高数两个重要极限教案
高数 夹逼准则与两个重要极限

对于形如$sum_{n=1}^{infty}frac{sin n}{n}$和$sum_{n=1}^{infty}(1 + frac{1}{n})^{n}$的级数,可以利 用两个重要极限的结论判断其收敛性。
综合应用夹逼准则和两个重要极限
在判断一些复杂级数的收敛性时,可以将夹逼准则和两个重要极限结合起来使用,通过巧妙的放缩和变换, 找到夹逼的级数或函数,从而判断原级数的收敛性。
解答
首先找到与原数列相关的不等式关系, 即∑(ξi1)^2Δxi≤∑f(ξi)Δxi≤∑(ξi)^2Δxi。然 后验证不等式两侧的数列极限是否存 在且相等。对于左侧数列和右侧数列, 当n趋向于无穷大时,其极限均为1/3 (可以通过定积分的几何意义或定积 分计算公式进行验证)。因此根据夹 逼准则,原数列的极限存在且为1/3, 即函数f(x)=x^2在区间[0,1]上的定积 分为1/3。
利用(1+1/x)^x在x→∞时的极限为e,可以对一些涉及指数函数的 复杂表达式进行逼近处理。
在求解某些微分方程时,可以利用这两个重要极限简化方程形 式或求解过程。
在概率论与数理统计中,这两个重要极限也经常出现,例如在 求解某些概率分布或统计量的极限性质时。
THANKS FOR WATCHING
感谢您的观看
02
利用第二个重要极限求解幂函数、指数函数相关问题,如求
(1+x)^(1/x)在x=0处的极限值。
结合洛必达法则等其他求极限方法,可以求解更复杂的极限问
03
题。
拓展:其他常见极限形式及求解方法
∞/∞型极限
通过分子分母同除以某个趋于 无穷的变量来转化为0/0型极 限求解。
1^∞型极限
高数第一章极限存在准则 两个重要极限

当
时,
当
时,
lim
n
xn
a
令N max N1 , N2,
则n当 N
时, 有
由条件 (1) a yn xn zn a
即xn a ,
l故im
n
xn
a
.
2
例1. 证明
证: 利用夹逼准则 由.
n
n2
1
n2
1
2
n2
1
n
n2
n2
且
lim
n
n
n2 2
lim
n
1
1
n2
1
lim n
n
n2
1
n2
1
2
n2
1
n
1
3
准则1’ 函数极限存在的夹逼准则
当 x (x0 , ) 时, g(x) f (x) h(x) , 且
a
lim
n
xn
b
(m)
b ( 证明略 ) 5
例2. 设
证明数列
极限存在 . (P49)
证: 利用二项式公式(P270 ), 有
xn (1 1n)n
1
n 1!
1 n
n(n1) 2!
1 n2
n(n1)(n2) 3!
1 n3
n(n1)(nn1) n!
1 nn
11
x x0
2
高数1 极限存在准则与两个重要极限

假设 xn xn1 ,
则 x n 1 a x n a x n 1 x n
即 xn单增.
x n 1 从而 1, xn
又 x n a x n 1 ,
2 则 xn a xn1 .
2 a x n 1 a x n a x n 1 1 a 1 xn xn xn a xn xn
即 A g( x) A .
2 0, 当 0 x x0 2时, 有 h( x ) A ,
即 A h( x ) A .
取 min{ 1 , 2 , 0 }. 当 0 x x0 时,
有 A g ( x ) f ( x ) h( x ) A ,
x 2 sin 1 cos x 2 Solution. x x x x 2 sin 2 sin 1 cos x 2 2 2 lim lim lim x x x 2 x 0 x 0 x 0
1 cos x lim x x 0 x x 2 sin 2 sin 2 2 2 lim x x 2 x 0
即 f ( x) A .
lim f ( x ) A.
x x0
x0 ,
x0 ,
x 注意:极限过程为“ x x0 ” (或 x x , x , x 等).
如果数列 xn , yn , zn满足 准则I’: (1) yn xn zn ( n 1, 2,)
1
四. 第二重要极限
1 x lim (1 ) e x x
下面分三步进行讨论.
(1)设x依次按自然数n变化,则函数为 1 n xn f ( n) (1 ) n n 1 n( n 1) 1 n( n 1) ( n n 1) 1 xn 1 2 n 1! n 2! n! n n
大学高数极限题讲解教案

一、教学目标1. 理解极限的概念和性质。
2. 掌握极限的运算法则和求极限的方法。
3. 能够运用极限知识解决实际问题。
二、教学重点1. 极限的概念和性质。
2. 极限的运算法则。
3. 求极限的方法。
三、教学难点1. 极限的运用。
2. 求极限的方法。
四、教学过程(一)导入1. 复习函数的定义、连续性等概念。
2. 提出问题:如何判断函数在某一点的极限是否存在?(二)讲解极限的概念和性质1. 介绍极限的概念:函数在某一点的极限是指当自变量无限趋近于某一点时,函数值无限趋近于某一值。
2. 讲解极限的性质:(1)极限的保号性:如果函数在某一点的极限存在,那么函数在该点附近也有确定的符号。
(2)极限的保序性:如果函数在某一点的极限存在,那么函数在该点附近的值不会小于(大于)极限值。
(3)极限的可乘性:如果函数在某一点的极限存在,那么函数在该点的乘积的极限等于各函数极限的乘积。
(三)讲解极限的运算法则1. 介绍极限的运算法则:(1)极限的四则运算法则:极限的加减、乘除运算,可以分别对函数进行加减、乘除运算后再求极限。
(2)极限的复合运算法则:如果内函数在某一点的极限存在,那么外函数在该点的极限存在。
(3)极限的等价无穷小替换法则:当两个无穷小量的比值在极限过程中趋于1时,可以将其中一个无穷小量替换为另一个无穷小量。
(四)讲解求极限的方法1. 介绍求极限的方法:(1)直接法:直接运用极限的定义和性质求解。
(2)等价无穷小替换法:利用等价无穷小替换求解。
(3)洛必达法则:当函数在某一点的极限为“0/0”或“∞/∞”型时,可以使用洛必达法则求解。
(4)夹逼准则:当函数在某一点的极限存在时,可以通过夹逼准则证明。
(五)举例讲解1. 举例说明极限的概念、性质、运算法则和求极限的方法。
2. 让学生尝试求解一些简单的极限题目,教师进行点评和指导。
(六)课堂小结1. 总结本节课的主要内容,强调重点和难点。
2. 布置课后作业,巩固所学知识。
极限存在准则 两个重要极限

∴ {xn } 是单调递增的 ;
1 1 1 1 xn < 1 + 1 + + L + < 1 + 1 + + L + n −1 2! n! 2 2 1 = 3 − n − 1 < 3, ∴ {xn } 是有界的 ; 2 1n ) ∴ lim x n 存在. 记为lim(1 + ) = e (e = 2.71828L n→∞ n→∞ n
x → +∞
)
= lim (9
x → +∞
x
1 x x
)
1 x + 1 3
0
1 x
3 1 = 9 ⋅ lim 1 + x x → +∞ 3
1 3x ⋅x
= 9⋅e = 9
∴ lim cos x = 1,
x→0
∴ lim(1 − cos x ) = 0,
x→0
又 Q lim 1 = 1,
x→0
sin x ∴lim = 1. x→0 x
例3
1 − cosx . 求 lim 2 x→0 x
x 2sin2 2 lim 2 x→0
解: 原式 =
x
1 sin = lim x 2 x→0 2
1 令t= , x
x→0
1t lim(1 + x) = lim(1 + ) = e. x→0 t →∞ t
1 x
1 x
lim(1 + x) = e
例.
解: 令 t = −x, 则
t →∞
lim(1+ 1)−t t
1
= lim
高等数学中两个重要极限

X -10 -100
(1 1 ) x 2.868 2.732 x
-1000 -10000
2.720 2.7183
-100000 …
2.71828
li( m 11)xe x x
li(m 11)xe (1 )
x x
令t 1,
lim (1
1
)
x
lim(1
1
t)t
e
x x
x
t 0
1
lim(1 t)t e (1 )
1 x 1 ,
sinx coxs
CD
即coxs sinx1. x
sin x lim 1.
x x0+
Ox BA
例 1 求 lim tan x x 0 x
解
limtanxlim (sinx1)
x 0 x x 0 cosx x
sinx 1 lim( )
x0 x cosx
limsinxlim 1 x0 x x0 cosx
0.001 …. 0.9999998
X -1 -0.5
sin x
0.84147 0.95885
x
-0.1 0.99833
-0.01 0.99998
-0.001 …. 0.9999998
lim six n1 x 0 x
证明 limsinx1. x x0+
证
即sinxxtanx
各 式 同 除 以 s i n x ( 因 为 s i n x 0 ) ,得
t0
1
推 广 为 某 过 程 中 的 无 穷 小 量 ,lim (1) e 某过程
使 用lim (11)xe 须 注 意 : x x
(1)类 型 :
高数上册第一章第六节极限存在准则两个重要极限

【几何解释】
单调减少
单调增加
广义单调数列
*
相应地,函数极限也有类似的准则
统称为单调有界准则
准则Ⅱ及
【准则 】
准则
*
【补例2】
【证】 (舍去) 递推公式 注意到
*
【说明】
该方法只有在证明了极限存在时,才能由递推公式,通过解方程的方法求极限,否则可能导致荒谬的结论
如
①式两端取极限后 得
①
从而得
矛盾
*
【例4】
【解】 【例5】 【解】
*
【例6】
【解】 【例7】 【解】
*
三、小结
【两个准则】
【两个重要极限】 夹逼准则; 单调有界准则 .
*
【思考题】
求极限
*
【思考题解答】
抓大头
*
二、两个重要极限
三、小结 思考题
第六节 极限存在准则 两个重要极限
一、极限存在准则
一、极限存在准则
【证】
【夹逼准则】
*
上两式同时成立,
上述数列极限存在的准则可以推广到函数的极限
【注意】
02
利用夹逼准则Ⅰ关键是将xn作适当缩放,得到极限容易求的数列yn与zn,且极限相等.
准则 Ⅰ和准则 Ⅰ'称为夹逼准则.
利用夹逼准则Ⅰ′关键是对不易求极限的f(x)作适当缩放,得到极限容易求的g(x)与h(x),且极限相等.
*
【补例1】
【解】 由夹逼准则得 抓大头
*
【练习】
[提示] [提示] [提示]单调有界准则
*
[提示] [提示] 由夹逼定理得 【注】记住[x]的运算性质: 当 x > 0 时
2.【单调有界准则】
大学高数课件重要极限

a ? ? ? yn ? xn ? zn ? a ? ? , 即 xn ? a ? ? 成立,
?
lim
n? ?
xn
? a.
2019/9/10
微积分--两个重要极限
6
注:1) 条件(1)可放宽为:
? N ? 0, 使得当 n ? N 时, yn ? x n ? zn
x? ?
x
解
原式 ?
lim[(1
? 1 )? x ]-1=e-1
一般地:
lim
x ??
???1
?
x ??
k x
x
? ??
?
?x
?
lim
x ??
?????1
?
k x
x
?k ??
k
? ? ?
=ek
(1? 型) ?
?
2019/9/10
微积分--两个重要极限
18
例12
求
lim( 3 ? x )2x x?? 2 ? x
?
.
8.
对于代数和中 的各无穷小不 能分别替换.
2019/9/10
微积分--两个重要极限
14
例7 求 lim tan x ? sin x .(0 型)
x? 0 sin 3 2 x
0
错解 当x ? 0时, tan x ~ x , sin x ~ x .
? 原式 ? lim x ? x ? 0. x? 0 (2x )3
2019/9/10
微积分--两个重要极限
3
又
un
?
1?
1?
1 (1 ? 2!
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
讲授新课35’
学生练习
教师评价35
(5)
2
32
321
lim
2
x
x x
x x
→∞
--
-+。
二、讲授新课
1.第一个重要极限(熟记)
1
sin
lim
=
→x
x
x
(含有三角函数的)
变形推广:
1)
例1:求
解:=
例2:求
解:=
例3:求极限:
练习:1.
分析讲解
启发式教学
对比教学
讲练结合
PPT
布置作业归纳总结10’
2.第二个重要极限(熟记)
1
lim(1)x
x
e
x
→∞
+=
适用于型的幂指函数
变形形式
(1)()
()
1
lim(1)
()
f x
f x
e
f x
→∞
+=
(2)
1
()
)0
lim1())f x
x
f x e
→
+=
f(
(
特征:底为两项之和,第一项为1,第二项是无穷小量,指数与第二项互为倒数
例1:求极限
例2:求极限
例3:求极限
例4:求极限
=
例5:求极限
=
练习:计算下列极限
1.
2.
四、课堂小结(提问回答)
两个重要极限。
课后作业自出题课后体会。