2009-2010-1线代A卷参考答案

合集下载

完整word版线性代数考试题及答案解析

完整word版线性代数考试题及答案解析

WORD格式整理……_…_学年第一学期期末考试-20102009_…__…_试卷《线性代数》…__…__…_分钟完卷。

分,1201、本试卷共6页,五个大题,满分100答卷说明:_…_…__…号2、闭卷考试。

…学)线(_总分五三四一二_…__…题号_…__…_分数_…__…_…________________ :_____________ 总分人:评阅人…_名…姓…) 分分,共24一、单项选择题。

(每小题得分……)级封班(11?31_…__…111?3__?…行列式【】1._1?311…__…_3111?_…_业……专3021(B) (D)(A) (C) …__…__…???A?A32?3?A阶方阵,数2. 】设,为,则【_…__)_6?624?24 (D) (A) (C) (B) _密_系(n,BA,阶方阵,则下列式子一定正确的是【】3.已知为…__…__…_222B?2(A?B)AB?A?BAAB? (A) (B)_…_…__…_22B?A?B?B)(A?)(A BA?AB (D) (C)_…__…_…_?0??aA?A3A【】4.设,则为阶方阵, _…__……243aaaa (D) (A) ( B) (C)AB等价,则有 5.设矩阵与【】专业技术参考资料WORD格式整理R(A)?R(B)R(A)?R(B) (A) (B)R(A)?R(B)R(A)R(B)的大小不能确定 (C) 和 (D)n Ax?0Ax?0A r有非零解的系数矩阵【】6.设,则元齐次线性方程组的秩为的充分必要条件是r?nr?nr?n nr? (B) (C) (D) (A)a,a,,a(m?2) 向量组】【 7. 线性相关的充分必要条件是m21a,a,,a (A) 中至少有一个零向量m12a,a,,a (B) 中至少有两个向量成比例m12a,a,,a m?1(C) 个向量线性表示中每个向量都能由其余m21a,a,,a m?1(D) 个向量线性表示中至少有一个向量可由其余m21n A与对角阵相似的充分必要条件是阶方阵】8. 【nn)?R(A A个互不相同的特征值有(A) (B)n AA一定是对称阵个线性无关的特征向量 (D)(C)有) 分,共15二、填空题。

09年10月线性代数(经管类)试题答案

09年10月线性代数(经管类)试题答案

全国2009年10月高等教育自学考试线性代数(经管类)试题答案一、单项选择题(本大题共10小题,每小题2分,共20分)1.行列式0111101111011110------第二行第一列元素的代数余子式=21A ( B )A .2-B .1-C .1D .2A .21 B .1 C .34 D .23.设n 阶矩阵A 、B 、C 满足E ABC =,则=C ( A ) A .ABB .BAC .11--B AD .11--A B4.已知2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c A 的行列式1|-=A |,则=-1*)(A ( A )A .⎪⎪⎭⎫ ⎝⎛----d cb aB .⎪⎪⎭⎫ ⎝⎛--a cb dC .⎪⎪⎭⎫ ⎝⎛--a cb dD .⎪⎪⎭⎫ ⎝⎛d cb as 21()的秩不为零的充分必要条件是( B ) A .s ααα,,,21 中没有线性相关的部分组 B .s ααα,,,21 中至少有一个非零向量 C .s ααα,,,21 全是非零向量D .s ααα,,,21 全是零向量6.设A 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 有非零解的充分必要条件是( C ) A .n A r =)(B .m A r =)(C .n A r <)(D .m A r <)(7.已知3阶矩阵A 的特征值为1,0,1-,则下列矩阵中可逆的是( D ) A .AB .A E -C .A E --D .AE -2..A .⎪⎪⎪⎭⎫⎝⎛101010001B .⎪⎪⎪⎭⎫⎝⎛-101010001C .⎪⎪⎪⎭⎫⎝⎛100020001D .⎪⎪⎪⎭⎫⎝⎛101011001433241214321A .1B .2C .3D .410.设矩阵⎪⎪⎪⎭⎫⎝⎛=001010A ,则二次型Ax x T 的规范形为( D )A .232221z z z ++ B .232221z z z --- C .232221z z z -- D .232221z z z -+二、填空题(本大题共10小题,每小题2分,共20分) 11.已知行列式422221111-=-+-+b a b a b a b a ,则=2211b a b a_________.12.已知矩阵)1,1,2(),1,2,1(-=-=B A ,且B A C =,则=C _________.13.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=333022A ,则=⎪⎭⎫⎝⎛-121A _________.14.已知矩阵方程B XA =,其中⎪⎪⎭⎫ ⎝⎛=1201A ,⎪⎪⎭⎫⎝⎛-=0111B ,则=X _________.15.已知向量组a ),2,3(,)2,2,2(,)3,2,1(321===ααα线性相关,则数=a _________.16.设)0,1,0(,)0,0,1(21==αα,且22211,αβααβ=-=,则21,ββ的秩为_________.17.设3元方程组增广矩阵为⎪⎪⎪⎭⎫ ⎝⎛++01001010a a ,若方程组无解,则a 的取值为_______.19.已知向量k )2,,3(=α与k ),1,1(=β正交,则数=k _________.20.已知321321)3()1(),,(x a x x a x x x f +++-=正定,则数a 的取值范围是_________. 21.计算行列式1111111111111111---+-----+=x x x x D 的值.解:1111111111111111111111111111---+-----=---+-----+=x x x x x xx x x x x D 4000000000111x xx xx =--=.22.设矩阵⎪⎪⎭⎫⎝⎛-=2112A ,E 为2阶单位矩阵,矩阵B 满足E B BA +=,求||B .解:由E B BA +=,得E E A B =-)(,1)(--=E A B ,其中⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=-111110012112E A ,21111||=-=-E A ,21||||1=-=-E A B . 23.已知线性方程组⎪⎩⎪⎨⎧=-=-=-313232121ax x a x x a x x ,(1)讨论常数321,,a a a 满足什么条件时,方程组有解.(2)当方程组有无穷多解时,求出其通解(要求用它的一个特解和导出组的基础解系表示).解:(1)⎪⎪⎪⎭⎫ ⎝⎛+---→⎪⎪⎪⎭⎫ ⎝⎛---=3121321110110011101110011),(a a a a a a a b A⎪⎪⎪⎭⎫ ⎝⎛++--→32121000110011a a a a a ,0321=++a a a 时,方程组有解. (2)),(b A ⎪⎪⎪⎭⎫ ⎝⎛--→000011001121a a ⎪⎪⎪⎭⎫ ⎝⎛-+-→0000110101221a a a ,⎪⎩⎪⎨⎧=+=++=333213211x x x a x x a a x ,通解为⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+1110221k a a a . 24.设向量组T T T T )3,6,2,0(,)1,3,0,1(,)3,1,1,2(,)0,1,4,1(4321-=--=--==αααα,求该向量组的秩及一个极大无关组,并将其余向量用此极大无关组线性表示.解:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=3130631120140121),,,(4321αααα→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------3130643024700121→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------2470643031300121→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------612210643031300121→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------15500930031300121→⎪⎪⎪⎪⎪⎭⎫⎝⎛--3100310031300121 →⎪⎪⎪⎪⎪⎭⎫⎝⎛--0000310031300121→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--0000310060303021→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--0000310020103021→⎪⎪⎪⎪⎪⎭⎫⎝⎛-0000310020101001,向量组的秩为3,321,,ααα是一个极大线性无关组,=4α32132ααα+-.25.设矩阵⎪⎪⎭⎫ ⎝⎛=3421A ,⎪⎪⎭⎫ ⎝⎛-=1205B ,存在TT )1,1(,)2,1(21-==αα,使得,511αα=A 22αα-=A ;存在T T )1,0(,)1,3(21==ββ,使得2211,5ββββ-==B B .试求可逆矩阵P ,使得B AP P =-1.解:由题意,A 的特征值为1,5-,对应的线性无关特征向量为21,αα;B 的特征值为1,5-,对应的线性无关特征向量为21,ββ.令⎪⎪⎭⎫ ⎝⎛-==1211),(211ααP ,则1P 是可逆矩阵,使得⎪⎪⎭⎫ ⎝⎛-=-1005111AP P ;令⎪⎪⎭⎫ ⎝⎛==1103),(212ββP ,则2P 是可逆矩阵,使得⎪⎪⎭⎫ ⎝⎛-=-1005212BP P . 由上可得=-111AP P 212BP P -,从而B P P A P P=--)()(121112,即B P P A P P =---)()(1211121,令=P ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-=--13/113/23101121131110312111121P P ,则P 是可逆矩阵,使得B AP P =-1.26.已知323121321222),,(x x x x x x x x x f ++=,求正交变换Py x =,将二次型化为标准形.解:原二次型的矩阵为⎪⎪⎪⎭⎫⎝⎛=011101110A .=-||A E λλλλ111111------λλλλλλλλ1111111)2(1212112-----=-------==++-=101011001)2(λλλ)2()1(2-+λλ,A 的特征值为=1λ12-=λ,23=λ.对于=1λ22=λ,解齐次方程组0)(=-x A E λ:=-A E λ⎪⎪⎪⎭⎫ ⎝⎛---------111111111→⎪⎪⎪⎭⎫ ⎝⎛000000111 ,⎪⎩⎪⎨⎧==--=3322321x x x x x x x ,取=1α⎪⎪⎪⎭⎫ ⎝⎛-011,=2α⎪⎪⎪⎭⎫⎝⎛-101, 先正交化:11αβ=⎪⎪⎪⎭⎫⎝⎛-=011,1211222||||),(βββααβ-=⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛-=12/12/101121101. 再单位化:⎪⎪⎪⎪⎭⎫ ⎝⎛-==02/12/1||||1111ββp ,==222||||1ββp ⎪⎪⎪⎪⎭⎫⎝⎛--6/26/16/1. 对于23=λ,解齐次方程组0)(=-x A E λ:=-A E λ⎪⎪⎪⎭⎫ ⎝⎛------211121112→⎪⎪⎪⎭⎫⎝⎛--000110101 ,⎪⎩⎪⎨⎧===333231x x x x x x ,取=3α⎪⎪⎪⎭⎫ ⎝⎛111,单位化为==333||||1ααp ⎪⎪⎪⎪⎭⎫ ⎝⎛3/13/13/1.令⎪⎪⎪⎪⎭⎫⎝⎛---=3/16/203/16/12/13/16/12/1P ,则P 是正交矩阵,经过正交变换Py x =后,原二次型化为标准形 2322212y y y +--. 四、证明题(本题6分)27.设向量组321,,ααα线性无关,且332211αααβk k k ++=.证明:若01≠k ,则向量组32,,ααβ也线性无关.证:设033221=++ααβx x x ,即0)()(33132212111=++++αααx x k x x k x k .由321,,ααα线性无关,可得⎪⎩⎪⎨⎧=+=+=00031321211x x k x x k x k .若01≠k ,则方程组的系数行列式01001001321≠=k k k k ,只有0321===x x x ,所以32,,ααβ线性无关.。

09-10第一学期3学分(A卷)参考答案

09-10第一学期3学分(A卷)参考答案

⎛2 5 4 5 5⎞ 解方程组 ( A − E ) x = 0 求得 λ = 1 的一个特征向量为 ξ1 = ( 2, 4,5 ) ,单位化得 p1 = ⎜ ⎜ 15 , 15 , 3 ⎟ ⎟ ⎝ ⎠
T
T
⎛ 2 ⎞ ⎛ 3 ⎞ ⎛ −1 ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ 2 0 2 ξ1 = p1 − p3 = ( p1 + p2 ) − ( p2 + p3 ) = ⎜ ⎟ − ⎜ ⎟ = ⎜ ⎟ , ⎜ 0 ⎟ ⎜ 1 ⎟ ⎜ −1 ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ 4⎠ ⎝ 2⎠ ⎝ 2 ⎠ ⎛ 3⎞ ⎛ 2⎞ ⎛ 1 ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ −1 0 1 ξ 2 = p2 − p4 = ( p2 + p3 ) − ( p3 + p4 ) = ⎜ ⎟ − ⎜ ⎟ = ⎜ ⎟ ⎜1⎟ ⎜0⎟ ⎜ 1 ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ 2⎠ ⎝1⎠ ⎝ 1 ⎠
T T
为 A 相应于 λ2 的两个线性无关的特征向量,证明向量组 α1 , α 2 , α 3 , α 4 线性无关。 (1)解:由 b1 , b2 ," , bn 由 a1 , a2 ," , an 的线性表出关系式可知 B = AK ,其中
T (kB) = A(kB) − ( kB)T A = kAB − kBT A = kT ( B) 故 T 是 V 上的一个线性变换。
(2). T ( E11 ) = ⎜
⎛ 0 −2 ⎞ ⎛0 1⎞ ⎟ = −2 E12 − 2 E21 , T ( E12 ) = ⎜ ⎟ = E12 − E21 − 4 E22 ⎝ −2 0 ⎠ ⎝ −1 − 4 ⎠
A = ( a1
a2
a3 " an ) , B = ( b1

厦门大学线代期末试题及答案

厦门大学线代期末试题及答案

一.(填空题(每小题4分,共20分)1. 令 ()()1,0,3,5,2,8,6,9,TTA B ==-则T A B =_______, T AB =______________.2.若三元非齐次线性方程组的系数矩阵的秩为2,123,,βββ是它的 三个解向量,且12(2,6,3),T ββ+=-23(6,8,5),T ββ+=-则该线性方 程组的通解是__________.3. 设123625t A t t ⎛⎫⎪=- ⎪ ⎪-⎝⎭的行向量线性相关,则实数t 满足的条件是 _________.4.令ii A 是三阶矩阵A 的元素ii a 的代数余子式(i =1,2,3),若A 的特征值为3,4,5,则112233A A A ++=__________.5.若101020105A c c ⎛⎫ ⎪=+ ⎪ ⎪-⎝⎭是正定矩阵,则c 的取值范围为 ___________.二. 选择题(每小题3分,共15分)1. 设A 、B 均为n 阶正交矩阵,则____________. (1)A+B 为正交矩阵 (2)A-B 为正交矩阵(3) B AB 为正交矩阵(4)k AB 为正交矩阵(k >0为实数)厦门大学2009级《线性代数A 》课程试卷学院___年级__姓名____学号____主考教师: 试卷类型:(A 卷) 2010.06.132.设A 为m 阶可逆矩阵,B 为n 阶可逆矩阵,则可逆分块矩阵 OA DB O ⎛⎫= ⎪⎝⎭的逆矩阵是____________.(1)11A O O B --⎛⎫⎪⎝⎭ (2)11O B A O --⎛⎫⎪⎝⎭ (3) 11B O OA --⎛⎫⎪⎝⎭ (4)11O A BO --⎛⎫ ⎪⎝⎭3. 设α与β是线性无关的单位向量,则α与β的内积必 ____________.(1) >0 (2)<0 (3)>1 (4)<14.设A 为n 阶可逆矩阵,1*,,T A A A -分别是A 的转置矩阵,逆矩阵和伴随矩阵,若ξ是A 的特征向量,则下列命题中的不正确的是________.(1)ξ是T A 的特征向量 (2)2ξ是1A -的特征向量 (3)3ξ是*A 的特征向量(4) 4ξ是kA 的特征向量(k 为常数)5.设222623222,000222000A B ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则____ ____. (1)A 与B 是相似的且是合同的 (2)A 与B 是相似的但不是合同的 (3)A 与B 不是相似的但是合同的 (4)A 与B 不是相似的也不是合同的三.(15分)试求五元齐次线性方程组123451234512345330,30,0x x x x x x x x x x x x x x x ++++=⎧⎪-++-+=⎨⎪+++-=⎩的解空间V(作为5R 的子空间)的一组规范(标准)正交基。

江西农业大学2009—2010第一学期《线性代数》试卷_(A) - 副本

江西农业大学2009—2010第一学期《线性代数》试卷_(A) - 副本

线
= (−2, 4, b)T 线性相关,则 a = − 2
b=
6
.
二.单项选择题(2 分×6=12 分)
1. 设 A, B 均为 n 阶可逆矩阵,则下列各式不 正确 的是( B ). . .. A. ( A + B ) =A + B
T T T
B. ( A + B )
T
−1
=A−1 + B −1
T T
·
a13 a23 = ( D ). a33
D. −16
C. 16
永远支持软件 097
——第 1 页 本试卷共 4 页
3. 设 α1 , α 2 是非齐次线性方程组 Ax = b 的解, β 是对应的齐次方程组 Ax = 0 的解,则
Ax = b 必有一个解是( D ).
A. α1 + α 2 B. α1 − α 2 C. β + α1 + α 2 D. β + α1 +
2 2
姓名:
AB = BA
.

5. 已知 3 阶方阵 A 的特征值分别为 1 ﹑ −2 ﹑ 3 ,则 A =
− 6 , A−1 = − 1 , A∗ = 36 ,
6
A − 2E = 4 .
软 件 097

6. 方程组 内
λ x1 + x2 = 0
x1 + λ x2 = 0
有非零解,则 λ = 1 或 − 1 .

C. ( AB )
−1
= B −1 A−1 a12 a22 a32
D. ( AB ) = B A
院系:


线代I2009A

线代I2009A

③ A 与 B 有相同的秩; (必要)
.

A 与 B 有相同的正、负惯性指数.
5.设 A, B 均为正交矩阵, 则 ( AB ) , A* , A3 , B −1 AB, A* A 中, 共有( ③ )个正交矩阵。
T
① ③
3; 5;
② 0; ④ 4.
得 分
二、填空题 (每小题 3 分,共 15 分)
2 2
④ ⎢

⎢ 2A
⎥ ⎡ BT ≅⎢ 3B ⎥ ⎦ ⎣
⎤ ⎥. A ⎦
T
4.设 A, B 为 n 阶实对称矩阵,则 A 与 B 合同的充要条件为 ( ④ ① A 与 B 有相同的特征值;(充分)
).
② A 与 B 有相同的行列式;
第 1 页 共 5页
学院
姓名
学号
任课老师
选课号/座位号
………密………封………线………以………内………答………题………无………效……
1 ) 6
1 ⎡ AB, AC, AD⎤ ⎦ 6⎣
第 2 页 共 5页
学院
姓名
学号
任课老师
选课号/座位号
………密………封………线………以………内………答………题………无………效……
⎧ x + 5 y + z = 0, 三、已知 R 3 中直线 l : ⎨ 平面 π : x − 4 y − 8 z + 12 = 0. ( 共 12 分) ⎩ x − z + 4 = 0,
零九 至二零
十 零
学年第
一 学期期

考试
课程考试题
A 卷 ( 120
分钟) 考试形式: 闭 卷
考试日期 20 10

09-10线代(A)参考答案-黄加增

福建农林大学东方学院考试试卷(A )2009 ——2010 学年第二学期课程名称: 线性代数 考试时间专业 年级 班 学号 姓名一、填空题(每小题3分,共15分)1、矩阵21002n-⎛⎫ ⎪⎝⎭=21002n ⎛⎫⎪⎝⎭. 2、已知向量组123(1,1,2,1),(1,0,0,2),(1,4,8,)k ααα'''===---线性相关,则k = 2 .3、设123012001A ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭则()1A -*=123012001---⎛⎫⎪- ⎪ ⎪⎝⎭.4、设12,ηη为非齐次线性方程组Ax B =的两个解,则12ηη-是0Ax =的解.5、矩阵104021413A ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭对应的二次型是22212313232382f x x x x x x x =+++-.二、单项选择题(选择正确答案的字母填入括号) (每小题2分,共10分)1 、设4阶行列式D 的第i 行第j 列的元素为ij a , 则D 的展开式中, 下列各项符号为负的是( C ). A . 44332211a a a a ; B . 44312312a a a a ; C . 42341321a a a a ;D . 44322113a a a a .2、 已知向量组4321,,,αααα是线性无关,则 ( A )A .14433221αααααααα-+,+,+,线性无关;B .14433221αααααααα-,-,-,-线性无关;C .14433221αααααααα++,+,+,线性无关;D . 14433221αααααααα-,-,+,+线性无关. 3、已知A , B 均为n 阶矩阵,则必有( D ). A . 2222)(B AB A B A ++=+ B . B A AB ''=')(C.. =AB 0时,=A 0或=B 0 D . 若AY AX =且0≠A ,则Y X =4、设n 阶矩阵A 满足A A =2, 则A 的特征值为( D ). A .0;B .1;C .1±;D . 0或1.5、如果⎪⎩⎪⎨⎧=+-=++=+02020z y kx z ky x z kx有非零解,则( B )A .0=kB .2=kC .1-=kD .2-=k三、计算题(每小题10分,共20分)1、计算行列式1111111111111111x x D y y+-=+-.解:111100111100x x x D y y y +--=+--101000011000x x y y-=-=22001100x x y x y y-=- 2、101210325A ⎛⎫ ⎪= ⎪ ⎪--⎝⎭,用初等变换求1A -.解:()101100101100,210010012210325001022301A E ⎛⎫⎛⎫ ⎪ ⎪=→-- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭5110011011002201221001051100272171001122⎛⎫-- ⎪⎛⎫⎪⎪=--=- ⎪ ⎪ ⎪ ⎪-⎝⎭- ⎪⎝⎭15112251171122A -⎛⎫-- ⎪ ⎪=- ⎪ ⎪- ⎪⎝⎭四、解答题(每小题10分,共20分):1、已知矩阵方程01022010X X ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,求矩阵X .解:0102010220102010X X X E ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+⇒-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭11022110X -⎛⎫⎛⎫⇒= ⎪ ⎪-⎝⎭⎝⎭ 102111021X --⎛⎫⎛⎫⇒= ⎪⎪-⎝⎭⎝⎭,又111112121----⎛⎫⎛⎫= ⎪ ⎪---⎝⎭⎝⎭则102110211421021102111X ------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪⎪ ⎪⎪ ⎪-----⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭2、设123(1,1,2,4),(0,3,1,2),(3,0,7,14),ααα=-==45(1,1,2,0),(2,1,5,6)αα=-=求向量组的秩及其一个极大无关组.解:用这些向量作为列向量得矩阵A ,并对其施行初等行变换1234103121031210312130110330301101(,,,)2172501101000114214060224200000A αααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪--⎪ ⎪ ⎪''''==→→ ⎪ ⎪ ⎪ ⎪ ⎪⎪--⎝⎭⎝⎭⎝⎭因此:(1)其向量组的秩为3;(2)124,,ααα是向量组12345,,,,ααααα的一个最大线性无关组五、应用题(本题13+12=25分)1、设方程组123123123(2)2212(5)4224(5)1x x x x x x x x x λλλλ-+-=⎧⎪+--=⎨⎪--+-=--⎩问当λ 取何值时, (1)方程组有唯一解;(2)方程组无解;(3)方程组有无穷多解,求其通解解:系数行列式为3212222202(5)2(4)22222254254245011r r r r λλλλλλλλλλ+--------⨯-----=------- 22(1)(10)λλ=---,(1)因此当1,10λλ≠≠时,方程组有唯一解; (2)当10λ=时,51151112128221222225420999099924511018184500063A ⎛⎫⎛⎫ ⎪ ⎪--⎛⎫⎪ ⎪ ⎪=--→--→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭ ⎪ ⎪⎝⎭⎝⎭,方程组无解;(3)当1λ=时,122112212442000024420000A --⎛⎫⎛⎫ ⎪ ⎪=-→ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭通解为:12123122010001x x k k x -⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,其中12,k k 为任意实数。

2012-2013-1线性代数A试卷与答案

,,s、向量组的秩为r,则向量组中三、计算题(每题12分,共60分)1、计算行列式:32142143143243212、已知=⎪⎪⎪⎭⎫ ⎝⎛--101111121X ⎪⎪⎪⎭⎫ ⎝⎛523231141,求矩阵X3、求线性方程组⎪⎪⎩⎪⎪⎨⎧-=----=+-+-=+-+=+-+261782314620324321432143214321x x x x x x x x x x x x x x x x 的通解。

4、求向量组1234(1,1,1),(1,1,0),(1,0,0),(1,2,3)αααα====-的一个极大线性无关组,并把其余向量用极大无关组线性表示.5、求⎪⎪⎪⎭⎫ ⎝⎛--=100010221A 的特征值与特征向量.分)若123,,ξξξ是方程组0AX =的基础解系,证明1323122,2,2ξ+ξξ+ξξ+ξ也是该方程组的基础解系.2012-2013-1线性代数A 参考答案与评分标准一、 判断题(每题2分,共20分)二、填空题(每空2分,共10分)1、-2;2、43、41; 4、1; 5、111,,632三、计算题(每题12分,共60分)1、解:原式=32110214101431043210……………………………………………(2分) =111022203110432110321121411431432110------= …………………………(6分) =11314021113112011111131120----=----=---- …………(10分)=160113140=- ……………………………………………………(12分)2、解:1141121132111325101X -⎡⎤⎡⎤⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦----------------------4分 121100121100111010012110101001022101⎡⎤⎡⎤⎢⎥⎢⎥-→---⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦1310011031202201211001001100212111001122⎡⎤--⎢⎥--⎡⎤⎢⎥⎢⎥---→⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦--⎢⎥⎣⎦--------------10分131221141223113201102232511465122⎡⎤⎡⎤--⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥----⎢⎥⎣⎦⎣⎦--------------------------12分 3、解:先对增广矩阵进行初等行变换⎪⎪⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎪⎪⎭⎫⎝⎛-------------→⎪⎪⎪⎪⎪⎭⎫⎝⎛---------000000000012210032112442012210122100321121611178231461203211--------------------6分同解方程组⎪⎩⎪⎨⎧=++=+-+1220324324321x x x x x x x ,一个特解⎪⎪⎪⎪⎪⎭⎫⎝⎛-0011-----------------------8分选4x 为自由未知量,得到齐次线性方程组的一个基础解系:⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-210121,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-1105----------------------10分原方程组的通解为+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-2101211k ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-11052k +⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-0011-------------------------12分 4、解:秩为 3,--------------------------6分一个极大线性无关组为123,,ααα. --------------------------10分412335αααα=-+-;--------------------------12分5、解:特征方程为|λE -A|=1010221---+λλλ=(λ+1) (λ-1)2 =0,------4分 ∴A 的全部特征值为λ1=-1,λ2=λ3=1。

2009-2010-1线性代数A卷答案

2009-2010(上)线性代数参考答案A一、填空题(每空3分,共21分)1.12; 2.100122010345⎛⎫ ⎪⎪ ⎪⎝⎭; 3.14-或; 4.1(3)2A E +; 5.3; 6.(2),(3),(5);7.555,,423; 24; 8.t 9.相关。

二、(5分)解:312586254310532273222735324112411211010001----==--- ——(3分)07979209726497112===- ——(2分)三、(10分)解:由 2(2)AB A B A E B A =+⇒-=, ——(2分)而101(2)110012A E ⎛⎫⎪-=- ⎪ ⎪⎝⎭, ——(2分)101301(2,)110110012014A E A ⎛⎫ ⎪-=- ⎪ ⎪⎝⎭——(2分) 101301100522011211010432012014001223--⎛⎫⎛⎫ ⎪ ⎪------ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭——(2分) 故 522432223B --⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭——(2分)四、(10分)解: 123411321326(,,,)151103142A αααα--⎛⎫ ⎪-- ⎪== ⎪- ⎪⎝⎭——(2分) 1000010200100000⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭——(2分) 由行最简形可得:3A R = , ——(2分)123,,ααα是向量组A 的一个极大无关组 ,——(2分) 422αα= 。

——(2分)五、(10分)解:由4元 Ax b =的 ()3R A =,可知 0Ax =的基础解系只含一个向量ξ。

—— (2分)由于 123,,ηηη是Ax b =的三个解向量,根据解的性质,可知 2312ηηη+- 是0Ax =的解向量。

—— (4分)令12334256ξηηη⎛⎫ ⎪ ⎪=--= ⎪ ⎪⎝⎭,则方程的通解为3243()5465x k k R ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=+∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭。

全国自考历年线性代数试题及答案

全国2010年1月高等教育自学考试 《线性代数(经管类)》试题及答案课程代码:04184试题部分说明:本卷中,A T 表示矩阵A 的转置,αT 表示向量α的转置,E 表示单位矩阵,|A |表示方阵A 的行列式,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩.一、单项选择题(本大题共10小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将代码填写在题后的括号内。

错选、多选或未选均无分。

1.设行列式==1111034222,1111304z y x zy x则行列式( )A.32B.1C.2D.38 2.设A ,B ,C 为同阶可逆方阵,则(ABC )-1=( ) A. A -1B -1C -1 B. C -1B -1A -1 C. C -1A -1B -1D. A -1C -1B -13.设α1,α2,α3,α4是4维列向量,矩阵A =(α1,α2,α3,α4).如果|A |=2,则|-2A |=( ) A.-32 B.-4 C.4D.324.设α1,α2,α3,α4 是三维实向量,则( ) A. α1,α2,α3,α4一定线性无关 B. α1一定可由α2,α3,α4线性表出 C. α1,α2,α3,α4一定线性相关D. α1,α2,α3一定线性无关5.向量组α1=(1,0,0),α2=(1,1,0),α3=(1,1,1)的秩为( ) A.1 B.2 C.3D.46.设A 是4×6矩阵,r (A )=2,则齐次线性方程组Ax =0的基础解系中所含向量的个数是( )A.1B.2C.3D.47.设A 是m ×n 矩阵,已知Ax =0只有零解,则以下结论正确的是( ) A.m ≥nB.Ax =b (其中b 是m 维实向量)必有唯一解C.r (A )=mD.Ax =0存在基础解系8.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---496375254,则以下向量中是A 的特征向量的是( ) A.(1,1,1)T B.(1,1,3)T C.(1,1,0)TD.(1,0,-3)T9.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--111131111的三个特征值分别为λ1,λ2,λ3,则λ1+λ2+λ3 = ( )A.4B.5C.6D.710.三元二次型f (x 1,x 2,x 3)=233222312121912464x x x x x x x x x +++++的矩阵为( )A.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡963642321 B.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡963640341 C.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡960642621 D.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡9123042321二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档