+1在点(0,1)处的切线方程为______.14.袋中共有大小相同的4只小球,编号分别为1,2,3,4.现从中任取2只小球,则取出的2只小球的编号之和是奇数的概率为________.15.已知各项均为正数的等比数列{a n}中,a2=3,a4=27,S2n为该数列的前2n项和,T n为数列{a n a n+1}的前n项和,若S2n=kT n,则实数k的值为________.16.已知,在△ABC中B=π,b=2,S▵ABC的最大值为________.3三、解答题(本大题共7小题,共82.0分)17.某中学高三年级有学生500人,其中男生300人,女生200人.为了研究学生的数学成绩是否与性别有关,采用分层抽样的方法,从中抽取了100名学生,统计了他们期中考试的数学分数,然后按照性别分为男、女两组,再将两组的分数分成5组:[100,110),[110,120),[120,130),[130,140),[140,150)分别加以统计,得到如图所示的频率分布直方图.(Ⅰ)从样本分数小于110分的学生中随机抽取2人,求两人恰为一男一女的概率;(Ⅱ)若规定分数不小于130分的学生为“数学尖子生”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“数学尖子生与性别有关”?附:随机变量k2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)P(k2≥k0)0.250.150.100.050.025k0 1.323 2.072 2.706 3.841 5.02418.已知数列{√a n−n}是等比数列,且a1=9,a2=36.(1)求数列{a n}的通项公式;(2)求数列{√a n}的前n项和S n.19.在四棱锥P−ABCD中,AD//BC,DC⊥AD,PA⊥平面ABCD,2AD=BC=2√3,∠DAC=30°,M为PB中点.(1)证明:AM//平面PCD;(2)若三棱锥M−PCD的体积为√3,求M到平面PCD的距离.620.已知函数f(x)=e xx+elnx−ax在x=1处取的极值.(Ⅰ)求实数a的值;(Ⅱ)求证:f(x)≥0.21.已知椭圆E:x2a2+y2b2=1(a>b>0)的左,右焦点分别为F1,F2,P为E上的一个动点,且|PF2|的最大值为2+√3,E的离心率与椭圆Ω:x22+y28=1的离心率相等.(1)求E的方程;(2)直线l与E交于M,N两点(M,N在x轴的同侧),当F1M//F2N时,求四边形F1F2NM面积的最大值.22.在平面直角坐标系xOy中,直线C1的参数方程为{x=3+tcosπ4y=2+tsinπ4(其中t为参数).以坐标原点O为极点,x轴正半轴为极轴建立极坐标系并取相同的单位长度,曲线C2的极坐标方程为ρ=4cosθsin2θ.(Ⅰ)求C1和C2的直角坐标方程;(Ⅱ)过点P(3,2)作直线C1的垂线交曲线C2于M,N两点,求|PM|⋅|PN|.23.设函数f(x)=|x−a|.(1)当a=2时,解不等式f(x)≥4−|x−1|;(2)若f(x)≤1的解集为[0,2],1m +12n=a(m>0,n>0),求证:m+2n≥4.【答案与解析】1.答案:C解析:本题主要考查复数的四则运算,属于基础题.解:由题意得z=(1+i)(2−i)=3+i故选C.2.答案:D解析:本题考查并集及其运算,属于基础题,先求出集合B,再求出A∪B即可.解析:解:由B={x∈N|log2x≤1}={1,2},又A={0,2,4},∴A∪B={0,1,2,4},故选D.3.答案:C解析:解:根据倒数的性质可知:若|a|>1,则0<1|a|<1成立.若1|a|<1,则|a|>1成立.故|a|>1是1|a|<1的充要条件.故选:C.根据充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,利用不等式的性质是解决本题的关键.解析:本题主要考查了折线图,属于基础题.从图中提取数据,逐一分析选项即可.解:A:这段时间该市的二手房的平均单价高于17500元/平方米,正确;B:由图可知,2017年4月的二手房单价最低,正确;C:2017年4月到5月二手房单价的增长率没有5月到6月和6月到7月高,所以错误;D:2017年3月到4月二手房单价呈现负增长,正确;故选C.5.答案:B解析:本题考查了等比数列的通项公式,设等比数列{a n}的公比为q,由题意得a1q2=2,a3(1+q2+q4)= 26,解得q2=3,a1=2,即可得出结果.3解:设等比数列{a n}的公比为q,∵a3=2,a3+a5+a7=26,∴a1q2=2,a3(1+q2+q4)=26,,解得q2=3,a1=23×33=18,则a7=23故选B.6.答案:C解析:解:|a⃗|=1,|b⃗ |=2;∴a⃗⋅b⃗ =1⋅2cos<a⃗,b⃗ >=1;∴cos<a⃗,b⃗ >=1;2∴a⃗,b⃗ 夹角为π.3故选C.根据条件可知,|a⃗|=1,|b⃗ |=2,从而根据a⃗⋅b⃗ =1即可求出cos<a⃗,b⃗ >的值,从而得出向量a⃗与b⃗考查单位向量的概念,向量数量积的计算公式,以及向量夹角的概念.7.答案:C解析:解:由tan(π−α)=512,得−tanα=512,∴tanα=−512. 联立{sinαcosα=−512sin 2α+cos 2α=1,解得{sinα=513cosα=−1213或{sinα=−513cosα=1213.∵α是第二象限的角,∴sinα=513. 故选:C .由已知求得tanα,再与平方关系联立即可求得sinα的值.本题考查三角函数的化简求值,考查诱导公式及同角三角函数基本关系式的应用,是基础题.8.答案:A解析:本题考查了算法中的循环结构,以及等比数列求和,是基础题.分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加S =2+22+⋯+2n 的值,当不满足条件时,输出S .解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加S =2+22+⋯+2n 的值,当不满足条件时,输出S .∵S =2+22+⋯+26=62,再执行下一步n =n +1后,n 的值为6,此时应退出循环,不满足条件,∴①中应填n ≤5. 故选A .9.答案:A解析:本题考查函数的图象以及应用,属于基础题.根据偶函数以及特殊点的函数值,运用排除法,即可得到答案. 解:因为f(−x)=f(x),所以f(x)为偶函数,故排除C ,D ;又f(0)=2,故排除B.故选A.10.答案:C解析:本题考查通过三视图求解几何体的体积,考查空间想象能力以及计算能力,属于基础题.通过三视图画出几何体的直观图,利用三视图的数据求解几何体的体积即可.解:如图所示,由三视图可知,在三棱锥P−ABC中,PA⊥平面ABC,底面△ABC为等腰三角形,且底边长为2,高为1,故三棱锥的体积为V P−ABC=13⋅S△ABC⋅PA=13×12×2×1×2=23.故选C.11.答案:A解析:求得双曲线的a,b,c,可得焦距,求得双曲线的一条渐近线方程,代入x=1可得P的坐标,再由三角形的面积公式计算即可得到所求值.本题考查双曲线的方程和性质,主要是渐近线方程的运用,考查三角形的面积的求法,考查运算能力,属于基础题.解:双曲线x2−y29=1的a=1,b=3,c=√a2+b2=√10,即有|F1F2|=2c=2√10,双曲线的一条渐近线方程为y=3x,代入x=1,可得P(1,3),即有△PF1F2的面积是12×3×2√10=3√10.故选:A.12.答案:B解析:解:由f(−1)=−2+a,可得alnx−x2−2≤−2+a在x>0恒成立,即为a(1−lnx)≥−x2,当x=e时,0>−e2显然成立;当0<x<e时,有1−lnx>0,可得a≥x2lnx−1,设g(x)=x2lnx−1,0<x<e,g′(x)=2x(lnx−1)−x(lnx−1)2=x(2lnx−3)(lnx−1)2,由0<x<e时,2lnx<2<3,则g′(x)<0,g(x)在(0,e)递减,且g(x)<0,可得a≥0;当x>e时,有1−lnx<0,可得a≤x2lnx−1,设g(x)=x2lnx−1,x>e,g′(x)=2x(lnx−1)−x(lnx−1)2=x(2lnx−3)(lnx−1)2,由e<x<e 32时,g′(x)<0,g(x)在(e,e 32)递减,由x>e 32时,g′(x)>0,g(x)在(e 32,+∞)递增,即有g(x)在x=e 32处取得极小值,且为最小值2e3,可得a≤2e3,综上可得0≤a≤2e3.故选:B.求得f(−1),由题意可得alnx−x2−2≤−2+a在x>0恒成立,讨论x的范围,分x=e,0<x<e,x>e,运用参数分离和构造函数,求得导数和单调区间,可得最值,进而得到a的范围.本题考查函数的最值的求法和应用,注意运用参数分离和分类讨论的思想方法,以及构造函数法,求出导数和最值,考查化简整理的运算能力,属于中档题.13.答案:y=x+1解析:本题考查利用导数求曲线的切线方程,考查计算能力,是基础题.求导函数,确定切线的斜率,利用点斜式,可得切线方程.解:求导函数可得,y′=(1+x)e x−4x当x=0时,y′=1∴曲线y=xe x−2x2+1在点(0,1)处的切线方程为y−1=x,即y=x+1.故答案为:y=x+1.14.答案:23解析:本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.先求出基本事件总数,再由列举法得到这两个球编号之和为奇数的事件个数,由此能求出这两个球编号之和是奇数的概率.解:一个袋子中有号码为1,2,3,4大小相同的4个小球,从袋中任取两个球(不放回),有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),基本事件总数为6个,这两个球编号之和为奇数的有(1,2),(1,4),(2,3),(3,4),共4个,∴则这两个球编号之和为奇数的概率为46=23,故答案为23.15.答案:43解析:本题主要考查等比数列的通项公式及前n项和公式等知识,考查考生的运算求解能力,考查的核心素养是数学运算,属中档题.等比数列{a n}中,S2n=1×(1−32n)1−3=32n−12,数列{b n}为等比数列,公比q′=9,所以T n=3×(1−9n)1−9=3(32n−1)8,求实数k.解:因为各项均为正数的等比数列{a n}中,a2=3,a4=27,所以a1=1,公比q=3,所以S2n=1×(1−32n)1−3=32n−12,a n=3n−1.令b n=a n a n+1=3n−1·3n=32n−1,所以b1=3,数列{b n}为等比数列,公比q′=9,所以T n=3×(1−9n)1−9=3(32n−1)8.因为S2n=kT n,所以32n−12=k⋅3(32n−1)8,解得k=43.故答案为43.16.答案:√3解析:先表示出三角形面积,利用正弦定理换元2sin B,剩下sin A sin C,利用两角和公式化简,求得面积的最大值.属难题.解:∵a sinA=b sinB=c sinC=2sinπ34√33,∴三角形面积S=12acsinB=12×4√33sinA4√33sinCsinB=83sinAsinBnC=4√33sinAsinC=2√33[cos(A−C)−cos(A+C)]=2√33[cos(A−C)+12]当A=C时,S max=√3故答案为√3.17.答案:解:(Ⅰ)由已知得,抽取的100名学生中,男生60名,女生40名.分数小于110分的学生中,男生有60×0.05=3(人),记为A1,A2,A3;女生有40×0.05=2(人),记为B1,B2.从中随机抽取2名学生,所有的可能结果共有10种,它们是:(A1,A2),(A1,A3),(A2,A3),(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2),其中,两名学生恰好为一男一女的可能结果共有6种,它们是:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),故所求的概率P=610=35.(Ⅱ)由频率分布直方图可知,在抽取的100名学生中,男生有“数学尖子生”60×0.25=15(人),女生有“数学尖子生”40×0.375=15(人).据此可得2×2列联表如下:数学尖子生非数学尖子生合计男生154560女生152540合计3070100所以得K2的观测值k=100×(15×25−15×45)260×40×30×70=2514≈1.79.因为1.79<2.706.所以没有90%的把握认为“数学尖子生与性别有关”.解析:解析:本题考查古典概型及独立性检验,同时考查分层抽样及频率分布直方图,属基础题.(Ⅰ)由直方图及分层抽样得男生和女生抽取的人数,然后利用古典概型求解即可; (Ⅱ)由已知得2×2列联表,然后计算K2的观测值即可求解.18.答案:解:(1)设等比数列{√a n−n}的公比为q,则q=√a2−2√a−1=6−23−1=2.从而√a n−n=(3−1)×2n−1,故a n=(n+2n)2.(2)∵√a n=n+2n,∴S n=n(n+1)2+2(1−2n)1−2,=2n+1+n2+n−42.解析:本题考查数列的通项公式的求法及应用,数列的前n项和公式的应用,属于基础题.(1)直接利用定义求出数列的通项公式.(2)利用分组法求出数列的和.19.答案:(本小题满分12分)解:取PC的中点为N,连结MN,DN(1)∵M是PB的中点,∴MN//BC,MN=12BC∵AD//BC,且BC=2AD,∴NM//AD且NM=AD,∴四边形AMND为平行四边形,∴AM//ND,又∵AM⊄平面PCD,ND⊂平面PCD所以AM//平面PCD(6分)(2)∵M是PB的中点,∴V三棱锥M−PCD =12V三棱锥B−PCD=√36∵V三棱锥B−PCD=V三棱锥P−BCD=13⋅S△BCD⋅PA=13×12×2√3×1×PA=√33PA=√33所以PA=1∵CD⊥AD,CD⊥PA,∴CD⊥平面PAD,∴CD⊥PD 又∵PA=1,AD=√3,∴PD=2,∴S△PCD=1设点M到平面PCD的距离为h,则V三棱锥M−PCD =13⋅S△PCD⋅ℎ=13×1×ℎ=√36,∴ℎ=√32,故M到平面PCD的距离为√32(12分)解析:(1)取PC的中点为N,连结MN,DN,利用AD//BC,通过证明NM//AD,推出AM//ND,即可证明AM//平面PCD.(2)利用三棱锥M−PCD的体积为√36,转化求解V B−PCD,设点M到平面PCD的距离为h,通过体积,求解M到平面PCD的距离.本题考查几何体的体积的求法,直线与平面平行的判定定理的应用,考查计算能力.20.答案:解:(Ⅰ)∵f′(x)=e x(x−1)x2+ex−a①,依题意知f′(1)=0,∴a=e;(Ⅱ)由(Ⅰ)知f(x)=e xx+elnx−ex(x>0),则f′(x)=(x−1)(e x−ex)x2,令g(x)=e x−ex②,则g′(x)=e x−e,由g′(x)=0,得x=1,∵当0<x≤1时,g′(x)≤0,当x>1时,g′(x)>0,∴函数y=g(x)在(0,1]上递减,在(1,+∞)上递增,∴当0<x≤1时,g(x)≥g(1)=0,当x>1时,g(x)>g(1)=0,∴对∀x∈(0,+∞),g(x)≥0,即e x≥ex③∴由②③,当0<x≤1时,x−1≤0,f′(x)≤0,当x >1时,x −1>0,f ′(x)>0,∴函数y =f(x)在(0,1]上递减,在(1,+∞)上递增, ∴f(x)≥f(1)=0.解析:本题考查了函数的单调性、最值问题,考查导数的应用,属于中档题. (Ⅰ)由导数的几何意义直接求解即可.(Ⅱ)求导利用导函数研究函数的单调性,即可证明f(x)的最小值f(1)=0. 21.答案:解:(1)由题意可得{a +c =2+√3c a=√1−28, 解得a =2,c =√3 则b 2=a 2−c 2=1, 故E 的方程为x 24+y 2=1.(2)延长MF 1交E 于点M′, 由(1)可知F 1(−′√3,0),F 2(√3,0), 设M(x 1,y 1),M′(x 2,y 2),设直线MF 1的方程为x =my −√3,由{x =my −√3x 24+y 2=1可得(m 2+4)y 2−2√3y −1=0, ∴y 1+y 2=2√3mm 2+4,y 1y 2=−1m 2+4∴|y 1−y 2|=√(y 1+y 2)2−4y 1y 2=√12m 2(m 2+4)2+4m 2+4=4√m 2+1m 2+4,设F 1M 与F 2N 的距离为d ,则四边形的F 1F 2NM 面积S =12(|F 1M|+|F 2N|)d =12(|F 1M|+|F 2M′|)d =12|MM′|d =S △MF 2M′,∴S =S △MF 2M′=S △F 2MF 1+S △F 2M′F 1=12|F 1F 2||y 1−y 2|=4√3√m 2+1m 2+4=4√3√m 2+1+3√2≤4√32√3=2,故四边形F 1F 2NM 面积的最大值为2.解析:(1)由题意可得{a +c =2+√3c a=√1−28,解得a =2,c =√3则b 2=a 2−c 2=1,即可求出; (2)设直线MF 1的方程为x =my −√3,由{x =my −√3x 24+y 2=1可得(m 2+4)y 2−2√3y −1=0,利用韦达定理定理求出y 1−y 2|,由题意可得S =12|F 1F 2||y 1−y 2|,利用基本不等式求得最值.本题考查椭圆方程的求法,考查了直线与椭圆位置关系的应用,训练了利用基本不等式求最值,属中档题22.答案:解:(Ⅰ)直线C 1的参数方程为{x =3+tcos π4y =2+tsin π4(其中t 为参数)消去t 可得:x −y −1=0,由ρ=4cosθsin 2θ得ρ2sin 2θ=4ρcosθ,的y 2=4x.(x ≠0)(Ⅱ)过点P(3,2)与直线C 1垂直的直线的参数方程为:{x =3−√22ty =2+√22t (t 为参数),代入y 2=4x 可得t 2+8√2t −16=0设M ,N 对应的参数为t 1,t 2,则t 1t 2=−16, 所以|PM||PN|=|t 1t 2|=16.解析:(Ⅰ)直线C 1的参数方程为{x =3+tcos π4y =2+tsinπ4(其中t 为参数)消去t 可得:x −y −1=0,由ρ=4cosθsin 2θ得ρ2sin 2θ=4ρcosθ,的y 2=4x.(x ≠0);(Ⅱ)代入直线的参数方程到曲线C 2中,利用参数的几何意义可得. 本题考查了简单曲线的极坐标方程,属中档题.23.答案:解:(I)当a =2时,不等式f(x)≥4−|x −1|,即为|x −2|≥4−|x −1|,①当x ≤1时,原不等式化为2−x ≥4+(x −1),得x ≤−12,故x ≤−12;②当1<x <2时,原不等式化为2−x ≥4−(x −1),得2≥5,故1<x <2不是原不等式的解;③当x ≥2时,原不等式化为x −2≥4−(x −1),得x ≥72,故x ≥72.综合①、②、③知,原不等式的解集为(−∞,−12]∪[72,+∞). (Ⅱ)证明:由f(x)≤1得|x −a|≤1,从而−1+a ≤x ≤1+a , ∵f(x)≤1的解集为{x|0≤x ≤2}, ∴{−1+a =01+a =2得a =1,∴1m +12n =a =1.又m >0,n >0,∴m +2n =(m +2n)(1m +12n)=2+(2nm +m2n )≥2+2√2nm ⋅m2n =4, 当且仅当2nm =m2n 即m =2n 时,等号成立,此时,联立1m +12n =1,得{m =2n =1时,m +2n =4,故m +2n ≥4,得证.解析:本题考查绝对值不等式的解法以及不等式证明,属中档题.(1)本小题考查绝对值不等式的解法,将a =2代入函数的解析式中,利用分段讨论法解绝对值不等式即可.(2)本小题考查不等式证明,先由已知解集{x|0≤x ≤2}确定a 值,再将“m +2n ”改写为“(m +2n)(1m +12n )”,展开后利用基本不等式可完成证明.。

三年高考(2020-2020)数学(文)真题分类解析:专题01-集合

三年高考(2020-2020)数学(文)真题分类解析:专题01-集合

考纲解读明方向考点内容解读要求常考题型预测热度1.集合的含义与表示了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题Ⅰ选择题★★☆2.集合间的基本关系理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义Ⅱ选择题★★☆3.集合间的基本运算理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算Ⅱ选择题★★★分析解读1.掌握集合的表示方法,能判断元素与集合的“属于”关系、集合与集合之间的包含关系.2.深刻理解、掌握集合的元素,子、交、并、补集的概念.熟练掌握集合的交、并、补的运算和性质.能用韦恩(Venn)图表示集合的关系及运算.3.本部分内容在高考试题中多以选择题或填空题的形式出现,以函数、不等式等知识为载体,以集合语言和符号语言表示为表现形式,考查数学思想方法.4.本节内容在高考中分值约为5分,属中低档题.命题探究练扩展2020年高考全景展示1.【2020年新课标I卷文】已知集合,,则A. B. C. D.【答案】A点睛:该题考查的是有关集合的运算的问题,在解题的过程中,需要明确交集中元素的特征,从而求得结果.2.【2020年全国卷Ⅲ文】已知集合,,则A. B. C. D.【答案】C【解析】分析:由题意先解出集合A,进而得到结果。

详解:由集合A得,所以,故答案选C.点睛:本题主要考查交集的运算,属于基础题。

3.【2020年全国卷II文】已知集合,,则A. B. C. D.【答案】C【解析】分析:根据集合可直接求解.详解:,,故选C点睛:集合题也是每年高考的必考内容,一般以客观题形式出现,一般解决此类问题时要先将参与运算的集合化为最简形式,如果是“离散型”集合可采用Venn图法解决,若是“连续型”集合则可借助不等式进行运算.4.【2020年北京卷文】已知集合A={(x||x|<2)},B={−2,0,1,2},则A. {0,1}B. {−1,0,1}C. {−2,0,1,2}D. {−1,0,1,2}【答案】A【解析】分析:将集合化成最简形式,再进行求交集运算.详解:,,,故选A.点睛:此题考查集合的运算,属于送分题.5.【2020年天津卷文】设集合,,,则A. B. C. D.【答案】C点睛:本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力.6.【2020年浙江卷】已知全集U={1,2,3,4,5},A={1,3},则A. B. {1,3} C. {2,4,5} D. {1,2,3,4,5}【答案】C【解析】试题分析:分析:根据补集的定义可得结果.详解:因为全集,,所以根据补集的定义得,故选C.点睛:若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解. 7.【2020年江苏卷】已知集合,,那么________.【答案】{1,8}【解析】由题设和交集的定义可知:. 点睛:本题考查交集及其运算,考查基础知识,难度较小.2020年高考全景展示1.【2020课表1,文1】已知集合A ={}|2x x <,B ={}|320x x ->,则 A .A I B =3|2x x ⎧⎫<⎨⎬⎩⎭B .A I B =∅C .A U B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A U B=R【答案】A【考点】集合运算.【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.2.【2020课标II ,文1】设集合{1,2,3},{2,3,4}A B ==则A B =UA. {}123,4,, B. {}123,, C. {}234,, D. {}134,, 【答案】A【解析】由题意{1,2,3,4}A B =U ,故选A. 【考点】集合运算【名师点睛】集合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提. (2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决. (3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图.3.【2020课标3,文1】已知集合A={1,2,3,4},B={2,4,6,8},则A B I 中元素的个数为( ) A .1B .2C .3D .4【答案】B【解析】由题意可得:{}2,4A B =I ,A B I 中元素的个数为2,所以选B. 【考点】集合运算【名师点睛】集合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提. (2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决. (3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图. 4.【2020天津,文1】设集合{1,2,6},{2,4},{1,2,3,4}A B C ===,则()A B C =U I (A ){2}(B ){1,2,4}(C ){1,2,4,6}(D ){1,2,3,4,6} 【答案】B 【解析】试题分析:由题意可得:{}(){}1,2,4,6,1,2,4A B A B C =∴=U U I .本题选择B 选项. 【考点】集合的运算【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示,若集合是无限集合就用描述法表示,注意代表元素是什么,集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理. 5.【2020北京,文1】已知U=R ,集合{|22}A x x x =<->或,则U A =ð(A )(2,2)- (B )(,2)(2,)-∞-+∞U (C )[2,2]- (D )(,2][2,)-∞-+∞U 【答案】C【考点】集合的运算【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示,若集合是无限集合就用描述法表示,注意代表元素是什么,集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.6.【2020浙江,1】已知}11|{<<-=x x P , }20{<<=x Q ,则=Q P Y A .)2,1(-B .)1,0(C .)0,1(-D .)2,1(【答案】A 【解析】试题分析:利用数轴,取Q P ,所有元素,得=Q P Y )2,1(-. 【考点】集合运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.7.【2020山东,文1】设集合{}11M x x =-<,{}2N x x =<,则M N =IA.()1,1-B. ()1,2-C. ()0,2D. ()1,2 【答案】C【考点】 不等式的解法,集合的运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到,对离散的数集间的运算,或抽象集合间的运算,可借助Venn 图.8.【2020江苏,1】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =I 则实数a 的值为 . 【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.【考点】元素的互异性【名师点睛】(1)认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.(3)防范空集.在解决有关,A B A B =∅⊆I 等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.2020年高考全景展示1. 【2020高考新课标1文数】设集合{}1,3,5,7A =,{}25B x x =剟,则A B =I ( ) (A ){1,3} (B ){3,5} (C ){5,7} (D ){1,7} 【答案】B 【解析】试题分析:集合A 与集合B 公共元素有3,5,}5,3{=B A I ,故选B. 考点:集合的交集运算2.【2020高考新课标2文数】已知集合{123}A =,,,2{|9}B x x =<,则A B =I ( ) (A ){210123}--,,,,, (B ){21012}--,,,, (C ){123},,(D ){12},【答案】D 【解析】试题分析:由29x <得,33x -<<,所以{|33}B x x =-<<,因为{1,2,3}A =,所以{1,2}A B =I ,故选D.考点: 一元二次不等式的解法,集合的运算.【名师点睛】集合的交、并、补运算问题,应先把集合化简在计算,常常借助数轴或韦恩图处理. 3. [2020高考新课标Ⅲ文数]设集合{0,2,4,6,8,10},{4,8}A B ==,则A B ð=( ) (A ){48}, (B ){026},,(C ){02610},,,(D ){0246810},,,,,【答案】C考点:集合的补集运算.【技巧点拨】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化.4. 【2020高考天津文数】已知集合}3,2,1{=A ,},12|{A x x y y B ∈-==,则A B I =( )(A )}3,1{ (B )}2,1{ (C )}3,2{ (D )}3,2,1{【答案】A【解析】{1,3,5},{1,3}B A B ==I ,选A. 考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,误求并集,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确集合交集的考查立足于元素互异性,做到不重不漏.5.【2020高考四川文科】设集合{|15}A x x =≤≤,Z 为整数集,则集合A ∩Z 中元素的个数是( ) (A)6 (B) 5 (C)4 (D)3 【答案】B 【解析】试题分析:由题意,{1,2,3,4,5}A Z =I ,故其中的元素个数为5,选B. 考点:集合中交集的运算.【名师点睛】集合的概念及运算一直是高考的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答.6. 【2020高考浙江文数】已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则U PQ U ()ð=( ) A.{1} B.{3,5} C.{1,2,4,6} D.{1,2,3,4,5} 【答案】C考点:补集的运算.【易错点睛】解本题时要看清楚是求“I ”还是求“U ”,否则很容易出现错误;一定要注意集合中元素的互异性,防止出现错误.7.【2020高考北京文数】已知集合={|24}A x x <<,{|3B x x =<或5}x >,则A B =I ( ) A.{|25}x x << B.{|4x x <或5}x > C.{|23}x x << D.{|2x x <或5}x >【答案】C 【解析】试题分析:由题意得,(2,3)A B =I ,故选C. 考点: 集合交集【名师点睛】1. 首先要弄清构成集合的元素是什么(即元素的意义),是数集还是点集,如集合)}(|{x f y x =,)}(|{x f y y =,)}(|),{(x f y y x =三者是不同的.2.集合中的元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数时,以及在含参的集合运算中,常因忽视互异性,疏于检验而出错.3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助Venn 图实施,对连续的数集间的运算,常利用数轴进行,对点集间的运算,则通过坐标平面内的图形求解,这在本质上是数形结合思想的体现和运用.4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽视空集是任何元素的子集.8. 【2020高考山东文数】设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()U A B U ð=( ) (A ){2,6} (B ){3,6} (C ){1,3,4,5} (D ){1,2,4,6}【答案】A考点:集合的运算【名师点睛】本题主要考查集合的并集、补集,是一道基础题目.从历年高考题目看,集合的基本运算,是必考考点,也是考生必定得分的题目之一.9.【2020江苏卷】已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B I ____________. 【答案】{}1,2- 【解析】试题分析:{1,2,3,6}{|23}{1,2}A B x x =--<<=-I I 考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确江苏对于集合题的考查立足于列举法,强调对集合运算有关概念及法则的理解。

2020年高考数学 高考试题+模拟新题分类汇编专题L 算法初步与复数 理

2020年高考数学 高考试题+模拟新题分类汇编专题L 算法初步与复数 理

L 算法初步与复数L1 算法与程序框图14.L1[2020·江西卷] 如图1-3为某算法的程序框图,则程序运行后输出的结果是________.14.3 [解析] 考查算法框图、诱导公式、特殊角的三角函数值;解题的突破口是列出每一次循环后各变量的结果.当k =1时,此时sin π2=1>sin0=0成立,因此 a =1,T =0+1=1,k =1+1=2,k <6成立,再次循环;因sinπ=0>sin π2=1不成立,因此a =0,T=1+0=1,k =2+1=3,此时k <6成立,再次循环;因sin 3π2=-1> sinπ=0不成立,因此a =0,T =1+0=1,k =3+1=4,此时k <6成立,再次循环;因sin2π=0>sin 3π2=-1成立,因此a =1,T =1+1=2,k =4+1=5,此时k <6成立,再次循环;因sin 5π2=1> sin2π=0成立,因此a =1,T =2+1=3,k =5+1=6,此时k <6不成立,退出循环,此时T =3.3.L1[2020·安徽卷] )的输出结果是( )A .3B .4C .5D .83.B [解析] 本题考查程序框图的应用,逻辑推理的能力. 用表格列出x ,y 每次的取值情况如下表:4.L1[2020·北京卷] 执行如图1-2所示的程序框图,输出的S 值为( )A.2 B.4 C.8 D.164.C [解析] 本题考查了循环结构的流程图,简单的整数指数幂计算等基础知识.根据循环,k=0,S=1;k=1,S=2;k=2;S=8,当k=3,时,输出S=8.12.L1[2020·福建卷] 阅读图1-2所示的程序框图,运行相应的程序,输出的s值等于________.12.-3 [解析] 第一次循环由于k=1<4,所以s=2-1=1,k=2;第二次循环k=2<4,所以s=2-2=0,k=3;第三次循环k=3<4,所以s=0-3=-3,k=4,结束循环,所以输出s=-3.4.L1[2020·江苏卷] 图1-1是一个算法流程图,则输出的k的值是________.4.5 [解析] 本题为对循环结构的流程图的含义的考查.解题突破口为从循环终止条件入手,再一一代入即可.将k =1,2,3,…,分别代入可得k =5.13.L1[2020·广东卷] 执行如图1-2所示的程序框图,若输入n 的值为8,则输出s 的值为________.13.8 [解析] 考查程序框图的循环结构,突破口是计算每一次循环的情况,计算运算结果与执行情况,直到不满足条件为止,第一次循环:s =2,i =4,k =2;第二次循环:s =12×(2×4)=4,i =6,k =3;第三次循环:s =13×(6×4)=8,i =8,k =4,此时不满足条件:i <n ,结束循环,输出s =8. 14.L1[2020·湖南卷] 如果执行如图1-4所示的程序框图,输入x =-1,n =3,则输出的数S =________.图1-414.-4 [解析] 考查程序框图和数列的求和,考查考生的当型循环结构,关键是处理好循环次数,不要多加情况,或者少算次数.解决此类型试题,最好按循环依次写出结果.当i =2时S =-3,当i =1时S =5,当i =0时S =-4,当i =-1时,不满足条件,退出循环,输出结果S =-4.6.L1[2020·课标全国卷] 如果执行右边的程序框图,输入正整数N (N ≥2)和实数a 1,a 2,…,a N ,输出A ,B ,则( )A .A +B 为a 1,a 2,…,a N 的和 B.A +B 2为a 1,a 2,…,a N 的算术平均数C .A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数D .A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数6.C [解析] 由程序框图可知,当x >A 时,A =x ;当x ≤A 且x <B 时,B =x ,所以A 是a 1,a 2,…,a N 中的最大数,B 是a 1,a 2,…,a N 中的最小数.故选C.9.L1[2020·辽宁卷] 执行如图S 值是( )图1-2A .-1 B.23C.32 D .49.A [解析] 本小题主要考查程序框图的应用.解题的突破口为分析i 与6的关系.当i =1时,S =22-4=-1;当i =2时,S =22--1=23;当i =3时,S =22-23=32;当i =4时,S =22-32=4;当i =5时,S =22-4=-1;当i =6时程序终止,故而输出的结果为-1.6.L1[2020·山东卷] 执行如图1-1所示的程序框图,如果输入a =4,那么输出的n 的值为( )A .2B .3C .4D .56.B [解析] 本题考查算法与程序框图,考查数据处理能力,容易题.当n =0时,P =1,Q =3,P <Q 成立,执行循环;当n =1时,P =5,Q =7,P <Q 成立,执行循环;当n =2时,P =21,Q =15,P <Q 不成立,但是n =2+1=3后,再输出.10.L1、K3[2020·陕西卷] 图1-3是用模拟方法估计圆周率π值的程序框图,P 表示估计结果,则图中空白框内应填入( )图1-3A .P =N1000 B .P =4N1000 C .P =M 1000 D .P =4M100010.D [解析] 本题主要考查循环结构的程序框图的应用,同时要兼顾考查学习概率的模拟方法中圆周率π的模拟,通过阅读题目和所给数据可知试验了1000次,M 代表落在圆内的点的个数,根据几何概型,π4=M 1000,对应的圆周率π为P =4M1 000.3.L1[2020·天津卷] 阅读如图1-1所示的程序框图,运行相应的程序,当输入x 的值为-25时,输出x 的值为( )A .-1B .1C .3D .93.C [解析] 本题考查算法与程序框图,考查数据处理能力,容易题.经过第一次执行循环,x =|-25|-1=4;经过第二次循环,x =|4|-1=1;然后输出x =2×1+1=3.12.L1[2020·浙江卷] 若某程序框图如图1-4所示,则该程序运行后输出的值是________.12.1120 [解析] 本题主要考查算法的程序框图及其应用.当i =1时,T =11=1,而i =1+1=2,不满足条件i >5;接下来,当i =2时,T =12,而i =2+1=3,不满足条件i >5;接下来,当i =3时,T =123=16,而i =3+1=4,不满足条件i >5;接下来,当i =4时,T=164=124,而i =4+1=5,不满足条件i >5;接下来,当i =5时,T =1245=1120,而i =5+1=6,满足条件i >5;此时输出T =1120,故应填1120.[点评] 对于程序框图问题,关键是正确识别与推理,通过逐步推理与分析加以正确判断.L2 基本算法语句 L3 算法案例 L4 复数的基本概念与运算11.L4[2020·重庆卷] 若(1+i)(2+i)=a +b i ,其中a ,b ∈R ,i 为虚数单位,则a +b =________.11.4 [解析] 因为(1+i)(2+i)=1+3i ,则根据复数相等得a =1,b =3,所以a +b =4.2.L4[2020·浙江卷] 已知i 是虚数单位,则3+i1-i=( )A .1-2iB .2-iC .2+iD .1+2i2.D [解析] 本题主要考查复数的四则运算,检测学生对基础知识的掌握情况. 3+i 1-i =3+i 1+i 1-i 1+i =2+4i2=1+2i ,故应选D.[点评] 复数的四则运算是每年高考的必考内容之一,以送分题为主.1.L4[2020·天津卷] i 是虚数单位,复数7-i3+i=( )A .2+iB .2-iC .-2+iD .-2-i1.B [解析] 本题考查复数的运算,考查运算求解能力,容易题. 7-i 3+i =7-i 3-i 3+i 3-i =7×3-1+-3-7i32+12=2-i. 2.L4[2020·四川卷] 复数1-i22i=( )A .1B .-1C .iD .-i2.B [解析] 由复数的代数运算,得(1-i)2=-2i ,故原式=-1.15.L4[2020·上海卷] 若1+2i 是关于x 的实系数方程x 2+bx +c =0的一个复数根,则( )A .b =2,c =3B .b =-2,c =3C .b =-2,c =-1D .b =2,c =-1 15.B [解析] 考查复数的概念和一元二次方程中根与系数的关系(即韦达定理),可利用方程的两根是共轭复数解题.由韦达定理可知:-b =(1+2i)+(1-2i)=2,∴b =-2,c =(1+2i)(1-2i)=1+2=3,∴c =3,所以选B.此题还可以直接把复数根1+2i 代入方程中,利用复数相等求解.1.L4[2020·上海卷] 计算:3-i1+i=________(i 为虚数单位).1.1-2i [解析] 考查复数的除法运算,是基础题,复数的除法运算实质就是分母实数化运算.原式=3-i 1-i1-i2=1-2i. 1.L4[2020·山东卷] 若复数z 满足z (2-i)=11+7i(i 为虚数单位),则z 为( ) A .3+5i B .3-5i C .-3+5i D .-3-5i1.A [解析] 本题考查复数的概念及运算,考查运算能力,容易题.设z =a +b i ()a ,b ∈R ,由题意得()a +b i ()2-i =()2a +b +()2b -a i =11+7i ,即⎩⎪⎨⎪⎧ 2a +b =11,2b -a =7,解之得⎩⎪⎨⎪⎧a =3,b =5. 2.L4[2020·辽宁卷] 复数2-i2+i=( )A.35-45iB.35+45i C .1-45i D .1+35i2.A [解析] 本小题主要考查复数的除法运算.解题的突破口为分子分母同乘以分母的共轭复数.因为2-i 2+i =()2-i 2()2+i ()2-i =3-4i 5=35-45i ,所以答案为A.3.L4[2020·课标全国卷] 下面是关于复数z =2-1+i的四个命题:p 1:|z |=2,p 2:z 2=2i ,p 3:z 的共轭复数为1+i ,p 4:z 的虚部为-1,其中的真命题为( )A .p 2,p 3B .p 1,p 2C .p 2,p 4D .p 3,p 43.C [解析] 因为z =2-1+i =2()-1-i ()-1+i ()-1-i =-1-i ,所以z 的虚部是-1,z=-1+i ,||z =2,z 2=()-1-i 2=2i.故p 2,p 4是真命题, p 1,p 3是假命题,故选C.3.L4[2020·江苏卷] 设a ,b ∈R ,a +b i =11-7i1-2i(i 为虚数单位),则a +b 的值为________.3.8 [解析] 本题考查复数的四则运算.解题突破口为将所给等式右边的分子、分母同时乘以分母的共轭复数即可.因为11-7i 1-2i =11-7i 1+2i 5=5+3i ,所以a =5,b =3.12.L4[2020·湖南卷] 已知复数z =(3+i)2(i 为虚数单位),则|z |=________.12.10 [解析] 复数z =(3+i)2化简得,z =8+6i ,所以|z |=82+62=10.1.L4[2020·湖北卷] 方程x 2+6x +13=0的一个根是( ) A .-3+2i B .3+2i C .-2+3i D .2+3i1.A [解析] (解法一)x =-6±62-4×132=-3±2i,故选A.(解法二)将A ,B ,C ,D 各项代入方程验证,发现只有A 项中的-3+2i ,满足()-3+2i 2+6()-3+2i +13=9-12i -4-18+12i +13=0.故选A.1.L4[2020·广东卷] 设i 为虚数单位,则复数5-6ii=( )A .6+5iB .6-5iC .-6+5iD .-6-5i1.D [解析] 因为5-6i i =5-6i i i·i =5i +6-1=-6-5i ,所以选择D.1.L4[2020·福建卷] 若复数z 满足z i =1-i ,则z 等于( ) A .-1-i B .1-i C .-1+i D .1+i1.A [解析] 根据已知条件:z =1-i i =1-i ii·i=-1-i.所以选择A.1.L4[2020·全国卷] 复数-1+3i1+i=( )A .2+iB .2-iC .1+2iD .1-2i1.C [解析] 本小题主要考查复数的乘除法运算.解题的突破口为复数除法中的分母实数化.由-1+3i 1+i =-1+3i 1-i 1+i 1-i =2+4i 2=1+2i ,故选C.1.L4[2020·安徽卷] 复数z 满足(z -i)(2-i)=5,则z =( ) A .-2-2i B .-2+2i C .2-2i D .2+2i1.D [解析] 本题考查复数的简单运算.由()z -i ()2-i =5,得z -i =52-i ,所以z =i +5()2+i ()2-i ()2+i =2+2i.3.A2、L4[2020·陕西卷] 设a ,b ∈R ,i 是虚数单位,则“ab =0”是“复数a +bi为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.B [解析] 本小题主要考查充要条件的概念以及复数的相关知识,解题的突破口为弄清什么是纯虚数,然后根据充要条件的定义去判断.a +b i =a -b i ,若a +bi 为纯虚数,a=0且b ≠0,所以ab =0不一定有a +b i 为纯虚数,但a +bi 为纯虚数,一定有ab =0,故“ab=0”是复数a +bi为纯虚数”的必要不充分条件,故选B.3.A2、L4[2020·北京卷] 设a ,b ∈R ,“a =0”是“复数a +b i 是纯虚数”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件3.B [解析] ∵若a =0,则复数a +b i 是实数(b =0)或纯虚数(b ≠0).若复数a +b i 是纯虚数则a =0.综上,a ,b ∈R ,“a =0”是“复数a +b i 是纯虚数”的必要而不充分条件.L5 单元综合2020模拟题1.[2020·银川一中检测] 运行下面的程序,如果输入的n 是6,那么输出的p 是( ) INPUT “n=”; n k =1 p =1WHILE k<=n p =p*k k =k +1WEND PRINT p ENDA .120B .720C .1440D .50401. B [解析] 运行程序,k =1,p =1;k =2,p =2;k =3,p =6;k =4,p =24;k =5,p =120;k =6,p =720,输出720,选B.2.[2020·宁德质检] 运行如图K46-2所示的程序框图,输入下列四个函数,则可以输出的函数是( )A .f (x )=x 2B .f (x )=cos2xC .f (x )=e xD .f (x )=sinπx2.D [解析] 只有f (x )=sinπx 满足f (x )=0有解,且f (x )=f (x +2)成立.3.[2020·温州检测] 如图K46-5给出的是计算12+14+16+…+12 012的值的一个程序框图,则判断框内应填入的条件是( )图K46-5A .i ≤1 005?B .i >1 005?C .i ≤1 006?D .i >1 006?3.C [解析] 因为执行程序框图,输出的是12+14+16+…+12 012,所以判断框内应填入的条件是i ≤1 006?.4. [2020·银川一中检测] 若i 为虚数单位,图K46-1中网格纸的小正方形的边长是1,复平面内点Z 表示复数z ,则复数z1-2i的共轭复数是( )图K46-1A .-35i B.35I C .-i D .i 4.C [解析] 由题意z =2+i ,所以z 1-2i =2+i 1-2i =2+i 1+2i 1-2i1+2i=i ,则其共轭复数是-i ,选C. 5.[2020·延吉质检] 设z 1=1+i ,z 2=1-i(i 是虚数单位),则z 1z 2+z 2z 1=( )A .-iB .iC .0D .15.C [解析] 因为z 1=1+i ,z 2=1-i ,所以z 1z 2+z 2z 1=1+i 1-i +1-i 1+i =i -i =0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020全国各地模拟分类汇编(文):集合 【辽宁抚顺二中2020届高三第一次月考文】1.“lglgxy”是“1010xy”的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 【答案】A 【辽宁省瓦房店市高级中学2020届高三10月月考】已知集合}1|1||{xxM,)}32(log|{22xxyyN则NM ( )

A.}21||{xx B.}20||{xx C.}21||{xx D. 【答案】A 【山东省临清三中2020届高三上学期学分认定】设

BCAxxBxxxARUu则集合,,集合全集,1022

A.1x0x B. 1x0x C.2x0x D. 10x 【答案】B 【山东省曲阜师大附中2020届高三9月检测】已知I为实数集,2{|20},{|1}MxxxNxyx,则)(NCMI( )

A.{|01}xx B.{|02}xx C.{|1}xx D.

【答案】A

【陕西省宝鸡中学2020届高三上学期月考文】集合0,2,Aa,21,Ba,若

0,1,2,4,16ABU,则a的值( )

A.0 B.1 C.2 D.4

【答案】D 【山东省曲阜师大附中2020届高三9月检测】若

222250(,)|30{(,)|(0)}0xyxyxxyxymmxy







,则实数m的取值范围

是 . 【答案】5m

【陕西省宝鸡中学2020届高三上学期月考文】设不等式20xx解集为M,函数()ln(1||)fxx定义域为N,则MN为 ( )

A [0,1) B (0,1) C [0,1] D (-1,0] 【答案】A 【湖北省武昌区2020届高三年级元月调研】已知集合21{|,,1},{|230},1MyyxxRxNxxxx集合则( )

A.MN B.RMCN C.RMCM D.MNR 【答案】D 【黑龙江省绥棱一中2020届高三理科期末】集合3Axx, 1,2,3,4B ,则

()RCABI ()

A4 B3,4 C2,3,4 D1,2,3,4 【答案】B 【广东省执信中学2020-2020学年度第一学期期末】设集合23,logPa,Q,ab,若

Q=0PI,则Q=PU( )

A.3,0 B. 3,0,1 C.3,0,2 D.3,0,1,2 【答案】B 【浙江省杭州第十四中学2020届高三12月月考】若全集 U=R,集合 {|10}Axx,

{|30}Bxx,则集合 ()UABIð

(A) {|3}xx (B){|13}xx (C){|1}xx (D){|13}xx 【答案】D 【西安市第一中学2020-2020学年度第一学期期中】.已知集合P={x︱x2≤1},M={a}.若P

∪M=P,则a的取值范围是( ) A.(-∞, -1] B.[1, +∞) C.[-1,1] D.(-∞,-1] ∪[1,+∞) 【答案】C

【西安市第一中学2020-2020学年度第一学期期中】设集合22||cossin|,MyyxxxR,1{|||2,Nxxi}ixR为虚数单位,则

MNI为( )

A.(0,1) B.(0,1] C.[0,1) D.[0,1] 【答案】C 【北京市朝阳区2020届高三上学期期末考试】设集合U=1,2,3,4,

25M=xUxx+p=0,若2,3UCM=,则实数p的值 为 ( B ) A.4 B. 4 C.6 D.6 【北京市朝阳区2020届高三上学期期末考试】已知集合{(,)|,,}AxyxnynabnZ,{(,)|,Bxyxm2312,ym mZ}

.若存在

实数,ab使得ABI成立,称点(,)ab为“£”点,则“£”点在平面区域22{(,)|108}Cxyxy

内的个数是 ( )

A. 0 B. 1 C. 2 D. 无数个 【答案】A 【浙江省名校新高考研究联盟2020届第一次联考】已知集合

222

4312(,),,,(,)()(),,,04312xyMxyxyRNxyxaybrabRrxy





若存在Rba,,使得MN,则r的最大值是 ( ) A.3 B.5.2 C. 4.2 D. 2 【答案】C

【福建省南安一中2020届高三上期末】设全集1,2,3,4,5,6,7,8U,集合{1,2,3,5}A,{2,4,6}B,则图

中的阴影部分表示为( ) A.2 B.4,6 C.1,3,5 D.4,6,7,8 【答案】B 【山西省山西大学附属中学2020届高三9月月考文】已知集合2,RAxxx,4,ZBxxx,则ABI

A.0,2 B.0,2 C.0,2 D.0,1,2

【答案】D 【山西省山西大学附属中学2020届高三9月月考文】设集合RxxxA,914,

RxxxxB,0

3, 则A∩B=

A.]2,3( B.]25,0[]2,3(C. ),25[]3,( D. ),25[)3,( 【答案】D 【山西省山西大学附属中学2020届高三9月月考文】设全集U=R,

A=(2){|21},{|ln(1)}xxxBxyx,则右图中阴影部分表示的集合为 A.{|1}xx B.{|12}xx C.{|01}xx D.{|1}xx 【答案】B 【山东省兖州市2020届高三入学摸底考试】若集合

31{|,01},{|,01}AyyxxByyxx集合,则RACBI等于( )

A.[0,1] B.0,1 C.(1,) D.{1} 【答案】B 【四川绵阳市丰谷中学2020届高三第一次月考文】已知集合M= {|ln(1)}xyx,集合RxeyyNx,| (e为自然对数的底数),则NM=( )

A.}1|{xx B.}1|{xx C.}10|{xx D. 【答案】C 【四川省南充高中2020届高三第一次月考文】已知集合M= {|ln(1)}xyx,集合RxeyyNx,| (e为自然对数的底数),则NM=( )

A.}1|{xx B.}1|{xx C.}10|{xx D. 【答案】C 【2020四川省成都市石室中学高三第一次月考】集合{(,)|}Axyya,集合

{(,)|1,0,1|}xBxyybbb,若集合ABI,则实数a的取值范围是( )

A.(,1) B.,1 C.(1,) D.R 【答案】B 【云南省建水一中2020届高三9月月考文】若集合2|1,,|,AxxxRByyxxR,则ABI( )

A.|11xx B.|0xx C.|01xx D. 【答案】C 【2020浙江省杭州师范大学附属中学高三适应文】设集合12xxA,0xxB,则BA( )

A.10xx B.01xx C.1xx D.1xx 【答案】、A 【浙江省塘栖、瓶窑、余杭中学2020届高三上学期联考文】设全集合}4 ,3 ,2 ,1 ,0 ,1{U,集合}1,1{MCU,3 ,2 ,1 ,0N,则集合NM . 【答案】}3,2,0{ 【浙江省杭州市西湖高级中学2020高三开学模拟文】已知全集2230,Axxx



24Bxx,那么集合()UBCAI( )

A.14xx B.23xx C.23xx D.14xx 【答案】B 【宁夏银川一中2020届高三年级第一次月考文】设函数y=1x的定义域为M,集合N={y|y=x2,x∈R},则M∩N= ( ) A. B.N C.[1,+∞) D.M 【答案】B 【重庆市涪陵中学2020届高三上学期期末文】已知集合{|||1}Axx,{|02}Bxx,

则ABI A.(1,2) B.0,1 C.1,2 D.(1,1) 【答案】B 【江西省白鹭洲中学2020届高三第二次月考文】若集合

{1,0,1},{cos,},AByyxxA|则ABI( )

A.{0} B.{1} C.{0,1} D.{1,01} 【答案】B 【河北省保定二中2020届高三第三次月考】已知全集{1,2,3,4,5,6}U,{2,3,5}M,

{4,5}N,则集合{1,6}

A.MNU B.MNI C.()UCMNU D.()UCMNI 【答案】D 【河北省保定二中2020届高三第三次月考】文科做:集合3,2,1,21,31A的,具有性质“若

Px,则Px1”的所有非空子集的个数为( )

A. 3 B. 7 C. 15 D. 31 【答案】B 【2020湖北省武汉市部分学校学年高三新起点调研测试】若集合

2{|20},{|log(1)1},MxxNxxI则MN=

相关文档
最新文档