数值分析试题及答案.(推荐文档)

数值分析试题及答案.(推荐文档)
数值分析试题及答案.(推荐文档)

一、单项选择题(每小题3分,共15分)

1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字.

A .4和3

B .3和2

C .3和4

D .4和4

2. 已知求积公式

()()2

1

121

1()(2)636f x dx f Af f ≈

++?

,则A =( )

A . 16

B .13

C .12

D .2

3

3. 通过点

()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( )

A .

()00l x =0,

()110l x = B .

()00l x =0,

()111l x =

C .()

00l x =1,()111

l x = D . ()

00l x =1,()111

l x =

4. 设求方程

()0

f x =的根的牛顿法收敛,则它具有( )敛速。

A .超线性

B .平方

C .线性

D .三次

5. 用列主元消元法解线性方程组

1231231

220223332

x x x x x x x x ++=??

++=??--=? 作第一次消元后得到的第3个方程( ).

A .

232

x x -+= B .232 1.5 3.5

x x -+=

C .

2323

x x -+= D .

230.5 1.5

x x -=-

单项选择题答案

1.A

2.D

3.D

4.C

5.B

分 评卷人

二、填空题(每小题3分,共15分)

1. 设T

X )4,3,2(-=, 则=1||||X ,2||||X = .

2. 一阶均差

()01,f x x =

3. 已知3n =时,科茨系数()()()

33301213,88C C C ===,那么

()

33C = 4. 因为方程()420

x f x x =-+=在区间

[]1,2上满足 ,所以()0f x =在区间

内有根。

5. 取步长0.1h =,用欧拉法解初值问题

()211y

y y

x y ?'=+??

?=?

的计算公式 .

填空题答案

1. 9和29

2.

()()

0101

f x f x x x --

3. 1

8 4. ()()120

f f < 5. ()12

00.1

1.1,0,1,210.11k k y y k k y +???? ?=+? ?=+????

=??L

得 分 评卷人

三、计算题(每题15分,共60分)

1. 已知函数

21

1y x =

+的一组数据:

求分

段线性插值函数,并计算

()

1.5f 的近似值.

计算题1.答案

1. 解 []0,1x ∈, ()1010.510.50110x x L x x --=?+?=---%

[]1,2x ∈,()210.50.20.30.81221x x L x x --=?+?=-+--%

所以分段线性插值函数为

()[][]10.50,10.80.31,2x x L x x x ?-∈?=?-∈??%

()1.50.80.3 1.50.35

L =-?=%

2. 已知线性方程组123123123

1027.21028.35 4.2

x x x x x x x x x --=??

-+-=??--+=?

(1) 写出雅可比迭代公式、高斯-塞德尔迭代公式;

(2) 对于初始值

()()

00,0,0X =,应用雅可比迭代公式、高斯-塞德尔迭代公

式分别计算()

1X

(保留小数点后五位数字).

计算题2.答案

1.解 原方程组同解变形为 1232133

120.10.20.720.10.20.830.20.20.84

x x x x x x x x x =++??

=-+??=++?

雅可比迭代公式为

()()()()()()

()()()1123121313120.10.20.72

0.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x +++?=++??=-+??=++??(0,1...)m = 高斯-塞德尔迭代法公式

()()()()()()

()()()11231121

31113120.10.20.72

0.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x ++++++?=++??=-+??=++?? (0,1...)m =

用雅可比迭代公式得

()()

10.72000,0.83000,0.84000X =

用高斯-塞德尔迭代公式得

()()

10.72000,0.90200,1.16440X =

3. 用牛顿法求方程3310x x --=在

[]1,2之间的近似根 (1)请指出为什么初值应取2?

(2)请用牛顿法求出近似根,精确到0.0001.计算题3.答案

3. 解

()331

f x x x

=--

()130

f=-<

()210

f=>

()233

f x x

'=-

()12

f x x

''=

()2240

f=>

,故取2

x=作初始值迭代公式为

()

()

3

111

112

11

31

33

n n n

n n n

n n

f x x x

x x x

f x x

---

--

--

--

=-=-

'-()

3

1

2

1

21

()

31

n

n

x

x

-

-

+

-

,1,2,...

n= 0

2

x=,()

3

12

231

1.88889

321

x

?+

==

?-

()

3

22

2 1.888891

1.87945

3 1.888891

x

?+

==

?-21

0.009440.0001

x x

-=>

()

3

32

2 1.879451

1.87939

3 1.879451

x

?+

==

?-

,32

0.000060.0001

x x

-=<

方程的根 1.87939

x*≈

4. 写出梯形公式和辛卜生公式,并用来分别计算积分

1

1

1

dx

x

+

?

.

计算题4.答案

4 解梯形公式

()()()

2

b

a

b a

f x dx f a f b

-

≈?+?

???

应用梯形公式得

1

1111

[]0.75 121011

dx

x

≈+=

+++

?

辛卜生公式为

()()()

[4()]

62

b

a

b a a b

f x dx f a f f b

-+

≈++

?

应用辛卜生公式得

()() 1

11010

[04()1] 162

dx f f f

x

-+

≈++ +

?

1111

[4]

1

61011

1

2

=+?+

++

+

25 36 =

得 分 评卷人

四、证明题(本题10分)

确定下列求积公式中的待定系数,并证明确定后的求积公式具有3次代数精确度

()()()()

1010h

h

f x dx A f h A f A f h --=-++?

证明题答案

证明:求积公式中含有三个待定系数,即101,,A A A -,将()21,,f x x x =分别代入求积公式,

并令其左右相等,得

1011123

112()02()3A A A h h A A h A A h ---?

?++=?

--=???+=?

得1113A A h -==,043h

A =

。所求公式至少有两次代数精确度。 又由于

()()()()3

3344433

33h

h

h h h h x dx h h h h x dx h h --=

-+≠-+??

()()()()40333h

h

h h

f x dx f h f f h -=

-++?

具有三次代数精确度。

一、 填空(共20分,每题2分)

1. 设

2.3149541...x *

=,取5位有效数字,则所得的近似值x= .

2.设一阶差商

()()()21122114

,321f x f x f x x x x --=

=

=---,

()()()322332

615

,422f x f x f x x x x --=

=

=--

则二阶差商

()123,,______

f x x x =

3. 设(2,3,1)T

X =--, 则2||||X = ,=∞||||X 。

4.求方程 2

1.250x x --= 的近似根,用迭代公式 1.25x x =

+,取初始值 01x =,

那么

1______x =。

5.解初始值问题 00'(,)

()y f x y y x y =??

=?近似解的梯形公式是 1______k y +≈。

6、

1151A ??

= ?

-??,则A 的谱半径

= 。

7、设

2()35, , 0,1,2,... ,

k f x x x kh k =+== ,则

[]12,,n n n f x x x ++=

[]123,,,n n n n f x x x x +++=

8、若线性代数方程组AX=b 的系数矩阵A 为严格对角占优阵,则雅可比迭代和高斯-塞德尔迭代都 。

9、解常微分方程初值问题的欧拉(Euler )方法的局部截断误差为 。

10、为了使计算

23123

101(1)(1)y x x x =+

+-

---的乘除法运算次数尽量的少,应将表达

式改写成 。

填空题答案

1、2.3150

2、

()()()()2312123315

3,,11

2,,416f x x f x x f x x x x x ---===

-- 3、6 和 14 4、1.5

5、()()11,,2k k k k k h

y f x y f x y +++?+???

6、()6A ρ=

7、[][]12123,,3,,,,0

n n n n n n n f x x x f x x x x +++++== 8、 收敛 9、()

h O

10、

11310121(1)(1)y x x x ??

??=++- ? ?---????

二、计算题 (共75 分,每题15分)

1.设

32

01219(), , 1, 44f x x x x x ====

(1)试求

()

f x 在

19,4

4??

???

?上的三次Hermite 插值多项式()x H 使满足 ''11()(), 0,1,2,... ()()j j H x f x j H x f x ===

()

x H 以升幂形式给出。

(2)写出余项 ()()()R x f x H x =-的表达式

计算题1.答案

1、(1)

()32142632331

22545045025x x x x H =-

++-

(2)

()522191919

()(1)(),()(,)

4!164444R x x x x x ξξξ-=---=∈

2.已知 的 满足

,试问如何利用 构造一个收敛的

简单迭代函数

,使

0,1…收敛?

计算题2.答案

2、由 ()x x ?=,可得 3()3x x x x ?-=-,1

(()3)()

2x x x x ?ψ=--=

1 ()(()3) 2x x ψψ=--’’因,故11

()1

22x x ψ?=<<’’()-3

[]11

()()3 , k=0,1,.... 2k k k k x x x x ψ?+==-

-故收敛。

3. 试确定常数A ,B ,C 和 a ,使得数值积分公式

有尽可能高的代数精度。试问所得的数值积分公式代数精度是多少?它是否为Gauss 型的?

计算题3.答案

3、

101612,,995A C B a ====±,该数值

求积公式具有5次代数精确度,它是Gauss 型的

4. 推导常微分方程的初值问题 00

'(,)

()y f x y y x y =??

=?的数值解公式:

'''1111(4)

3n n n n n h y y y y y +-+-=+++

(提示: 利用Simpson 求积公式。)

计算题4.答案

4、 数值积分方法构造该数值解公式:对方程 ()y f x =’

在区间 []11,n n x x -+上积分,

11

11()()(,())n n x n n x y x y x f x y x dx

+-+-=+

?

,记步长为h,

对积分

1

1

(,())n n x x f x y x dx

+-?

用Simpson 求积公式得

[]1

1

11112(,())()4()()(4)63

n n x n n n n n n x h h f x y x dx f x f x f x y y y +--++-≈

++≈++?

’’’

所以得数值解公式: 1111(4)

3n n n n n h y y y y y +-+-=+++’’’

5. 利用矩阵的LU 分解法解方程 组

12312312

32314

252183520

x x x x x x x x x ++=??

++=??++=?

计算题5.答案

5、解:

1123211435124A LU ????

????==-????

????--????

(14,10,72), (1,2,3) .T T Ly b y Ux y x ==--==令得得

三、证明题 (5分)

1.设

,证明解 的Newton 迭代公式是线性收敛的。

证明题答案

1、

32231321232323333 ()(), ()6(),:()

,0,1,... ()

()5,0,1,...

6()6655 (), (),6663551 , ()()636n n n n n n n n n n n

f x x a f x x x a Newton f x x x n f x x a x a

x x n x x a x a a

x x x x x a x a a a ???++--=-=-=-

=-=-=+--=

+=-==-=-’’’’’证明:因故由迭达公式得因迭达函数而又则1

0,

32

=≠故此迭达公式是线性收敛的。

一、填空题(20分)

(1).设*

2.40315x =是真值 2.40194x =的近似值,则*

x 有 位有

效数字。

(2). 对1)(3

++=x x x f , 差商=]3,2,1,0[f ( )。

(3). 设(2,3,7)T

X =-, 则||||X ∞= 。

(4).牛顿—柯特斯求积公式的系数和()

n

n k

k C

==

∑ 。

填空题答案

(1)3 (2)1 (3)7 (4)1

二、计算题

1).(15分)用二次拉格朗日插值多项式2()sin 0.34L x 计算的值。 插值节点和相应的函数值是(0,0),(0.30,0.2955),(0.40,0.3894)。

计算题1.答案

1)020*******

010*********()()()()()()

()()()()()()()

=0.333336x x x x x x x x x x x x L x f f f x x x x x x x x x x x x ------=

++------

2).(15分)用二分法求方程3

()10[1.0,1.5]f x x x =--=在 区间内的一个根,误差限2

10ε-=。

计算题2.答案

2) 1234566

1.25 1.375 1.31251.34375 1.328125 1.3203125N x x x x x x =======

3).(15分)用高斯-塞德尔方法解方程组 ???

??=++=++=++22

5218241124321321321x x x x x x x x x ,取

T )0,0,0()0(=x ,迭代三次(要求按五位有效数字计算).。

计算题3.答案

3)迭代公式

???

???

???--=--=--=++++++)222(51)

218(41)211(41)1(2)1(1)1(3)(3)1(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x x x x

4).(15分)求系数123,,A A A 和使求积公式

1

1231

11

()(1)()()233f x dx A f A f A f -≈-+-+≤?对于次数的一切多项式都精确成立。

计算题4.答案

4)12312312312311112

2033993

13022A A A A A A A A A A A A ++=--+=++=

===

5). (10分)对方程组 ???

??=-+=--=++8

4102541015

1023321321321x x x x x x x x x

试建立一种收敛的Seidel 迭代公式,说明理由

计算题5.答案

5) 解:调整方程组的位置,使系数矩阵严格对角占优

1231231

231045

21048321015

x x x x x x x x x --=??

+-=??++=?

故对应的高斯—塞德尔迭代法收敛.迭代格式为

(1)()()

123(1)(1)()

213(1)(1)(1)

3121( 4 5)101(2 48)

101(32 15)10k k k k k k k k k x x x x x x x x x ++++++?=++??

?=-++??

?=--+??

取T )0,0,0()

0(=x

,经7步迭代可得:

T )010000.1,326950999.0,459991999.0()7(*=≈x x .

三、简答题

1)(5分)在你学过的线性方程组的解法中, 你最喜欢那一种方法,为什么?

2)(5分)先叙述Gauss 求积公式, 再阐述为什么要引入它。

一、填空题(20分)

1. 若a =

2.42315是2.42247的近似值,则a 有( )位有效数字.

2. )(,),(),(10x l x l x l n 是以n ,,1,0 为插值节点的Lagrange 插值基函数,则

=

∑=n

i i x il 0

)(( ).

3. 设f (x )可微,则求方程)(x f x =的牛顿迭代格式是( ).

4. 迭代公式

f BX X k k +=+)

()1(收敛的充要条件是 。 5. 解线性方程组A x =b (其中A 非奇异,b 不为0) 的迭代格式f

x x

+=+)()

1(k k B 中的B 称为( ). 给定方程组??

?-=-=-458

92121x x x x ,解此方程组的雅可比迭代格式为(

)。

填空题答案

1.3 2.x

3.

1()1()

n n n n n x f x x x f x +-=--’

4. ()1B ρ<

5.迭代矩阵, 1()121()21

1(8)91(4)5k k k k x x x x ++?=+???

?=+??

分 评卷人

二、判断题(共10分)

1. 若0)()(

2. 区间[a,b ]上的三次样条函数是一个次数不超过三次的多项式。 ( )

3. 若方阵A 的谱半径1)(

4. 若f (x )与g (x ) 都是n 次多项式,且在n +1个互异点

n i i x 0}{=上)()(i i x g x f =,则 )()(x g x f ≡。 ( )

5. 用

2

211x

x +

+近似表示x e 产生舍入误差。 ( )

判断题答案

1.×

2.×

3.×

4.√

5.×

得 分 评卷人

三、计算题(70分)

1. (10分)已知f (0)=1,f (3)=

2.4,f (4)=5.2,求过这三点的

二次插值基函数l 1(x )=( ),]4,3,0[f =( ), 插值多项式P 2(x )=( ), 用三点式求得=')4(f ( ).

计算题1.答案

1.1777203(4),,1(3),3

1215126x x x x x --++-由插值公式可求得它们分别为:

2. (15分) 已知一元方程02.133

=--x x 。

1)求方程的一个含正根的区间;

2)给出在有根区间收敛的简单迭代法公式(判断收敛性); 3)给出在有根区间的Newton 迭代法公式。

计算题2.答案

2.(1)(0) 1.20 , (2) 1.80 ()(0,2)f f f x =-<=>又连续故在内有一个正根, (2)

收敛

313

2)

2,0(3

23

2.13,12

.11)(max ,)2.13()(,2.13+=∴<≤

''+=''+=+∈-

n n x x x x x x x x φφ

(3)

32

12

3 1.2

'()33,33

n n n n x x f x x x x x +--=-=--

3. (15分)确定求积公式 )

5.0()()5.0()(11

1Cf x Bf Af dx x f ++-≈?- 的待定参数,使其代数精度尽量高,并确定其代数精度.

计算题3.答案

2312

1311

41()1,,,20.50.50

20.250.2530.1250.1250

42

,33

1

()[4(0.5)2(0)4(0.5)],(),

321

56f x x x x A B C A Bx C A Bx C A Bx C A C B f x dx f f f f x x -=++=?

?-++=??

?++=??-++=??===-

≈--+==

=?3.假设公式对精确成立则有解此方程组得 求积公式为

当时 左边 右边 左3≠∴边右边 代数精度为。

4. (15分)设初值问题 1

01

)0(23<

?=+='x y y

x y .

(1) 写出用Euler 方法、步长h =0.1解上述初值问题数值解的公式; (2) 写出用改进的Euler 法(梯形法)、步长h =0.2解上述初值问题数值解

的公式,并求解21,y y ,保留两位小数。

计算题4.答案

4.1(1) 0.1(32)0.3 1.2n n n n n n y y x y x y +=++=+ 1111120.20.2

(2) (32)3(0.2)22

=0.1(6220.6)

3332440

3336333

1.575,

2.585

240240440n n n n n n n n n n n n n y y x y x y y x y y y y x y y ++++??+=+

++++++++∴=

++=+==+=迭达得

5. (15分)取节点1,5.0,0210===x x x ,求函数x

e y -=在区间]1,0[上的二次插

值多项式)(2x P ,并估计误差。

计算题5.答案

5.

)

5.0)(0(0

10

5.01

5.01)0(0

5.01)(5.05

.015.002------

--+

---+

=----x x e e e x e e x p

=1+2()5.0()12(2)15.015

.0-+-+----x x e e x e

[]

)1)(5.0(!3)

()(,1max ,21,0''3''--'''=

-==-=∈-x x x f x p e y M e y x x x ξ

时10≤≤∴x ,

)1)(5.0(!

31

)(2--≤

-x x x x p e x

一、填空题( 每题4分,共20分)

1、数值计算中主要研究的误差有 和 。

2、设

()(0,1,2

)

j l x j n =是n 次拉格朗日插值多项式的插值基函数,则

()j i l x =

(,0,1,2

)i j n =;

()n

j j l x ==

∑ 。

3、设

()(0,1,2

)

j l x j n =是区间[,]a b 上的一组n 次插值基函数。则插值型求积公

式的代数精度为 ;插值型求积公式中求积系数j A =

;且

n

j

j A

==

∑ 。

4、辛普生求积公式具有 次代数精度,其余项表达式为 。

5、

2

()1,f x x =+则[1,2,3]_________,[1,2,3,4]_________f f ==。 填空题答案

1.相对误差 绝对误差

2.1,,0,i j i j =??

≠? 1

3. 至少是n

()b

k

a l x dx

?

b-a

4. 3

4(4)

()(),(,)1802b a b a f a b ζζ---

5. 1 0

二、计算题

1、已知函数()y f x =的相关数据

由牛顿插值公式求三次插值多项式3()P x ,并计算1

3()2P =的近似值。

计算题1.答案

解:差商表

由牛顿插值公式:

323332348

()()21,33141181

3()()2()()12

232232p x N x x x x p ==

-++≈=-++=

2、(10分)利用尤拉公式求解初值问题,其中步长0.1h =,

1,

(0,0.6)

(0) 1.

y y x x y '=-++?∈?

=?。

计算题2.答案

解:010(,)1,1,0.1,0.1(1),(0,1,2,3,)1,

1.000000;1.000000;1.010000;1.029000;

1.056100;1.090490;1.131441.

n n n n k f x y y x y h y y x y n y y η+=-++====++-===

3、(15分)确定求积公式

012()()(0)()

h

h

f x dx A f h A f A f h -≈-++?

中待定参数

i

A 的值(0,1,2)i =,使求积公式的代数精度尽量高;并指出此时求积

公式的代数精度。

计算题3.答案

解:分别将2

()1,,f x x

x =,代入求积公式,可得

02114

,33A A h A h

===。 令3()f x x =时求积公式成立,而4

()f x x =时公式不成立,从而精度为3。

4、(15分)已知一组试验数据如下 :

求它的拟合曲线(直线)。

计算题4.答案

解:设y a bx =+则可得

515311555105.5

a b a b +=??

+=?

于是 2.45, 1.25a b ==,即 2.45 1.25y x =+。

5、(15分)用二分法求方程

3

()1f x x x =--在区间[1,1.5]内的根时,若要求精确到小数点后二位,(1) 需要二分几次;(2)给出满足要求的近似根。

计算题5.答案

解:6次;*

1.32x ≈。

6、(15分)用列主元消去法解线性方程组

123

123

123 2346, 3525, 433032.

x x x

x x x

x x x

++=

?

?

++=

?

?++=

?

计算题6.答案

解:

2346433032433032

352535253525

43303223462346 433032433032

011/441/219011/441/219

03/21110002/114/11 433032

0118238

0012

?????? ? ? ?

→→

? ? ? ? ? ???????

???? ? ?→--→-- ? ? ? ?

--

????

??

?

→--

?

?

??

1231

232

3

3

433032,13, 118238,8,

2.

2.

x x x x

x x x

x

x

++==

??

??

-=-?=??

??=

=?

?

数值分析典型习题

特别声明:考试时需带计 算器作辅助计算 1.2015x *=是经四舍五入得到的近似值,则其相对误差* r e ≤-31 104 ?. 2. 01(),(), ,()n l x l x l x 是以01,, ,n x x x 为节点的拉格朗日插值基函数,则 3.设(0)1(1)3(2)4(3)2f =,f =,f =,f =,[0123]f =,,,1 3 - . 4. 利用Simpson 公式求?2 1 2dx x = 7.3 5. 设求积公式1 0()d (),(1)n k k k f x x A f x n ≈≥∑?=是Gauss 型求积公式,则3 n k k k A x == ∑1 .4 6. 数值微分公式(2)(2) ()i i i f x h f x h f x h +≈ --'的截断误差为 2().O h 7. 设1101A ?? = ??? ,则A 的谱半径()A ρ= 1 ,A 的条件数1cond ()A = 4. 8. 用牛顿下山法求解方程3 03 x x -=根的迭代公式是 2 13 3(1),3n n n n x x x x x λ+-=-- 下山条件是 1()().n n f x f x +< 9.对任意初始向量(0)x 及任意向量f ,线性方程组的迭代公式(1)()(0,1,2,)k k k +=+=x Bx f ,迭代序列()k x 收敛于方程组的精确解x *的充分必要条件是()1.ρ

北师大网络教育 数值分析 期末试卷含答案

注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考北师大网络教育——数值分析——期末考试卷与答案 一.填空题(本大题共4小题,每小题4分,共16分) 1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。 2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。 3.设110111011A -????=--????-??,233x ?? ??=?? ???? ,则1A = ,1x = 。 4. 1n +个节点的高斯求积公式的代数精确度为 。 二.简答题(本大题共3小题,每小题8分,共24分) 1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定? 2. 什么是不动点迭代法?()x ?满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ?的不动点? 3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥ ,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。 三.求一个次数不高于3的多项式()3P x ,满足下列插值条件: i x 1 2 3 i y 2 4 12 i y ' 3 并估计误差。(10分) 四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1 01 1I dx x =+? 。(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。(10分) 六.试用Doolittle 分解法求解方程组:

注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考 12325610413191963630 x x x -?????? ??????-=?????? ??????----?????? (10分) 七.请写出雅可比迭代法求解线性方程组1231231 23202324 812231530 x x x x x x x x x ++=?? ++=??-+=? 的迭代格式,并 判断其是否收敛?(10分) 八.就初值问题0(0)y y y y λ'=??=?考察欧拉显式格式的收敛性。(10分)

数值计算方法比较

有限差分方法(FDM:Finite Difference Method)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。有限差分法主要集中在依赖于时间的问题(双曲型和抛物型方程)。有限差分法方面的经典文献有Richtmeyer & Morton的《Difference Methods for Initial-Value Problems》;R. LeVeque《Finite Difference Method for Differential Equations》;《Numerical Methods for C onservation Laws》。 注:差分格式: (1)从格式的精度来划分,有一阶格式、二阶格式和高阶格式。 (2)从差分的空间形式来考虑,可分为中心格式和逆风格式。 (3)考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。 目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 构造差分的方法: 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 有限差分法的不足:由于采用的是直交网格,因此较难适应区域形状的任意性,而且区分不出场函数在区域中的轻重缓急之差异,缺乏统一有效的处理自然边值条件和内边值条件的方法,难以构造高精度(指收敛阶)差分格式,除非允许差分方程联系更多的节点(这又进一步增加处理边值条件韵困难)。另外它还有编制不出通用程序的困难。 有限差分法的优点:该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念 直观,表达简单,精度可选而且在一个时间步内,对于一个给定点来说其相关的空间点只是 与该相邻的几点,而不是全部的空间点。是发展较早且比较成熟的数值方法 广义差分法(有限体积法)(GDM:Generalized Difference Method):1953年,Mac—Neal 利用积分插值法(也称积分均衡法)建立了三角网格上的差分格 式,这就是以后通称的不规划网格上的差分法.这种方法的几何误差小,特别是给出了处理自然边值条件(及内边值条件)的有效方法,堪称差分法的一大进步。1978年,李荣华利用有限元空间和对偶单元上特征函数的推广——局部Taylor展式的公项,将积分插值法改写成广义Galerkin法形式,从而将不规则网格差分法推广为广义差分法.其基本思路是,将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有

数值分析典型例题

第一章典型例题 例3 ln2=0.…,精确到10-3的近似值是多少 解 精确到10-3=,即绝对误差限是=, 故至少要保留小数点后三位才可以。ln2 第二章典型例题 例1 用顺序消去法解线性方程组 ??? ??1 -=4+2+4=+2+31 -=4++2321 321321x x x x x x x x x 解 顺序消元 ?? ?? ??????---???→???????????---????→???????????--=-?+-?+-?+1717005.555.00141 25.025.105.555.001412142141231412]b A [)3()2/1()2/3(231312r r r r r r M 于是有同解方程组 ?? ? ??-==--=++17175.555.0142332321x x x x x x 回代得解 x 3=-1, x 2=1,x 1=1,原线性方程组的解为X =(1,1,-1)T 例2 取初始向量X (0)=(0,0,0)T ,用雅可比迭代法求解线性方程组 ??? ??5 =+2+23=++1=2-2+321 321321x x x x x x x x x 解 建立迭代格式 ???????+--=+--=++-=+++5223122) (2)(1)1(3 ) (3)(1)1(2 ) (3)(2)1(1k k k k k k k k k x x x x x x x x x (k =1,2,3,…)

第1次迭代,k =0 X (0)=0,得到X (1)=(1,3,5)T 第2次迭代,k =1 ???????-=+?-?-=-=+--==+?+?-=3 532123 351515232)2(3) 2(2)2(1x x x X (2)=(5,-3,-3)T 第3次迭代,k =2 ???????=+-?-?-==+---==+-?+-?-=1 5)3(2521 3)3(511)3(2)3(2)2(3) 3(2)3(1x x x X (3)=(1,1,1)T 第4次迭代,k =3 ???????=+?-?-==+--==+?+?-=1 512121 311111212)2(3) 2(2)2(1x x x X (4)=(1,1,1)T 例4 证明例2的线性方程组,雅可比迭代法收敛,而高斯-赛德尔迭代法发散。 证明 例2中线性方程组的系数矩阵为 A =?? ?? ? ?????-122111221 于是 D =?? ?? ??????100010001 D -1=D ??????????=022001000L ~ ????? ?????-=000100220U ~ 雅可比迭代矩阵为

数值分析学期期末考试试题与答案(A)

期末考试试卷(A 卷) 2007学年第二学期 考试科目: 数值分析 考试时间:120 分钟 学号 姓名 年级专业 一、判断题(每小题2分,共10分) 1. 用计算机求 1000 1000 1 1 n n =∑时,应按照n 从小到大的顺序相加。 ( ) 2. 为了减少误差,进行计算。 ( ) 3. 用数值微分公式中求导数值时,步长越小计算就越精确。 ( ) 4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。( ) 5. 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有 关,与常数项无关。 ( ) 二、填空题(每空2分,共36分) 1. 已知数a 的有效数为0.01,则它的绝对误差限为________,相对误差限为_________. 2. 设1010021,5,1301A x -????????=-=-????????-???? 则1A =_____,2x =______,Ax ∞ =_____. 3. 已知5 3 ()245,f x x x x =+-则[1,1,0]f -= ,[3,2,1,1,2,3]f ---= . 4. 为使求积公式 1 1231 ()()(0)33 f x dx A f A f A f -≈- ++? 的代数精度尽量高,应使1A = ,2A = ,3A = ,此时公式具有 次的代数精度。 5. n 阶方阵A 的谱半径()A ρ与它的任意一种范数A 的关系是 . 6. 用迭代法解线性方程组AX B =时,使迭代公式(1) ()(0,1,2,)k k X MX N k +=+=产 生的向量序列{ }() k X 收敛的充分必要条件是 . 7. 使用消元法解线性方程组AX B =时,系数矩阵A 可以分解为下三角矩阵L 和上三角矩

工程中的数值分析

. 《工程中的数值分析》开放性考试

工程中的数值分析题目: 建筑与土木工程系分院: 14土木工程本一班级: 陈凯名:姓14219114125号:学 日14122016 完成日期:年月 温州大学瓯江学院教务部. . 二○一二年十一月制 实现二分法的和算法及Excel1.1 由闭区间上连续函数的性质f(b)<0f(a)·[a,b]上连续,且在原理:设函数 f(x)二分法的基本思想内至少有一个实根.(a,b),方程(2.2)在区间及定理2-1可知,,进一步缩小有根区间:逐步二分区间[a,b],通过判断两端点函数值的符号是. ,从而求出满足精度要求的根的近似值将有根区间的长度缩小到充分小算法:给定精确度ξ,用二分法求函数f(x)零点近似值的步骤如下: 确定区间[a,b],验证f(a)·f(b)<0,给定精确度.求区间(a,b)的中点c.计算f(c). (1)若f(c)=0,则c就是函数的零点;

(2)若f(a)·f(c)<0,则令b=c; (3)若f(c)·f(b)<0,则令a=c. (4)判断是否达到精确度ε:即若|a-b|<,则得到零点近似值a(或b),否则重复2-4. Excel实现:单元格内分别输入区间[a,b]的左右端点值,中点值=(a+b)/2,依次计算出各点代入公式的f(x)值,用IF函数比较单元格内输入“=IF(f(中点值)<0”,中点值,a)如果f(中点值)<0,则下个左端点取原来的中点值 (a+b)/2. 同理“=IF(f(中点值)<0,b,中点值)”下个右端点取原来的右点值b. 如此循环往下,直至某个中点值代入f(x)得到的解满足题目要求的近似解或者零点即f(c)=0则该值则为零点。 . . 1.2不动点迭代法的原理和算法及Excel实现,并分析不同迭代格式的收敛性原理:将线性方程f(x)=0化为一个同解方程x=φ(x),并且假设φ(x)为连续函数,任取初值x,代入方程得到 x=φ(x),x=φ(x)····x=φ k+121001(x),k=0,1,2,····k称为求解非线性方程组的简单迭代法,称φ(x)为迭代函数,x称为第k步迭代k值. 若{x}收敛,则称迭代法收敛,否则称迭代法发散. k算法: (1)确定初值

数值分析(计算方法)总结

第一章绪论 误差来源:模型误差、观测误差、截断误差(方法误差)、舍入误差 是的绝对误差,是的误差,为的绝对误差限(或误差限) 为的相对误差,当较小时,令 相对误差绝对值得上限称为相对误差限记为:即: 绝对误差有量纲,而相对误差无量纲 若近似值的绝对误差限为某一位上的半个单位,且该位直到的第一位非零数字共有n位,则称近似值有n位有效数字,或说精确到该位。 例:设x==…那么,则有效数字为1位,即个位上的3,或说精确到个位。 科学计数法:记有n位有效数字,精确到。 由有效数字求相对误差限:设近似值有n位有效数字,则其相对误差限为 由相对误差限求有效数字:设近似值的相对误差限为为则它有n位有效数字 令 1.x+y近似值为和的误差(限)等于误差(限)的 和 2.x-y近似值为 3.xy近似值为 4. 1.避免两相近数相减 2.避免用绝对值很小的数作除数 3.避免大数吃小数 4.尽量减少计算工作量 第二章非线性方程求根 1.逐步搜索法 设f (a) <0, f (b)> 0,有根区间为(a, b),从x0=a出发,按某个预定步长(例如h=(b-a)/N)

一步一步向右跨,每跨一步进行一次根的搜索,即判别f(x k)=f(a+kh)的符号,若f(x k)>0(而 f(x k-1)<0),则有根区间缩小为[x k-1,x k] (若f(x k)=0,x k即为所求根), 然后从x k-1出发,把搜索步长再缩小,重复上面步骤,直到满足精度:|x k-x k-1|0.将[a0,b0]对分,中点x0= ((a0+b0)/2),计算 f(x0)。 3.比例法 一般地,设[a k,b k]为有根区间,过(a k, f(a k))、(b k, f(b k))作直线,与x轴交于一点x k,则: 1.试位法每次迭代比二分法多算一次乘法,而且不保证收敛。 2.比例法不是通过使求根区间缩小到0来求根,而是在一定条件下直接构造出一个点列(递推公式),使该点列收敛到方程的根。——这正是迭代法的基本思想。 事先估计: 事后估计 局部收敛性判定定理: 局部收敛性定理对迭代函数的要求较弱,但对初始点要求较高,即初始点必须选在精确解的附近 Steffensen迭代格式: Newton法: Newton下山法:是下山因子 弦割法: 抛物线法:令 其中:

数值分析典型习题资料

数值分析典型习题

特别声明:考试时需带计 算器作辅助计算 1.2015x *=是经四舍五入得到的近似值,则其相对误差* r e ≤ -31 104 ?. 2. 01(),(),,()n l x l x l x L 是以01,,,n x x x L 为节点的拉格朗日插值基函数,则 3.设(0)1(1)3(2)4(3)2f =,f =,f =,f =,[0123]f =,,,1 3 - . 4. 利用Simpson 公式求?2 1 2dx x = 7.3 5. 设求积公式1 0()d (),(1)n k k k f x x A f x n ≈≥∑?=是Gauss 型求积公式,则3 n k k k A x == ∑1 .4 6. 数值微分公式(2)(2) ()i i i f x h f x h f x h +≈ --'的截断误差为 2().O h 7. 设1101A ?? = ??? ,则A 的谱半径()A ρ= 1 ,A 的条件数1cond ()A = 4. 8. 用牛顿下山法求解方程3 03 x x -=根的迭代公式是 2 13 3(1),3n n n n x x x x x λ+-=-- 下山条件是 1()().n n f x f x +< 9.对任意初始向量(0)x 及任意向量f ,线性方程组的迭代公式(1)()(0,1,2,)k k k +=+=L x Bx f ,迭代序列()k x 收敛于方程组的精确解x *的充分必要条件是()1.ρ

数值分析试卷及其答案2

1、(本题5分)试确定7 22作为π的近似值具有几位有效数字,并确定其相对误差限。 解 因为 7 22=3.142857…=1103142857.0-? π=3.141592… 所以 3 12 10 2 110 21005.0001264.07 22--?= ?= <=- π (2分) 这里,3,21,0=-=+-=n n m m 由有效数字的定义可知7 22作为π的近似值具有3位有效数字。 (1分) 而相对误差限 3 10 2 10005.00004138.0001264.07 22-?= <≈= -= π π πε r (2分) 2、(本题6分)用改进平方根法解方程组:???? ? ??=????? ??????? ??--654131321 112321x x x ; 解 设???? ? ? ?????? ? ?????? ??===????? ? ?--11 1 11113 1321 11232312132 1 32 31 21 l l l d d d l l l LDL A T 由矩阵乘法得: 5 7,21,21527,25,2323121321- == - == -==l l l d d d (3分) 由y D x L b Ly T 1 ,-==解得 T T x y )9 23,97,910( ,)5 63, 7,4(== (3分) 3、(本题6分)给定线性方程组??? ? ? ??=++-=+-+=-+-=-+17722238231138751043214321 321431x x x x x x x x x x x x x x 1)写出Jacoib 迭代格式和Gauss-Seidel 迭代格式; 2)考查Jacoib 迭代格式和Gauss-Seidel 迭代格式的敛散性; 解 1)Jacoib 迭代格式为

浅析数值分析在机械工程领域的应用

浅谈数值分析在机械工程领域的应用 摘要:MATLAB是目前国际上最流行的科学与工程计算的软件工具, 它具有强大的数值分析、矩阵运算、信号处理、图形显示、模拟仿真和最优化设计等功能。本文浅谈MATLAB在机械设计优化问题的几点应用。 关键词:MATLAB 约束条件机械设计优化数值分析 引言:在线性规划和非线性规划等领域经常遇到求函数极值等最优化问题,当函数或约束条件复杂到一定程度时就无法求解,而只能求助于极值分析算法,如果借助计算器进行手工计算的话,计算量会很大,如果要求遇到求解极值问题的每个人都去用BASIC,C和FORTRAN之类的高级语言编写一套程序的话,那是非一朝一日可以解决的,但如用MATLAB语言实现极值问题的数值解算,就可以避免计算量过大和编程难的两大难题,可以轻松高效地得到极值问题的数值解,而且可以达到足够的精度。 数值分析是一门研究如何在计算机上求解数学问题算法的学科,主要内容有:误差分析,插值法,数值微积分,数值代数, 矩阵计算和微分方程数值解法等, 是工科各专业大学本科及研究生中开设的一门计算量大,算法多,实践性比较强的专业课。在长期的教学实践中,数值分析课程常采用C语言进行教学和实验, 要求学生既要对算法有充分了解,又要熟练掌握C语言的语法和编程技巧, 导致学生和教师将大量的时间和精力都花在繁琐的数值计算以及对各种结果绘图上面,学习效果往往令人不满意。M a t l a b 是M a t h W o r k s 公司开发的一款以数值计算为主要特色的数学工具软件, 在数值计算领域独领风骚。其所带强大的符号运算功能, 几乎包括高等数学所涉及的运算, 如求极限、导数、微分、积分、函数的级数展开、解常微分方程等等, 并且样条工具箱中的命令调用格式极为简单方便, 对工科学生来说, 掌握起来无需费多大力气, 而对机械系等理工科系的同学,通过初步了解M a t l a b还可以进一步挖掘其强大的功能, 对学习其他课程也有帮助。本文讨论基于matlab在机械方面的数值分析。 一.数值分析方法的研究 1、数值分析方法意义

数值计算方法大作业

目录 第一章非线性方程求根 (3) 1.1迭代法 (3) 1.2牛顿法 (4) 1.3弦截法 (5) 1.4二分法 (6) 第二章插值 (7) 2.1线性插值 (7) 2.2二次插值 (8) 2.3拉格朗日插值 (9) 2.4分段线性插值 (10) 2.5分段二次插值 (11) 第三章数值积分 (13) 3.1复化矩形积分法 (13) 3.2复化梯形积分法 (14) 3.3辛普森积分法 (15) 3.4变步长梯形积分法 (16) 第四章线性方程组数值法 (17) 4.1约当消去法 (17) 4.2高斯消去法 (18) 4.3三角分解法 (20)

4.4雅可比迭代法 (21) 4.5高斯—赛德尔迭代法 (23) 第五章常积分方程数值法 (25) 5.1显示欧拉公式法 (25) 5.2欧拉公式预测校正法 (26) 5.3改进欧拉公式法 (27) 5.4四阶龙格—库塔法 (28)

数值计算方法 第一章非线性方程求根 1.1迭代法 程序代码: Private Sub Command1_Click() x0 = Val(InputBox("请输入初始值x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = (Exp(2 * x0) - x0) / 5 If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求f(x)=e2x-6x=0在x=0.5附近的根(ep=10-10)

1.2牛顿法 程序代码: Private Sub Command1_Click() b = Val(InputBox("请输入被开方数x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = x0 - (x0 ^ 2 - b) / (2 * b) If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求56的值。(ep=10-10)

数值分析典型例题

第一章典型例题 例3…,精确到10-3的近似值是多少? 解 精确到10-3=,即绝对误差限是?=, 故至少要保留小数点后三位才 可以。ln2? 第二章典型例题 例1 用顺序消去法解线性方程组 解 顺序消元 于是有同解方程组 回代得解 x 3=-1, x 2=1,x 1=1,原线性方程组的解为X =(1,1,-1)T 例2 取初始向量X (0)=(0,0,0)T ,用雅可比迭代法求解线性方程组 解 建立迭代格式 ??? ????+--=+--=++-=+++5223122)(2)(1)1(3) (3)(1)1(2 )(3)(2)1(1k k k k k k k k k x x x x x x x x x (k =1,2,3,…) 第1次迭代,k =0 X (0)=0,得到X (1)=(1,3,5)T 第2次迭代,k =1 X (2)=(5,-3,-3)T 第3次迭代,k =2 X (3)=(1,1,1)T 第4次迭代,k =3

X (4)=(1,1,1)T 例4 证明例2的线性方程组,雅可比迭代法收敛,而高斯-赛德尔迭 代法发散。 证明 例2中线性方程组的系数矩阵为 A =?? ?? ? ?????-122111221 于是 D =?? ?? ??????100010001 D -1 =D ?? ?? ? ?????=022001000L ~ ?? ?? ? ?????-=000100220U ~ 雅可比迭代矩阵为 B 0=?? ?? ? ?????--=??????????-??????????-=+--022101220022101220100010001)U ~L ~(D 1 得到矩阵B 0的特征根03,2,1=λ,根据迭代基本定理4,雅可比迭代法收敛。 高斯-赛德尔迭代矩阵为 G =-U ~ )L ~D (1-+ =-?? ?? ??????----=??????????-??????????---=??????????-??????????-2003202200001002201200110010001002201220110011 解得特征根为?1=0,?2,3=2。由迭代基本定理4知,高斯-赛德尔迭代发散。 例5 填空选择题: 1. 用高斯列主元消去法解线性方程组 作第1次消元后的第2,3个方程分别为 。

哈尔滨工程大学数值分析大作业2014-附fortran程序

B班大作业要求: 1. 使用统一封皮; 2. 上交大作业内容包含: 一摘要 二数学原理 三程序设计(必须对输入变量、输出变量进行说明;编程无语言要求,但程序要求通过)四结果分析和讨论 五完成题目的体会与收获 3. 提交大作业的时间:本学期最后一次课,或考前答疑;过期不计入成绩; 4. 提交方式:打印版一份;或手写大作业,但必须使用A4纸。 5. 撰写的程序需打印出来作为附录。

课程设计 课程名称: 设计题目: 学号: 姓名: 完成时间:

题目一:非线性方程求根 一 摘要 非线性方程的解析解通常很难给出,因此非线性方程的数值解就尤为重要。本实验通过使用常用的求解方法二分法和Newton 法及改进的Newton 法处理几个题目,分析并总结不同方法处理问题的优缺点。观察迭代次数,收敛速度及初值选取对迭代的影响。 用Newton 法计算下列方程 (1) 310x x --= , 初值分别为01x =,00.45x =,00.65x =; (2) 32943892940x x x +-+= 其三个根分别为1,3,98-。当选择初值02x =时给出结果并分析现 象,当6 510ε-=?,迭代停止。 二 数学原理 对于方程f(x)=0,如果f(x)是线性函数,则它的求根是很容易的。牛顿迭代法实质上是一种线性化方法,其基本思想是将非线性方程f(x)=0逐步归结为某种线性方程来求解。 设已知方程f(x)=0有近似根x k (假定k f'(x )0≠) ,将函数f(x)在点x k 进行泰勒展开,有 k k k f(x)f(x )+f'(x )(x-x )+≈??? 于是方程f(x)=0可近似的表示为 k k k f(x )+f'(x )(x-x )=0 这是个线性方程,记其根为x k+1,则x k+1的计算公式为 k+1k () x =x -'() k k f x f x ,k=0,1,2,… 这就是牛顿迭代法或简称牛顿法。

数值分析典型例题

数值分析典型例题 例1 对下列各数写出具有5位有效数字的近似值。236.478, 0.00234711, 9.000024, 9.0000343 10?. 解:按照定义,以上各数具有5位有效数字的近似值分别为:236.478, 0.0023471, 9.0000, 9.0000310?。 注意: *x =9.000024的5位有效数字是9.0000而不是9,因为9 是1位有效数字。 例2 指出下列各数具有几位有效数字。2.0004, -0.00200, -9000, 9310?, 23 10-?。 解:按照定义,以上各数的有效数字位数分别为5, 3, 4,1,1 例3 已测得某物体行程* s 的近似值s=800m ,所需时间* s 的近似值为t=35s ,若已知m s s s t t 5.0||,05.0||**≤-≤-,试求平均速度v 的绝对误差和相对误差限。 解:因为t s v /=,所以)()(1)()()(2t e t s s e t t e t v s e s v v e -=??+??≈ 从 而 05.00469.035 800 5.0351|)(||||)(|1|)(|22≤≈+?≤+≤t e t s s e t v e 同样v v e v e r )()(≈)()()()(t e s e t e v t t v s e v s s v r r r -=??+??= 所以00205.035 05 .08005.0|)(||)(||)(|≈+≤+≤t e s e v e r r r 因此绝对误差限和相对误差限分别为0.05和0.00205。 例4试建立积分20,,1,05 =+=n dx x x I n n 的递推关系,并研究它的误差 传递。 解:151 --= n n I n I ……………………………………………..…...(1) 5ln 6ln 0-=I ,计算出0I 后可通过(1)依次递推计算出1I ,…,20I 。 但是计算0I 时有误差0e ,由此计算出的1I ,…,20I 也有误差,由(1)可 知近似值之间的递推关系为 151 --= n n I n I ……………………………………………….…..(2) (1)-(2)可得 01)5(5e e e n n n -=-=-,由0I 计算n I 时误差被放大了n 5倍。所以(1)不稳 定。 (1) 可以改写为 n I I n n 51 511+ -=- ……………………………………… (3) 如果能先求出20I ,则依次可以求出19I ,…,0I ,计算20I 时有误差,这样根据(3)计算19I ,…,0I 就有误差,误差传播为 n n n e e ?? ? ??-=-511 ,误差依次减少。 例5 用二分法求解方程012)(23=+--=x x x x f 在区间[0,1]内的1个实根,要求有3为有效数字。 解:因为0)1()0(

数值分析试题A卷10.1

中国石油大学(北京)2009--2010学年第一学期 研究生期末考试试题A (闭卷考试) 课程名称:数值分析 注:计算题取小数点后四位 一、填空题(共30分,每空3分) 1、 已知x =是由准确数a 经四舍五入得到的近似值,则x 的绝对误差 界为_______________。 2、数值微分公式()() '()i i i f x h f x f x h +-≈ 的截断误差为 。 3、已知向量T x =,求Householder 变换阵H ,使(2,0)T Hx =-。 H = 。 4、利用三点高斯求积公式 1 1 ()0.5556(0.7746)0.8889(0)0.5556(0.7746)f x dx f f f -≈-++? 导出求积分 4 0()f x dx ?的三点高斯求积公式 。 5、4 2 ()523,[0.1,0.2,0.3,0.4,0.5]_____.f x x x f =+-= 若则 6、以n + 1个互异节点x k ( k =0,1,…,n ),(n >1)为插值节点的 Lagrange 插值基函数为l k (x)( k =0,1,…,n ),则 (0)(1)__________.n k k k l x =+=∑ 7、已知3()P x 是用极小化插值法得到的cos x 在[0,4]上的三次插值多项式,则3()P x 的 截断误差上界为3()cos ()R x x P x =-≤_________.

8、已知向量(3,2,5)T x =-,求Gauss 变换阵L ,使(3,0,0)T Lx =。L =_________. 9、设3 2 ()(7)f x x =-, 给出求方程()0f x =根的二阶收敛的迭代格式_________。 10、下面M 文件是用来求解什么数学问题的________________________. function [x,k]=dd (x0) for k=1:1000 x=cos (x0); if abs(x-x0)<, break end x0=x; end 二、(15分)已知矛盾方程组Ax=b ,其中11120,1211A b ???? ????==???????????? , (1)用施密特正交化方法求矩阵A 的正交分解,即A=QR 。 (2)用此正交分解求矛盾方程组Ax=b 的最小二乘解。 三、(10分)已知求解线性方程组Ax=b 的分量迭代格式 1 (1) (1) ()1 +1 /, 121,,i n k k k i i ij j ij j ii j j i x b a x a x a i n n -++===-- =-∑∑(),, (1)试导出其矩阵迭代格式及迭代矩阵; (2)若11a A a ?? = ??? ,推导上述迭代格式收敛的充分必要条件。 四、(15分)(1)证明对任何初值0x R ∈,由迭代公式11 1sin ,0,1,2, (2) k k x x k +=+ = 所产生的序列{}0k k x ∞ =都收敛于方程1 1sin 2 x x =+ 的根。 (2)迭代公式11 21sin ,0,1,2, (2) k k k x x x k +=-- =是否收敛。 五、(15分)用最小二乘法确定一条经过原点(0,0)的二次曲线,使之拟合下列数据

整理工程中的数值分析

工 程 中 的 数 值 分 析 20 年月日A4打印/ 可编辑

《数值分析》 课程教学方法改革案例 1.课程简介 (1)课程类别:专业选修课程 (2)学科类别:工学--计算机科学与技术 (3)课程目标和教学内容: 解决问题的数值方法已经成为工程学乃至社会科学研究中非常重要的基础工具。《数值分析》是应用性很强的数学类课程,是工程数学与计算机应用的桥梁。该课程介绍将连续的数学模型离散化,通过计算机程序在有限步骤内求得数值近似解的方法。通过一系列的实验帮助学生掌握基本的误差分析方法、求解非线性方程和线性方程组的方法、求特征根、用插值及拟合近似计算函数值、计算近似定积分、求解微分方程的方法等。通过学习,学生将掌握经典算法的基本理论、使用技巧,并能够灵活应用以解决实际问题。 (4)教学对象:计算机与软件工程专业三年级本科学生;每年开设3个左右教学班,每班人数控制在50人以内,采用小班化教学。 (5)教学场景:课堂教学在多媒教室,实验教学在计算机实验机房。 2.课程教学重点解决的问题 工程数学领域内用到的大量数学模型,还不能直接用计算机求解,必须通过数

值方法把原始数学模型离散化,变为算法语言能认识的、有限步可解的数学模型,才可用计算机编程、运行得到数值解。《数值分析》就是以高等数学和算法语言为基础,介绍这些数值方法的来龙去脉,使学生学会基本原理,并掌握灵活实际应用的技巧。 在传统的数值分析教学活动及教材中,往往偏重理论证明和简单的手工跟踪算法实践,较少给出数值实验习题,而对如何进行数值实验,如何基于算法进行编程练习等更没有提出要求。但这是一门应用性很强的数学类的课程,因此教学过程中应特别注重实践。虽然专业软件MATLAB具有强大的计算功能,但处理一些特殊困难的问题时仍然不能保证得到好的效果,所以专业人员仍然有必要掌握对基本算法的实现能力,才能在改进算法适应性方面得心应手。 另一方面,数学的学习是锻炼科学研究能力的重要手段之一,课程本身传递的知识固然重要,更重要的是引导学生训练逻辑思维能力,掌握逻辑推理的一般方法,从而培养出科学严谨的思维习惯以及主动探索求知的精神。 3.围绕问题的教学方法改革 (1)教学实施策略与方法 针对课程教学的目标和教学中重点解决的问题,目前课程采用的教学实施策略和方法主要有:基于团队的学习组织方式、基于问题的互动教学、基于编程大作业的实践能力培养、以及基于拓展性课题的研究性学习。 1.基于团队的学习组织方式。课程采用小班教学,人数基本限定在50人以内, 第一堂课将学生分为18组,最多每3人一组。每组学生在课堂学习中座位集中(为了课堂讨论),在课外实践中分工合作完成18个拓展性课题的研究任务。

数值分析期末试题

数值分析期末试题 一、填空题(20102=?分) (1)设??? ? ? ??? ??---=28 3 012 251A ,则=∞ A ______13_______。 (2)对于方程组?? ?=-=-3 4101522121x x x x ,Jacobi 迭代法的迭代矩阵是=J B ?? ? ? ??05.25.20。 (3)3*x 的相对误差约是*x 的相对误差的 3 1倍。 (4)求方程)(x f x =根的牛顿迭代公式是) ('1)(1n n n n n x f x f x x x +-- =+。 (5)设1)(3 -+=x x x f ,则差商=]3,2,1,0[f 1 。 (6)设n n ?矩阵G 的特征值是n λλλ,,,21 ,则矩阵G 的谱半径=)(G ρi n i λ≤≤1max 。 (7)已知?? ? ? ??=1021 A ,则条件数=∞ )(A Cond 9 (8)为了提高数值计算精度,当正数x 充分大时,应将)1ln(2 -- x x 改写为 )1ln(2 ++ -x x 。 (9)n 个求积节点的插值型求积公式的代数精确度至少为1-n 次。 (10)拟合三点))(,(11x f x ,))(,(22x f x ,))(,(33x f x 的水平直线是)(3 1 3 1 ∑== i i x f y 。 二、(10分)证明:方程组? ?? ??=-+=++=+-1 211 2321321321x x x x x x x x x 使用Jacobi 迭代法求解不收敛性。 证明:Jacobi 迭代法的迭代矩阵为 ???? ? ?????---=05 .05 .01015.05.00J B J B 的特征多项式为