1.2.2学案设计
【创新设计】高一化学人教版必修1学案:1.2.2 气体摩尔体积 Word版含答案[ 高考]
![【创新设计】高一化学人教版必修1学案:1.2.2 气体摩尔体积 Word版含答案[ 高考]](https://img.taocdn.com/s3/m/3b0e9539a21614791711285e.png)
第2课时 气体摩尔体积[学习目标定位] 1.知道确定气体体积的主要因素,能叙述阿伏加德罗定律的内容。
2.知道气体摩尔体积的含义,记住标准状况下的气体摩尔体积。
3.能进行气体体积、物质的量、微粒数目之间的换算。
2.上表所得结论及其原因分析: 物质的体积与很多因素有关,主要有:①________________;②____________________;③______________________等。
(1)根据上表数据可知,1 mol 固体、液体的体积在同一温度下是________的,其主要原因是:________________而言,含有的粒子数目________,因此,物质体积的大小主要取决于________________________和________________。
粒子之间的____________是非常小的,所以其体积主要决定于粒子的________。
但因为粒子大小是不相同的,所以1 mol 不同的固态物质或液态物质的体积是不相同的。
(2)根据上表数据可知,0℃、101 kPa(标况)时1 mol O 2和1 mol H 2的体积________,原因是:对________________________________来说,含有的粒子数目________,且气体分子间的________要比分子本身的________大很多倍,故气体的体积主要取决于气体粒子之间的距离。
而在同温、同压下,任何气体________________可以看成是相等的,因此1 mol 气体的体积是相等的。
且在标准状况下,1 mol 任何气体所占的体积都约为22.4 L 。
知识点一 气体摩尔体积[探究活动]1.气体摩尔体积是______________________________,符号是________,单位是________。
标准状况下,气体摩尔体积约为________。
对于气体摩尔体积的理解,应注 意以下几点:(1)气体摩尔体积的适用范围是________。
新人教B版必修2高中数学课堂设计1.2.2空间中的平行关系(4)平面与平面平行学案

1.2.2 空间中的平行关系(4)——平面与平面平行自主学习学习目标1.掌握两平面平行的定义、图形的画法以及符号表示.2.理解两平面平行的判定定理及性质定理,并能应用定理.证明线线、线面、面面的平行关系.自学导引1.两个平面平行的定义:_______________________________________________________ _________________.2.平面与平面平行的判定定理:_______________________________________________________ ___.图形表示:符号表示:_______________________________________________________ _________________.推论:如果一个平面内有两条____________分别平行于另一个平面内的__________,则这两个平面平行.3.平面与平面平行的性质定理如果两个平行平面同时和第三个平面相交,那么____________________________.符号表示:若平面α、β、γ满足________________________,则a∥b.上述定理说明,可以由平面与平面平行,得出直线与直线平行.对点讲练知识点一平面与平面平行的判定例1已知E、F、E1、F1分别是三棱柱A1B1C1—ABC棱AB、AC、A1B1、A1C1的中点.求证:平面A1EF∥平面E1BCF1.点评要证平面平行,依据判定定理只需要找出一个平面内的两条相交直线分别平行于另一个平面即可.另外在证明线线、线面以及线面平行的判定线面平行面面平行时,常进行如下转化:线线平行―-------→面面平行的判定面面平行.――------→变式训练1 正方体ABCD—A1B1C1D1中,M、N、E、F分别为棱A1B1,A1D1,B1C1,C1D1的中点.求证:平面AMN∥平面EFDB.知识点二用面面平行的性质定理证线面平行与线线平行例2已知M、N分别是底面为平行四边形的四棱锥P—ABCD棱AB、PC的中点,平面CMN与平面PAD交于PE,求证:(1)MN∥平面PAD;(2)MN∥PE.点评该题充分体现了线线平行、线面平行、面面平行之间的相互转化关系.一般来说,证线面平行时,若用线面平行的判定定理较困难,改用面面平行的性质是一个较好的想法.变式训练2如图所示,正方体ABCD—A′B′C′D′中,点E在AB′上,点F在BD上,且B′E=BF.求证:EF∥平面BB′C′C.知识点三综合应用例3如图所示,在底面是菱形的四棱锥P—ABCD中,∠ABC=60°,PA=AC=a,PB=PD=2a,点E在PD上,且PE∶ED=2∶1.那么,在棱PC上是否存在一点F,使得BF∥平面AEC?证明你的结论.点评解答开放性问题,要结合题目本身的特点与相应的定理,大胆地猜想,然后证明.变式训练3如图所示,在正方体ABCD—A1B1C1D1中,E、F、G、H分别是棱CC1、C1D1、D1D、CD的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足______时,有MN∥平面B1BDD1.1.在空间平行的判断与证明时要注意线线、线面、面面平行关系的转化过程:2.注意两个问题(1)一条直线平行于一个平面,就平行于这个平面内的一切直线,这种说法是不对的,但可以认为这条直线与平面内的无数条直线平行.(2)两个平面平行,其中一个平面内的直线必定平行于另一平面,但这两个平面内的直线不一定相互平行,也有可能异面.课时作业一、选择题1.设平面α∥平面β,直线α,点B∈β,则在β内过点B的所有直线中( )A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在惟一一条与a平行的直线2.对于直线m、n和平面α,下列命题中是真命题的是( ) A.如果α,α,m、n是异面直线,那么n∥αB.如果α,α,m、n是异面直线,那么n与α相交C.如果α,n∥α,m、n共面,那么m∥nD.如果m∥α,n∥α,m、n共面,那么m∥n3.设m,n是平面α内的两条不同直线,l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是( ) A.m∥β且l1∥αB.m∥l1且n∥l2C.m∥β且n∥βD.m∥β且n∥l24.设α∥β,A∈α,B∈β,C是AB的中点,当A、B分别在平面α、β内运动时,那么所有的动点C( )A.不共面B.当且仅当A、B分别在两条直线上移动时才共面C.当且仅当A、B分别在两条给定的异面直线上移动时才共面D.不论A、B如何移动,都共面5.已知平面α外不共线的三点A,B,C到α的距离都相等,则正确的结论是( )A.平面ABC必平行于αB.平面ABC必与α相交C.平面ABC必不垂直于αD.存在△ABC的一条中位线平行于α或在α内二、填空题6.下面的命题在“________”处缺少一个条件,补上这个条件,使其构成真命题(m,n为直线,α,β为平面),则此条件应为________.⎭⎪⎬⎪⎫ααm∥βn∥β α∥β7.平面α∥平面β,△ABC 和△A′B′C′分别在平面α和平面β内,若对应顶点的连线共点,则这两个三角形________.8.下列命题正确的是________.(填序号)①一个平面内有两条直线都与另外一个平面平行,则这两个平面平行; ②一个平面内有无数条直线都与另外一个平面平行,则这两个平面平行;③一个平面内任何直线都与另外一个平面平行,则这两个平面平行;④一个平面内有两条相交直线都与另外一个平面平行,则这两个平面平行.三、解答题9.已知两条异面直线BA 、DC 与两平行平面α、β分别交于B 、A 和D 、C ,M 、N 分别是AB 、CD 的中点.求证:MN∥平面α.10.如图所示E、F、G、H分别是正方体ABCD—A1B1C1D1的棱BC、CC1、C1D1、AA1的中点,求证:(1)GE∥平面BB1D1D;(2)平面BDF∥平面B1D1H.【答案解析】自学导引1.没有公共点的两个平面2.如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行β,β,a∩b=P,a∥α,b∥αβ∥α相交直线两条直线3.它们的交线平行α∥β,γ∩α=a,γ∩β=b对点讲练例1证明∵EF是△ABC的中位线,∴EF∥BC.平面E1BCF1,平面E1BCF1,∴EF∥平面E1BCF1.∵A 1E1EB,∴四边形EBE1A1是平行四边形,∴A1E∥E1B.∵A1平面E1BCF1,E1平面E1BCF1,∴A1E∥平面E1BCF1.又∵A1E∩EF=E,∴平面A1EF∥平面E1BCF1.变式训练1 证明如图,连接A 1C 1,AC.设A 1C 1分别交MN 、EF 于P 、Q , AC 交BD 于O. 连接AP ,OQ ,B 1D 1. 在矩形A 1ACC 1中,PQ∥AO,∵M、N 、E 、F 分别是所在棱的中点, ∴MN 12D 1B 1,EF 12D 1B 1,∴P、Q 分别是四等分点,∴PQ=12AC ,又∵AO=12AC ,∴PQ AO.∴四边形PQOA 为平行四边形,∴AP∥OQ. ∴AP∥平面EFDB.又∵MN∥B 1D 1,EF∥B 1D 1, ∴EF∥MN,∴MN∥平面EFDB , ∴平面AMN∥平面EFDB.例2 证明 (1)取DC 中点Q ,连接MQ 、NQ.∵NQ 是△PDC 的中位线,∴NQ∥PD.平面PAD ,平面PAD ,∴NQ∥平面PAD.∵M 是AB 中点,ABCD 是平行四边形, ∴MQ∥AD,平面PAD ,平面PAD.从而MQ∥平面PAD.∵MQ∩NQ=Q ,∴平面MNQ∥平面PAD.平面MNQ ,∴MN∥平面PAD. (2)∵平面MNQ∥平面PAD , 平面PEC∩平面MNQ =MN , 平面PEC∩平面PAD =PE.∴MN∥PE.变式训练2 证明 方法一 连接AF 延长交BC 于M ,连接B′M. ∵AD∥BC,∴△AFD∽△MFB,∴AF MF =DF BF. 又∵BD=B′A,B′E=BF , ∴DF=AE.∴AF FM =AEEB′.∴EF∥B′M, 又平面BB′C′C,面BB′C′C,∴EF∥平面BB′C′C.方法二 作FH∥AD 交AB 于H ,连接HE. ∵AD∥BC,∴FH∥BC, 又平面BB′C′C ,平面BB′C′C,∴FH∥平面BB′C′C. 由FH∥AD,可得BF BD =BHBA,又BF =B′E,BD =AB′,∴B′E B′A =BHBA ,∴EH∥BB′,平面BB′C′C,面BB′C′C,∴EH∥平面BB′C′C,又EH∩FH=H , ∴平面FHE∥平面BB′C′C,平面FHE ,∴EF∥平面BB′C′C. 例3 解如图所示,当F 是棱PC 的中点时,BF∥平面AEC , 证明如下:取PE 的中点M ,连接FM , 则FM∥CE.①由EM =12PE =ED 知,E 是MD 的中点,连接BM 、BD ,设BD∩AC=O ,则O 为BD 的中点,所以BM∥OE.② 又BM∩FM=M ,③由①②③可得,平面BFM∥平面AEC. 又平面BFM ,所以BF∥平面AEC.变式训练3 M∈线段FH 解析 ∵HN∥BD,HF∥DD 1, H N∩HF=H ,BD∩DD 1=D , ∴平面NHF∥平面B 1BDD 1, 故线段FH 上任意点M 与N 连接, 有MN∥平面B 1BDD 1. 课时作业1.D [直线a 与B 可确定一个平面γ, ∵B∈β∩γ,∴β与γ有一条公共直线b. 由线面平行的性质定理知b∥a,所以存在性成立.因为过点B 有且只有一条直线与已知直线a 平行,所以b 惟一.] 2.C [若α,α,m ,n 是异面直线,如图(1)所示,此时n 与α相交,故A 不正确.B 项若α,α,m ,n 是异面直线,如图(2)所示,此时m 与n 为异面直线,而n 与α平行,故B 不正确.D 项如果m∥α,n∥α,m ,n 共面,如图(3)所示,m 与n 可能相交,故D 不正确.]3.B如图,在正方体ABCD—A1B1C1D1中,AB∥面A1B1CD,CD∥面A1B1BA,但面A1B1CD与面A1B1BA相交,故A不正确;取AD中点为E,BC中点为F,则EF∥面ABB1A1,C1D1∥面ABB1A1,但面ABB1A1与面EFC1D1不平行,故C不对;虽然EF∥AB且C1D1∥面A1B1BA,但是面EFC1D1与面A1B1BA 不平行,故D不正确.对于选项B,当l1∥m,l2∥n且α,α时,有l1∥α,l2∥α.又l1与l2相交且都在β内,∴α∥β,而α∥β时,无法推出m∥l1且n∥l2.∴l1∥m且l2∥n是α∥β的充分不必要条件.]4.D如图所示,A′、B′分别是A、B两点在α、β上运动后的两点,此时AB中点变成A′B′中点C′,连接A′B,取A′B中点E.连接CE、C′E.则CE∥AA′,∴CE∥α.C′E∥BB′,∴C′E∥β.又∵α∥β,∴C′E∥α.∵C′E∩CE=E.∴平面CC′E∥平面α.∴CC′∥α.所以不论A、B如何移动,所有的动点C都在过C点且与α、β平行的平面上.]5.D [A,B,C在平面α的异侧时,A错;而A,B,C在平面α同侧时,B错;A,B,C在平面α的异侧时,平面ABC有可能垂直于平面α,C错.]6.m,n相交7.相似解析由于对应顶点的连线共点,则AB与A′B′共面,由面与面平行的性质知AB∥A′B′,同理AC∥A′C′,BC∥B′C′,故两个三角形相似.8.③④9.证明过A作AE∥CD交α于E,取AE的中点P,连接MP、PN、BE、ED.∵AE∥CD,∴AE、CD确定平面AEDC.则平面AEDC∩α=DE,平面AEDC∩β=AC , ∵α∥β,∴AC∥DE.又P 、N 分别为AE 、CD 的中点,α,α,∴PN∥α.又M 、P 分别为AB 、AE 的中点, ∴MP∥BE,且α,α,∴MP∥α,又∵MP∩PN=P ,∴平面MPN∥α. 又平面MPN ,∴MN∥α.10.证明 (1)取B 1D 1中点O ,连接GO ,OB ,易证OG∥B 1C 1, 且OG =12B 1C 1,BE∥B 1C 1,且BE =12B 1C 1,∴OG∥BE 且OG =BE ,四边形BEGO 为平行四边形.∴OB∥GE.平面BDD 1B 1,平面BDD 1B 1,∴GE∥平面BDD 1B 1.(2)由正方体性质得B 1D 1∥BD, ∵B 1D 1平面BDF ,平面BDF , ∴B 1D 1∥平面BDF.连接HB ,D 1F ,易证四边形HBFD1是平行四边形,得HD1∥BF.∵HD1平面BDF,平面BDF,∴HD1∥平面BDF,∵B1D1∩HD1=D1,∴平面BDF∥平面B1D1H.。
高中数学 1.2.2《交集与并集》学案 新人教B版必修1

1.2.2交集与并集 (第1课时)一、教学目标:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;(2)能用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
重点:集合的交集与并集的概念;难点:集合的交集与并集。
二、知识梳理1、(1)交集:一般地,对于两个给定的集合A,B, 由属于集合A 又属于集合B 的所有元素构成的集合,叫做集合A 与B 的________记作:_______ ,读作:“A 交B ”即: A ∩B=_____________________交集的Venn 图表示说明:○1两个集合求交集,结果还是一个集合,是由集合A 与B 的公共元素组成的集合。
○2当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集(2)交集的性质:○1_____________○2______________○3_______________○4___________________拓展:求下列各图中集合A 与B 的交集(用彩笔图出)2、 (1)并集:一般地,对于两个给定的集合A,B, 由两个集合的所有元素构成的集合,叫做集合A 与B 的_____记作:_______,读作:“A 并B ”即: A ∪B=_______________________ 并集的Venn 图表示:说明:两个集合求并集,结果还是一个集合,是由集合A 与B 的所有元素组成的集合(重复元素只看成一个元素)。
(2)并集的性质:○1_____________○2______________○3_______________○4___________________拓展:求下列各图中集合A 与B 的并集 (用彩笔图出)3、 集合基本运算的一些结论:A ∩B ⊆A ,A ∩B⊆B ,A ∩A=A ,A ∩∅=∅,A∩B=B ∩AA ⊆A ∪B ,B ⊆A ∪B ,A ∪A=A ,A ∪∅=A,A ∪B=B ∪A若A ∩B=A ,则A ⊆B ,反之也成立若A ∪B=B ,则A ⊆B ,反之也成立若x ∈(A ∩B ),则x ∈A 且x ∈BA A若x ∈(A ∪B ),则x ∈A 或x ∈B三 例题解析题型一 集合交集的运算例1 求下列每对集合的交集:(1)A={x|x 2+2x -3=0}, B= {x|x 2+4x+3=0}(2) C={1,3,5,7}, D={2,4,6,8}例2 设A={x|x 是奇数},B={x|x 是偶数},求A Z, B Z, A B例3 已知A={(x, y )|4x+y=6}, B={(x, y)|3x+2y=7},求A B例4 已知A={x|x 是等腰三角形} , B={x|x 是直角三角形},求A B题型二 集合并集的运算例5 已知Q={x|x 是有理数},Z={x|x 是整数},求Q Z 。
1.2.2组合学案(人教A版选修2-3)

1.2.3组合与组合数公式课前预习学案一、预习目标预习:(1)理解组合的定义,掌握组合数的计算公式(2)正确认识组合与排列的区别与联系(3)会解决一些简单的组合问题二、预习内容1.组合的定义:2.组合与排列的区别与联系(1)共同点。
(2)不同点。
3.组合数mA= = =n4.归纳提升(1)区分组合与排列(2)组合数计算问题三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中课内探究学案一、学习目标(1)理解组合的定义,掌握组合数的计算公式(2)正确认识组合与排列的区别与联系(3)会解决一些简单的组合问题学习重难点:组合与排列的区分二、学习过程问题探究情境问题一:从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?问题二:从甲、乙、丙3名同学中选出2名去参加某天一项活动,有多少种不同的选法?合作探究:探究1:组合的定义?一般地,从n 个不同元素中取出m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.探究2:排列与组合的概念有什么共同点与不同点? 不同点: 排列与元素的顺序有关, 而组合则与元素的顺序无关.共同点: 都要“从n 个不同元素中任取m 个元素” 问题三:判断下列问题是组合问题还是排列问题?(1)设集合A={a ,b ,c ,d ,e },则集合A 的含有3个元素的子集有多少个? (2)某铁路线上有5个车站,则这条铁路线上共需准备多少种车票? 组合是选择的结果,排列是选择后再排序的结果.探究3:写出从a,b,c,d 四个元素中任取三个元素的所有组合abc , abd , acd ,bcd 每一个组合又能对应几个排列?问题四:你能得出组合数的计算公式吗?mn C = = =规定: 典例分析例1判断下列问题是排列问题还是组合问题?(1)a 、b 、c 、d 四支足球队之间进行单循环比赛,共需要多少场比赛? (2)a 、b 、c 、d 四支足球队争夺冠亚军,有多少场不同的比赛? 变式训练1 已知ABCDE 五个元素,写出取出3个元素的所有组合 例2计算下列各式的值(1)97999699C C组合 排列abc abd acd bcdabc baccababd baddabacd caddacbcd cbddbc(2)nn n nC C 321383+-+ 变式训练2 (1)解方程247353---=x x x A C (2)已知m8765C 10711求m m mCCC=+三、反思总结1区分组合与排列 2组合数的计算公式的说明① ② ③ ④ 四、当堂检测1、计算=++293828C C C ( )A120 B240 C60 D480 2、已知2n C =10,则n=( )A10 B5 C3 D23、如果436m m C A =,则m=( )A6 B7 C8 D9答案:1、A 2、B 3、B课后练习与提高1、给出下面几个问题,其中是组合问题的有( )①由1,2,3,4构成的2个元素的集合 ②五个队进行单循环比赛的分组情况 ③由1,2,3组成两位数的不同方法数④由1,2,3组成无重复数字的两位数 A ①③ B ②④ C ①② D ①②④2、rr C C -++1710110的不同值有( )A1个 B2个 C3个 D4个3、已知集合A={1,2,3,4,5,6},B={1,2},若集合M 满足B ⊂M ⊂A ,则这样的集合M 共有 ( )A12个 B13个 C14个 D15个 4、已知的值为与则n m ,43211+-==m nmn m nC C C5、若x 满足112x 1x 3C 2-+-+<x x C ,则x=6、已知的值求n ,15)4(420231355+-++++=n n n n A C n C参考答案:1C 2B 3C 4 m=14,n=34 5 2,3,4,5, 6 n=21.2.4组合应用题课前预习学案一、预习目标预习:(1)理解组合的定义,掌握组合数的计算公式(2)会解决一些简单的组合问题(3)体会简单的排列组合综合问题二、预习内容1.组合的定义:2.组合数mA= = =n3. 课本几个组合应用题,并将24页的探究写在下面三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中课内探究学案一、学习目标(1)理解组合的定义,掌握组合数的计算公式(2)会解决一些简单的组合问题(3)体会简单的排列组合综合问题学习重难点:解决一些简单的组合典型问题二、学习过程问题探究情境问题一:高一(1)班有30名男生,20名女生,现要抽取6人参加一次有意义的活动,问一下条件下有多少种不同的抽法?⑴只在男生中抽取⑵男女生各一半⑶女生至少一人问题二:10个不同的小球,装入3个不同的盒子中,每盒至少一个,共有多少种装法?合作探究:完成问题一问题二的方法总结①②典例分析例1六人按下列要求站一横排,分别有多少种不同的站法?(1)甲不站两端;(2)甲、乙必须相邻;(3)甲、乙不相邻;(4)甲、乙之间间隔两人;(5)甲、乙站在两端;(6)甲不站左端,乙不站右端. 变式练习1.、7名学生站成一排,下列情况各有多少种不同的排法?(1)甲乙必须排在一起;(2)甲、乙、丙互不相邻;(3)甲乙相邻,但不和丙相邻.例2.平面上给定10个点,任意三点不共线,由这10个点确定的直线中,无三条直线交于同一点(除原10点外),无两条直线互相平行。
学案1:1.2.2 假说—演绎法、自由组合定律的应用

假说—演绎法、自由组合定律的应用【学习目标】自由组合定律相关基因型表现型的推测及几率的计算方法。
【学习重点】1、自由组合定律中亲子代基因型的推测方法;2、自由组合定律中有关概率的计算方法。
【学习新课】一、如何计算某个体产生的配子类型及概率?例1:基因型为AaBbCC的生物可产生几种类型的配子?种,分别是。
例2:基因型为AaBbCc的生物产生abc配子的概率为。
计算方法:。
二、如何计算子代的基因型、表现型种类数?例3:AaBbCc与AaBbCC杂交,子代的基因型有种,表现型有种。
三、如何计算子代的基因型、表现型的概率?例4:基因型为YyRr的黄色圆粒豌豆与基因型为Yyrr的黄色皱粒豌豆杂交,后代产生基因型为YYRr的概率为,后代中黄色圆粒出现的概率为。
四、如何由子代推亲代的基因型?例5:某哺乳动物直毛(B)对卷毛(b)为显性,黑色(C)对白色(c)为显性。
这两种基因相对独立。
基因型为BbCc的个体与个体X交配,子代表现型比例为:直毛黑色︰卷毛黑色︰直毛白色︰卷毛白色=3 ︰3 ︰ 1 ︰1。
请推断个体X的基因型:。
五、有关概率的计算例6:已知人类多指(D)与手指正常(d)是一对相对性状,听力语言正常(T)与先天性聋哑(t)是一对相对性状。
在一个家庭中,父亲患多指病,母亲表现型正常,婚后生了一个手指正常但患先天性聋哑的孩子。
请推断:1、父母双方的基因型是什么?父,母。
2、如果他们再生一个小孩,正常的概率为;同时患两种病的概率为;只患多指病的概率为;只患先天性聋哑的概率为。
【巩固训练】1、Dd能产生种配子;Yyrr能产生种配子;YyRr能产生种配子;AaBbCcDdEEFf 能产生种配子。
2、AaBbCcDDEe产生ABcDe配子的概率为,产生ABcde配子的概率为。
3、(1)Dd与Dd杂交,子代的基因型有种,表现型有种。
(2)YyRr与YyRr杂交,子代的基因型有种,表现型有种。
(3)YYrrDD与yyRRdd的豌豆杂交得F1,F1自交产生的F2的基因型有种,表现型有种。
人教版七年级上册数学学案:1.2.2数轴

师生共用导学稿年级:七年级学科:数学执笔:审核:七年级数学组内容:1.2.2数轴课型:新授时间:9月〖课前回顾〗下列各数:25%、-2.5、3.14、-2、72 、π、-π、0、-0.0101、中正数有__________非负整数有________整数有_________负分数有__________有理数有___________________________〖学习目标〗1、掌握数轴的概念,和数轴的画法;(重点)2、理解数轴上的点与有理数的对应关系“并非一一对应”(难点)〖自主学习〗一、数轴概念:自学课本第8-9页数轴-3 -2 -10 1 2 3图中这条直线有方向(向右方向为正方向),有原点(用0表示),有单位长度,它是数轴。
小结:像上面这样规定了、、和的直线叫数轴。
1、下列各图表示的数轴是否正确?A ······答:-3-2-1 1 2 3B ····答:-2 -1 0 1C ·答:D ·····答:-2-1 0 1 22、读出数轴上的数B D AC E········-4-3-2-1 0 1 2 3答:A点表示-1,B点表示,C点表示,D点表示,E点表示。
3、在图中指出表示0,3,-3.5,-2,2的点A B C D E···········-4-3-2-1 0 1 2 3 4 5答:C点表示0,表示3,表示-3.5,表示-2,表示2.小结:数轴上原点右边的点表示的数是,原点左边的点表示的数是,原点表示的数是。
二、数轴画法画出数轴并在数轴上表示下列各数的点,再按数轴上从左到右的顺序将这些数重新排成一行 4,-3,-1.5,1.3,0小结:在数轴上画出表示数的点,可以先由这个数的符号确定它在原点的哪一边,然后在相应的方向上确定它与原点相距几个单位长度,最后画上点。
1.2.2一元二次方程的解法-- 公式法学案(湘教版九上)
1.2.2一元二次方程的解法-- 公式法学案(湘教版九上)学习目标:1、理解一元二次方程求根公式的推导过程,了解公式法的概念。
2、会熟练应用公式法解一元二次方程.学习重点:求根公式的推导和公式法的应用.学习难点:一元二次方程求根公式法的推导.学习过程一、问题引入:1、知识回忆(学生活动):用配方法解下列方程(1)6x 2-7x+1=0 (2)4x 2-3x=522、情境导入:用配方法解一元二次方程,计算比较麻烦,能否研究出一种更好的方法,迅速求得一元二次方程ax 2+bx +c = 0(a ≠0)的实数根呢?请同学独立完成下面这个问题.问题:已知ax 2+bx+c=0(a ≠0)且b 2-4ac ≥0,试推导它的两个根x 1x 2二、探究新知:请同学们带着以下问题用10分钟的时间自学完教材P35—P37动脑筋前的内容,并完成下面的自学检测中的练习。
1、自学思考题:⑴如何用配方法解一般形式的一元二次方程ax 2+bx +c = 0(a ≠0)? 配方时需要哪几个步骤?⑵方程(x+ab 2)2=a ac b 442-一定有实数根吗? ⑶ 一元二次方程ax 2+bx+c=0(a ≠0)的根由什么决定?求根公式的意义是什么?⑷ 为什么在得出求根公式时有限制条件b 2-4ac ≥0?(学生尝试,分组讨论交流,分析公式的特点,记忆公式。
)2、自学检测:⑴用公式法解方程2x 2-7x=3时,其中a 、b 、c 、的值分别为 。
⑵一元二次方程x 2+2=3x,则b 2-4ac= x 1= x 2=⑶方程x 2-5x-6=0的两根为x 1= x 2=⑷用公式法解方程3x 2-4=2x 时,其中a= b= c= b 2-4ac= 方程的根x 1= x 2= ⑸在一元二次方程2x 2-3x+2=0中,b 2-4ac= 此方程 实数解。
3、自学点拨:⑴一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定。
内蒙古乌海市第二十二中学七年级生物上册 1.2.2 生物与环境组成生态系统学案设计 (新版)新人教版
第二节生物与环境组成生态系统学习目标1.说出生态系统的定义、组成。
2.描述生态系统中的食物链和食物网。
3.举例说出某些有毒物质会通过食物链不断积累。
4.认同生态系统的自动调节能力是有限的。
增强爱护生物、保护生态系统的情感。
学习过程导入新课认真阅读“想一想,议一议”的内容,思考:有鸟吃草籽儿,草长不好,为什么把鸟挡在外面,草还是长不好呢?这是什么原因呢?这个实例说明了什么道理?探究新知一、什么是生态系统[自主学习]生态系统:在一定的范围内,与所形成的统一的整体叫作生态系统。
如一片、一个。
[合作探究1]地球上所有的生物都可以看作是生活在一个大的生态系统中。
这种说法对吗?二、生态系统的组成[自主学习2]自主归纳生态系统的组成。
生态系统[合作探究2]请用“→”表示构成生态系统的各种生物之间的关系。
三、食物链和食物网[自主学习3](1)食物链:在生态系统中,不同生物之间由于与的关系而形成的结构叫作食物链。
如。
(2)食物网:一个生态系统中往往有许多条,彼此,形成食物网。
(3)在生态系统中的和就是沿着食物链和食物网流动的。
[合作探究3](1)食物链的书写要求:①起始环节是,到结束。
②各种生物之间用“→”连接,“→”指向,“→”方向表示的流动方向。
(2)如果人类排放的有毒物质进入生态系统,这些有毒物质进入生物体内既不能分解又无法排出,会发生什么情况?四、生态系统具有一定的自动调节能力[自主学习4](1)生态平衡:生态系统中各种生物的和是的,称为生态平衡。
(2)生态系统具有一定的自动调节能力,但这种调节能力;如果外界干扰超过,生态系统会遭到破坏。
(3)生物种类越,成分越,自动调节能力越强。
随堂检测下图所示的各种成分在生态学上可以构成一个生态系统。
请据图回答:(1)光、二氧化碳、水等属于生态系统的部分,图中细菌扮演的“角色”是者。
(2)如果蛇屡遭捕杀,则短时间内黄雀的数量会。
(3)“螳螂捕蝉,黄雀在后”表述了食物链中部分生物的“吃与被吃”的食物关系。
学案1:1.2.2 气体摩尔体积
第2课时气体摩尔体积二、气体摩尔体积1.影响物质体积的因素{粒子数目粒子的大小粒子间的平均距离(1)决定固体或液体体积的主要因素{粒子数目粒子的大小(2)决定气体体积的主要因素{粒子的数目粒子间的平均距离{温度压强2.气体摩尔体积(1)定义:单位物质的量的物质所占的体积(2)符号:V m单位:L·mol-1、m3·mol-1(3)影响因素:温度、压强(4)标准状况数值:22.4 L·mol-1(5)物质的量(n)、气体摩尔体积(V m)、气体体积(V)的关系:V=n·V m3.阿伏加德罗定律(1)内容:同温、同压、同体积的任何气体含有相同数目的分子。
(2)适用范围:任何气体或混合气体(3)推论①同温、同压V1V2=n1n2②同温、同压ρ1ρ2=M1M2③同温、同体积p1p2=n1n2知识点一气体摩尔体积1.下列说法正确的是( )A.标准状况下,6.02×1023个分子所占的体积约是22.4 L B.0.5 mol H2所占的体积是11.2 LC.标准状况下,1 mol H2O的体积为22.4 LD.标准状况下,28 g CO与N2的混合气体的体积约为22.4 L知识点二阿伏加德罗定律及推论2.在两个密闭容器中,分别充有质量相同的甲、乙两种气体,若两容器的温度和压强均相同,且甲的密度大于乙的密度,则下列说法正确的是( )A.甲的分子数比乙的分子数多B.甲的物质的量比乙的物质的量少C.甲的摩尔体积比乙的摩尔体积小D.甲的相对分子质量比乙的相对分子质量小知识点三有关气体摩尔体积的计算3.在标准状况下有:①6.72 L CH4②3.01×1023个氯化氢分子③13.6 g硫化氢④0.2 mol氨气下列对这四种气体相关量的比较不正确的是( )A.体积:②>③>①>④B.密度:②>③>④>①C.质量:②>③>①>④D.氢原子数:①>④>③>②4.在标准状况下,H2和CO的混合气体7 L,质量为2.25 g,求H2和CO的体积分数。
高中数学人教A版必修5 1.2.2三角形中的几何计算学案
高中数学人教A版必修5第一章解三角形1.2解三角形的实际应用举例1.2.2三角形中的几何计算学案【课前自主学习】预习课本P16~18,思考并完成以下问题(1)已知三角形的两边及内角怎样求其面积?(2)已知三角形的面积如何求其他量?【新知探究•夯实知识基础】三角形的面积公式(1)S=12a·h a(h a表示a边上的高).(2)S=12ab sin C=12bc sin A=12ac sin B.[点睛]三角形的面积公式S=12ab sin C与原来的面积公式S=12a·h(h为a边上的高)的关系为:h=b sin C,实质上b sin C就是△ABC中a边上的高.【学练结合】1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)公式S=12ab sin C适合求任意三角形的面积()(2)三角形中已知三边无法求其面积()(3)在三角形中已知两边和一角就能求三角形的面积()解析:(1)正确,S=12ab sin C适合求任意三角形的面积.(2)错误.已知三边可利用余弦定理求角的余弦值,再求得正弦值,进而求面积.(3)正确.已知两边和两边的夹角可直接求得面积,已知两边和一边的对角,可求得其他边和角,再求面积.答案:(1)√ (2)× (3)√2.在△ABC 中,已知a =2,b =3,C =120°,则S △ABC =( ) A.32 B.332 C. 3D .3解析:选B S △ABC =12ab sin C =12×2×3×32=332.3.已知△ABC 的面积为32,且b =2,c =3,则A 的大小为( ) A .60°或120° B .60° C .120°D .30°或150°解析:选A 由S △ABC =12bc sin A 得 32=12×2×3×sin A , 所以sin A =32, 故A =60°或120°,故选A.4.若△ABC 的三边a ,b ,c 及面积S 满足S =a 2-(b -c )2,则sin A =________. 解析:由余弦定理得S =a 2-(b -c )2=2bc -2bc cos A =12bc sin A ,所以sin A +4cos A =4,由sin 2A +cos 2A =1,解得sin 2A +⎝ ⎛⎭⎪⎫1-sin A 42=1,sin A =817.答案:817【学以致用•探究解题方法】题型一 三角形面积的计算[典例] 已知△ABC 中,B =30°,AB =23,AC =2,求△ABC 的面积. [解] 由正弦定理,得sin C =AB sin B AC =23sin 30°2=32.∵AB >AC ,∴C=60°或C=120°.当C=60°时,A=90°,S△ABC =12AB·AC=23;当C=120°时,A=30°,S△ABC =12AB·AC sin A= 3.故△ABC的面积为23或 3.[解题规律总结][活学活用]△ABC中,若a,b,c的对角分别为A,B,C,且2A=B+C,a=3,△ABC的面积S△ABC=32,求边b的长和B的大小.解:∵A+B+C=180°,又2A=B+C,∴A=60°.∵S△ABC =12bc sin A=32,sin A=32,∴bc=2.①又由余弦定理得3=b2+c2-2bc cos A=b2+c2-2×2×1 2,即b2+c2=5.②解①②可得b=1或2.由正弦定理知asin A=bsin B,∴sin B=b sin Aa=b2.当b=1时,sin B=12,B=30°;当b=2时,sin B=1,B=90°.题型二三角恒等式证明问题[典例]在△ABC中,求证:a-c cos Bb-c cos A=sin Bsin A.证明:[法一化角为边]左边=a-c(a2+c2-b2)2acb-c(b2+c2-a2)2bc=a2-c2+b22a·2bb2-c2+a2=ba=2R sin B2R sin A=sin Bsin A=右边,其中R为△ABC外接圆的半径.∴a-c cos Bb-c cos A=sin Bsin A.[法二化边为角]左边=sin A-sin C cos Bsin B-sin C cos A=sin(B+C)-sin C cos Bsin(A+C)-sin C cos A=sin B cos Csin A cos C=sin Bsin A=右边(cos C≠0),∴a-c cos Bb-c cos A=sin Bsin A.[解题规律总结][活学活用]在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .求证:cos B cos C =c -b cos Ab -c cos A .证明:法一:由正弦定理,得c -b cos Ab -c cos A=2R sin C -2R sin B cos A 2R sin B -2R sin C cos A =sin (A +B )-sin B cos A sin (A +C )-sin C cos A =sin A cos B sin A cos C =cos Bcos C .法二:由余弦定理,得c -b cos Ab -c cos A =c -b 2+c 2-a 22c b -b 2+c 2-a 22b=a 2+c 2-b 22c b 2+a 2-c 22b =a 2+c 2-b 22ac b 2+a 2-c 22ab=cos B cos C.题型三 与三角形有关的综合问题命题点一:与三角形面积有关的综合问题1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知a cos B -c =b 2. (1)求角A 的大小;(2)若b -c =6,a =3+3,求BC 边上的高. 解:(1)由a cos B -c =b2及正弦定理可得, sin A cos B -sin C =sin B2,因为sin C =sin(A +B )=sin A cos B +cos A sin B , 所以sin B2+cos A sin B =0. 因为sin B ≠0,所以cos A =-12, 因为0<A <π,所以A =2π3. (2)由余弦定理可知,a 2=b 2+c 2-2bc cos 2π3=b 2+c 2+bc ,所以(3+3)2=b 2+c 2+bc =(b -c )2+3bc =6+3bc , 解得bc =2+2 3.设BC 边上的高为h ,由S △ABC =12bc sin A =12ah , 得12(2+23)sin 2π3=12(3+3)h, 解得h =1. 命题点二:三角形中的范围问题2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2c -a )cos B -b cos A =0.(1)求角B 的大小;(2)求3sin A +sin ⎝ ⎛⎭⎪⎫C -π6的取值范围.解:(1)由正弦定理得:(2sin C -sin A )cos B -sin B cos A =0, 即sin C (2cos B -1)=0,∵sin C ≠0,∴cos B =12,∵B ∈(0,π),∴B =π3. (2)由(1)知B =π3,∴C =2π3-A , ∴3sin A +sin ⎝ ⎛⎭⎪⎫C -π6=3sin A +cos A =2sin ⎝ ⎛⎭⎪⎫A +π6.∵A ∈⎝ ⎛⎭⎪⎫0,2π3,∴A +π6∈⎝ ⎛⎭⎪⎫π6,5π6,∴2sin ⎝ ⎛⎭⎪⎫A +π6∈(1,2], ∴3sin A +sin ⎝ ⎛⎭⎪⎫C -π6的取值范围是(1,2].命题点三:三角形中的最值问题3.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c . 已知sin (A -B )sin (A +B )=b +cc .(1)求角A 的大小;(2)当a =6时,求△ABC 面积的最大值,并指出面积最大时△ABC 的形状. 解:(1)由sin (A -B )sin (A +B )=b +cc ,得sin (A -B )sin (A +B )=sin B +sin Csin C .又sin(A +B )=sin(π-C )=sin C , ∴sin(A -B )=sin B +sin C , ∴sin(A -B )=sin B +sin(A +B ).∴sin A cos B -cos A sin B =sin B +sin A cos B +cos A sin B , ∴sin B +2 cos A sin B =0, 又sin B ≠0,∴cos A =-12. ∵A ∈(0,π),∴A =2π3.(2)S =12bc sin A =34bc =34×2R sin B ·2R sin C =3R 2sin B ·sin C =3R 2sin B ·sin ⎝ ⎛⎭⎪⎫π3-B=32R 2sin ⎝ ⎛⎭⎪⎫2B +π6-34R 2,B ∈⎝ ⎛⎭⎪⎫0,π3. 由正弦定理2R =a sin A =6sin 2π3=43,∴R =2 3.当2B +π6=π2,即B =C =π6时,S max =33,∴△ABC 面积的最大值为33,此时△ABC 为等腰钝角三角形. 题点四:多边形面积问题4.已知圆内接四边形ABCD 的边长AB =2,BC =6,CD =DA =4,求四边形ABCD 的面积S .解:如图,连接BD ,则S =S △ABD +S △CBD =12AB ·AD sin A +12BC ·CD sin C . ∵A +C =180°,∴sin A =sin C ,∴S=12sin A(AB·AD+BC·CD)=16sin A.在△ABD中,由余弦定理得BD2=AB2+AD2-2AB·AD cos A=20-16cos A,在△CDB中,由余弦定理得BD2=CD2+BC2-2CD·BC cos C=52-48cos C,∴20-16cos A=52-48cos C.又cos C=-cos A,∴cos A=-12,∴A=120°,∴S=16sin A=8 3.[解题规律总结]高中数学人教A版必修5第一章解三角形1.2应用举例1.2.2三角形中的几何计算同步检测基础达标题1.在△ABC中,A=60°,AB=1,AC=2,则S△ABC的值为()A.12 B.32 C.3 D.2 32.如果等腰三角形的周长是底边长的5倍,则它的顶角的余弦值为()A.-78 B.78C.-87 D.873.在△ABC中,已知面积S=14(a2+b2-c2),则角C的大小为()A.135°B.45°C.60°D.120°4.在△ABC中,若cos B=14,sin Csin A=2,且S△ABC=154,则b=()A.4 B.3 C.2 D.15.三角形的一边长为14,这条边所对的角为60°,另两边之比为8∶5,则这个三角形的面积为()A.40 3 B.20 3 C.40 2 D.20 26.在△ABC中,a=32,b=23,cos C=13,则△ABC的面积为________.7.如图,在△ABC中,已知B=45°,D是BC边上一点,AD=5,AC=7,DC =3,则AB=________.8.△ABC的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为________.9.在△ABC中,求证:b2cos 2A-a2cos 2B=b2-a2.10.如图所示,在梯形ABCD中,AD∥BC,AB=5,AC=9,∠BCA=30°,∠ADB=45°,求BD的长.能力达标题1.△ABC 的周长为20,面积为103,A =60°,则BC 的边长等于( )A .5B .6C .7D .82.在△ABC 中,已知b 2-bc -2c 2=0,且a =6,cos A =78,则△ABC 的面积等于( )A.152 B.15 C .2 D .33.在△ABC 中,若b =2,A =120°,其面积S =3,则△ABC 外接圆的半径为( )A. 3 B . C .2 3 D .4 4.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( )A.⎝ ⎛⎭⎪⎫152,+∞ B .(10,+∞) C .(0,10)D.⎝ ⎛⎦⎥⎤0,403 5.已知△ABC 的面积S =3,A =π3,则AB ·AC =________. 6.在锐角三角形ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若b a +ab =6cos C ,则tan C tan A +tan Ctan B=________. 7.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知sin A sin B =sin C tan C .(1)求a2+b2c2的值;(2)若a=22c,且△ABC的面积为4,求c的值.8.在△ABC中,角A,B,C所对的边分别是a,b,c,且a=2,2cos2B+C2+sinA=4 5.(1)若满足条件的△ABC有且只有一个,求b的取值范围;(2)当△ABC的周长取最大值时,求b的值.高中数学人教A版必修5第一章解三角形1.2应用举例1.2.2三角形中的几何计算同步检测解析基础达标题1.在△ABC中,A=60°,AB=1,AC=2,则S△ABC的值为()A.12 B.32 C.3 D.2 3解析:选B S△ABC =12AB·AC·sin A=32.2.如果等腰三角形的周长是底边长的5倍,则它的顶角的余弦值为()A.-78 B.78C.-87 D.87解析:选B设等腰三角形的底边长为a,顶角为θ,则腰长为2a,由余弦定理得,cos θ=4a2+4a2-a28a2=78.3.在△ABC中,已知面积S=14(a2+b2-c2),则角C的大小为()A.135°B.45°C.60°D.120°解析:选B∵S=14(a2+b2-c2)=12ab sin C,由余弦定理得:sin C=cos C,∴tan C=1.又0°<C<180°,∴C=45°.4.在△ABC中,若cos B=14,sin Csin A=2,且S△ABC=154,则b=()A.4 B.3 C.2 D.1解析:选C依题意得,c=2a,b2=a2+c2-2ac cos B=a2+(2a)2-2×a×2a×14=4a2,所以b=c=2a.因为B∈(0,π),所以sin B=1-cos2B=154,又S△ABC =12ac sin B=12×b2×b×154=154,所以b=2,选C.5.三角形的一边长为14,这条边所对的角为60°,另两边之比为8∶5,则这个三角形的面积为()A.40 3 B.20 3 C.40 2 D.20 2解析:选A设另两边长为8x,5x,则cos 60°=64x2+25x2-14280x2,解得x=2或x=-2(舍去).故两边长分别为16与10,所以三角形的面积是12×16×10×sin 60°=40 3.6.在△ABC中,a=32,b=23,cos C=13,则△ABC的面积为________.解析:∵cos C=13,0<C<π,∴sin C=223,∴S△ABC =12ab sin C=12×32×23×223=4 3.答案:4 37.如图,在△ABC中,已知B=45°,D是BC边上一点,AD=5,AC=7,DC =3,则AB=________.解析:在△ADC中,cos C=AC2+DC2-AD22·AC·DC=72+32-522×7×3=1114.又0°<C<180°,∴sin C=53 14.在△ABC中,ACsin B=ABsin C,∴AB=sin Csin B·AC=5314×2×7=562.答案:56 28.△ABC的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的半径为________.解析:不妨设b=2,c=3,cos A=1 3,则a2=b2+c2-2bc·cos A=9,∴a=3.又∵sin A=1-cos2A=22 3,∴外接圆半径为R=a2sin A=32·223=928.答案:92 89.在△ABC 中,求证:b 2cos 2A -a 2cos 2B =b 2-a 2.证明:左边=b 2(1-2sin 2A )-a 2(1-2sin 2B )=b 2-a 2-2(b 2sin 2A -a 2sin 2B ), 由正弦定理a sin A =bsin B ,得b sin A =a sin B , ∴b 2sin 2A -a 2sin 2B =0,∴左边=b 2-a 2=右边, ∴b 2cos 2A -a 2cos 2B =b 2-a 2.10.如图所示,在梯形ABCD 中,AD ∥BC ,AB =5,AC =9,∠BCA =30°,∠ADB =45°,求BD 的长.解:在△ABC 中,AB =5,AC =9,∠BCA =30°, 由正弦定理,得AB sin ∠BCA =ACsin ∠ABC,∴sin ∠ABC =AC ·sin ∠BCA AB =9×sin 30°5=910.∵AD ∥BC ,∴∠BAD =180°-∠ABC , 于是sin ∠BAD =sin ∠ABC =910.在△ABD 中,AB =5,sin ∠BAD =910,∠ADB =45°, 由正弦定理,得AB sin ∠ADB =BDsin ∠BAD,解得BD =922,故BD 的长为922.能力达标题1.△ABC 的周长为20,面积为103,A =60°,则BC 的边长等于( )A .5B .6C .7D .8 解析:选C 如图,由题意得 ⎩⎪⎨⎪⎧a +b +c =20,12bc sin 60°=103,a 2=b 2+c 2-2bc cos 60°,则bc =40,a 2=b 2+c 2-bc =(b +c )2-3bc =(20-a )2-3×40, ∴a =7.2.在△ABC 中,已知b 2-bc -2c 2=0,且a =6,cos A =78,则△ABC 的面积等于( )A.152 B.15 C .2 D .3 解析:选A 因为b 2-bc -2c 2=0, 所以(b -2c )(b +c )=0,所以b =2c .由a 2=b 2+c 2-2bc cos A ,解得c =2,b =4, 因为cos A =78,所以sin A =158,所以S △ABC =12bc sin A =12×4×2×158=152.3.在△ABC 中,若b =2,A =120°,其面积S =3,则△ABC 外接圆的半径为( )A. 3 B . C .2 3 D .4 解析:选B ∵S =12bc sin A ,∴3=12×2c sin 120°, ∴c =2,∴a =b 2+c 2-2bc cos A =4+4-2×2×2×⎝ ⎛⎭⎪⎫-12=23,设△ABC 外接圆的半径为R ,∴2R =a sin A =2332=4,∴R =2.4.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( )A.⎝ ⎛⎭⎪⎫152,+∞ B .(10,+∞) C .(0,10)D.⎝ ⎛⎦⎥⎤0,403 解析:选D ∵c sin C =a sin A =403, ∴c =403sin C .∴0<c ≤403.5.已知△ABC的面积S=3,A=π3,则AB·AC=________.解析:S△ABC =12·|AB|·|AC|·sin A,即3=12·|AB|·|AC|·32,所以|AB|·|AC|=4,于是AB·AC=|AB|·|AC|·cos A=4×12=2.答案:26.在锐角三角形ABC中,角A,B,C的对边分别是a,b,c,若ba+ab=6cos C,则tan Ctan A+tan Ctan B=________.解析:∵ba+ab=6cos C,∴a2+b2ab=6×a2+b2-c22ab,∴2a2+2b2-2c2=c2,又tan Ctan A+tan Ctan B=sin C cos Asin A cos C+sin C cos Bsin B cos C =sin C(sin B cos A+cos B sin A)sin A sin B cos C=sin C sin(B+A)sin A sin B cos C=sin2Csin A sin B cos C=c2ab cos C=c2aba2+b2-c22ab=2c2a2+b2-c2=4.答案:47.在△ABC中,内角A,B,C所对的边分别是a,b,c.已知sin A sin B=sin C tan C.(1)求a2+b2c2的值;(2)若a=22c,且△ABC的面积为4,求c的值.解:(1)由已知sin A sin B =sin C tan C 得cos C =c 2ab . 又cos C =a 2+b 2-c 22ab ,故a 2+b 2=3c 2,故a 2+b2c 2的值为3.(2)由a =22c, a 2+b 2=3c 2得b =102c . 由余弦定理得cos C =255,故sin C =55. 所以12×22c ×102c ×55=4,解得c =4.8.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且a =2,2cos 2 B +C2+sinA =45.(1)若满足条件的△ABC 有且只有一个,求b 的取值范围; (2)当△ABC 的周长取最大值时,求b 的值. 解:2cos 2B +C 2+sin A =45⇒1+cos(B +C )+sin A =45⇒sin A -cos A =-15. 又0<A <π,且sin 2A +cos 2A =1,有⎩⎪⎨⎪⎧sin A =35,cos A =45.(1)若满足条件的△ABC 有且只有一个,则有a =b sin A 或a ≥b ,则b 的取值范围为(0,2]∪⎩⎨⎧⎭⎬⎫103.(2)设△ABC 的周长为l ,由正弦定理得 l =a +b +c =a +asin A (sin B +sin C ) =2+103[sin B +sin(A +B )]=2+103[sin B +sin A cos B +cos A sin B ] =2+2(3sin B +cos B ) =2+210sin(B +θ),其中θ为锐角,且⎩⎪⎨⎪⎧sin θ=1010,cos θ=31010 ,l max =2+210,当cos B =1010,sin B =31010时取到. 此时b =asin A sin B =10.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.2数轴
学习目标:
1.掌握数轴概念,理解数轴上的点和有理数的对应关系.
2.会正确地画出数轴,利用数轴上的点表示有理数.
3.领会类比、数形结合的重要思想方法.
自主预习:
1.归纳画数轴时应注意的问题:
(1)数轴是一条(填“直线”“线段”或“射线”),故画的时候它(填“能”或“不能”)延伸,要出头.
(2)在直线上任取一点作为.
(3)确定,并用箭头表示.
(4)根据需要选取适当的.
2.观察上面数轴,哪些数在原点的左边,哪些数在原点的右边,由此你有什么发现?
3.每个数到原点的距离是多少?由此你又有什么发现?
4.分数或小数也可以用数轴上的点表示,例如从原点向右6.5个单位长度的点表示,从原点向左3
2
个单位长度的点表示.
5.画数轴,并在数轴上表示下列各数
+3,-4,1
4
,-1.5.
6.进一步引导学生归纳:
一般地,设a是一个正数,则数轴上表示数a在原点的边,与原点的距离是个单位长度;表示数-a的点在原点的边,与原点的距离是个单位长度.
跟踪练习:
1.请你画一条数轴.
2.利用上面的数轴表示下列有理数
1.5,-2,2,-
2.5,9
2,-2 3 ,0.
3.写出数轴上点A,B,C,D,E所表示的数:
变化演练:
1.在数轴上,表示数-3,
2.6,-3
5,0,41
3
,-22
3
,-1的点中,在原点左边的点有个.
2.数轴上与原点的距离是5的点有个,表示的数是.
3.在数轴上,点A,B分别表示-5和2,则线段AB的长度是.
4.在数轴上点A表示-4,如果把原点O向正方向移动1个单位长度,那么在新数轴上点A 表示的数是()
A.-5
B.-4
C.-3
D.-2
5.从数轴上表示-1的点出发,向左移动两个单位长度到点B,则点B表示的数是,再向右移动两个单位长度到达点C,则点C表示的数是.
6.数轴上的点A表示-3,将点A先向右移动7个单位长度,再向左移动5个单位长度,那么终点到原点的距离是个单位长度.
检测反馈:
1.下列数轴的画法正确的是()
2.下列命题正确的是()
A.数轴上的点都表示整数
B.数轴上表示5与-5的点分别在原点的两侧,并且到原点的距离都等于5个单位长度
C.数轴包括原点与正方向两个要素
D.数轴上的点只能表示正数和零
3.数轴上表示-2的点在原点的侧,距原点的距离是,表示6的点在原点的侧,距原点的距离是.
4.画数轴并表示出下列有理数:
22 7,-3,3,0,1.4,-1.7,-5
2
.。