高中数学-知识讲解_导数的计算_提高1

高中数学-知识讲解_导数的计算_提高1
高中数学-知识讲解_导数的计算_提高1

导数的计算

【学习目标】 1. 牢记几个常用函数的导数公式,并掌握其推导过程。

2. 熟记八个基本初等函数的导数公式,并能准确运用。

3. 能熟练运用四则运算的求导法则,

4. 理解复合函数的结构规律,掌握求复合函数的求导法则:“由外及内,层层求导”.

【要点梳理】

知识点一:基本初等函数的导数公式

(1)()f x C =(C 为常数),'()0f x = (2)()n

f x x =(n 为有理数),1

'()n f x n x -=?

(3)()sin f x x =,'()cos f x x = (4)()cos f x x =,'()sin f x x =- (5)()x

f x e =,'()x

f x e =

(6)()x

f x a =,'()ln x

f x a a =?

(7)()ln f x x =,1'()f x x = (8)()log a f x x =,1

'()log a f x e x =

,这样的形式。

要点诠释:

1.常数函数的导数为0,即C '=0(C 为常数).其几何意义是曲线()f x C =(C 为常数)在任意点处的切线平行于x 轴.

2.有理数幂函数的导数等于幂指数n 与自变量的(n -1)次幂的乘积,即1

()'n

n x nx

-=(n ∈Q ).

特别地

2

11'x x ??

=-

???

,=。 3.正弦函数的导数等于余弦函数,即(sin x )'=cos x .

4.余弦函数的导数等于负的正弦函数,即(cos x )'=-sin x .

5.指数函数的导数:()'ln x

x

a a a =,()'x

x

e e =. 6.对数函数的导数:1(log )'log a a x e x =

,1

(ln )'x x

=. 有时也把1(log )'log a a x e x = 记作:1

(log )'ln a x x a

=

以上常见函数的求导公式不需要证明,只需记住公式即可.

知识点二:函数的和、差、积、商的导数

运算法则:

(1)和差的导数:[()()]''()'()f x g x f x g x ±=± (2)积的导数:[()()]''()()()'()f x g x f x g x f x g x ?=+

(3)商的导数:2

()'()()()'()

[]'()[()]

f x f x

g x f x g x g x g x ?-?=(()0g x ≠) 要点诠释:

1. 上述法则也可以简记为:

(ⅰ)和(或差)的导数:()'''u v u v ±=±, 推广:1212()''''n n u u u u u u ±±

±=±±±.

(ⅱ)积的导数:()'''u v u v uv ?=+, 特别地:()''cu cu =(c 为常数).

(ⅲ)商的导数:2

''

'(0)u u v uv v v v -??=≠

???

, 两函数商的求导法则的特例 2

()'()()()'()

'(()0)()()f x f x g x f x g x g x g x g x ??-=≠?

???

, 当()1f x =时,22

11'()1'()'()

'(()0)()()()g x g x g x g x g x g x g x ???-?==-≠?

???

. 这是一个函数倒数的求导法则.

2.两函数积与商求导公式的说明

(1)类比:()'''uv u v uv =+,2

''

'u u v uv v v -??=

???

(v ≠0),注意差异,加以区分. (2)注意:'''u u v v ??≠

???且2

''

'u u v uv v v +??≠ ???

(v ≠0). 3.求导运算的技巧

在求导数中,有些函数虽然表面形式上为函数的商或积,但在求导前利用代数或三角恒等变形可

将函数先化简(可能化去了商或积),然后进行求导,可避免使用积、商的求导法则,减少运算量.

知识点三:复合函数的求导法则 1.复合函数的概念

对于函数[()]y f x ?=,令()u x ?=,则()y f u =是中间变量u 的函数,()u x ?=是自变量x 的函

数,则函数[()]y f x ?=是自变量x 的复合函数.

要点诠释: 常把()u x ?=称为“内层”, ()y f u =称为“外层” 。 2.复合函数的导数

设函数()u x ?=在点x 处可导,''()x u x ?=,函数()y f u =在点x 的对应点u 处也可导''()u y f u =,

则复合函数[()]y f x ?=在点x 处可导,并且'''x u x y y u =?,或写作'[()]'()'()x f x f u x ??=?. 3.掌握复合函数的求导方法

(1)分层:将复合函数[()]y f x ?=分出内层、外层。

(2)各层求导:对内层()u x ?=,外层()y f u =分别求导。得到'(),'()x f u ? (3)求积并回代:求出两导数的积:'()'()f u x ??,然后将()u x ?用替换,即可得到

[()]y f x ?=的导数。

要点诠释: 1. 整个过程可简记为分层——求导——回代,熟练以后,可以省略中间过程。若遇多重复合,

可以相应地多次用中间变量。

2. 选择中间变量是复合函数求导的关键。求导时需要记住中间变量,逐层求导,不遗漏。求导后,要把中间变量转换成自变量的函数。 【典型例题】

类型一:求简单初等函数的导数 例1. 求下列函数的导数:

(1)y=x 13;(2)

31y x =

;(3)y =(4)3log y x =;(5)cos y x =;(6)y =。 【解析】 (1)13

131

12'()'1313y x x

x -===;

(2)331431''()'33y x x x x ----??

===-=-

???

(3)11314

4

411'()'44

y x x x --====;

(4)3311

'(log )'log ln 3

y x e x x ==

?=

; (5)'(cos )'sin y x x ==-;

(6)2271355

22'()'55y x x x -----==-=-。 【点评】(1)用导数的定义求导是求导数的基本方法,但运算较繁。利用常用函数的导数公式,可以简化

求导过程,降低运算难度。 (2)准确记忆公式。

(3)根式、分式求导时,先将根式、分式转化为幂的形式。

举一反三:

【变式】求下列函数的导数:

(1)4

1y x =;

(2)y

(3)2

22log log y x x =-;

(4)22sin (12cos )24

x x y =-- 【答案】

(1)4415

45

14'(

)'()'44y x x x x x

----===-=-=-.

(2)3

3215

55

33'()'55y x x x --=====(3)∵2

222log log log y x x x =-=,∴21

'(log )'ln 2

y x x ==

?. (4)22sin (12cos )24x x y =--22sin (2cos 1)24x x =-2sin cos sin 22

x x

x ==

∴'cos y x =.

类型二:求函数的和、差、积、商的导数

例2. 求下列函数导数:

(1)2

()(1)(23)f x x x =+-; (2)y =x · sin x · ln x ;

(3)y =

x x

4

; (4)y =x

x

ln 1ln 1+-.

【解析】

(1)法一:去掉括号后求导.

32()2323f x x x x =-+- 2'()662f x x x =-+

法二:利用两个函数乘积的求导法则

22'()(1)'(23)(1)(23)'f x x x x x =+-++?-

=2x(2x -3)+(x 2

+1)×2

=6x 2-6x+2

(2)y ′=(x sin x )′ln x +x sin x · (ln x )′

=(sin x +x cos x ) ln x +sin x .

(3)y ′=x x x x 244ln 44-=x

x 44

ln 1-.

(4)y ′=2

)

ln 1()

ln 1(1

)ln 1(1x x x x x +--+-=2)ln 1(2x x +-. 【点评】

(1)如遇求多个积的导数,可以逐层分组进行;

(2)求导数前的变形,目的在于简化运算;求导数后应对结果进行整理化简。 (3)求较复杂的函数积、商的导数,必须细心、耐心。

举一反三:

【变式1】.求下列各函数的导函数

(1)2

(1)(231)y x x x =++- (2)y=x

x x ln sin (3)y=1e 1e -+x x

【答案】

(1)法一:132322

23-++-+=x x x x x y 125223-++=x x x ∴2

6102y x x '=++

法二:)132)(1()132()1(2

2

'-+++-+'+='x x x x x x y =1322-+x x +)1(+x )34(+x 26102x x =++ (2)'

y =

2

ln sin sin ln cos x

x

x x x x x -+ (3)2(e 1)(e 1)(e 1)(e 1)'(e 1)x x x x x y ''+--+-=-2

e 2-x x

【变式2】求下列函数的导数.

(1)ln ()2(0)1

x x

f x x x =

->+ (2) y =x

x x x

x x sin cos cos sin +-

(3

)y =【答案】

(1)21(1)ln (1)''()2ln 2(1)x x x x x f x x +-?+=-+2

11ln 2ln 2(0)(1)

x x

x x x +-=->+ (2)y ′=

2

)sin (cos 1

x x x +[(sin x -x cos x )′(cos x +x sin x )-(sin x -x cos x )·(cos x +x sin x )′]

2

)

sin (cos 1

x x x +[(cos x -cos x +x sin x ) (cos x +x sin x )-(sin x -x cos x ) (x cos x )] =2

2222)sin (cos cos cos sin sin cos sin x x x x x x x x x x x x x ++-+=x

x x x sin cos 2+ (3)∵3

3

22

sin y x x

x x -

-=++,

∴52

2223'3()'sin (sin )'2y x x x x x x ---=-++ 5232

2332sin cos 2

x x x x x x ---=--+.

【变式3】求下列函数的导数:

(1

)1

cos y x x x

=+

; (2)4

2log a x y x

=+;

(3

)y =

【答案】

(1)

1')'cos 'y x x x ??=+

???

12

211sin cos (sin )x

x x x x x x -

-??

=+++-? ???

1

11

22

2

()sin (2)cos x

x x x x x -

--=-+-。

(2)43

24(2log )ln '(2log )a a x x x x a y x +-=+3332

84log ln (2log )

a a x x x x a x +-

=+32184log lg (2log )a a x a x x -+=+。

(3

)∵21y x

=

=-,∴22

2(1)'2

'(1)(1)x y x x --==--。 类型三:求复合函数的导数

例3.求下列复合函数的导数:

(1)f (x )=ln(8x ); (2)y =5log 2(2x +1). (3)y =sin2x -cos2x .

【解析】 (1) 因为f (x )=ln(8x )=ln8+ln x ,所以f ′(x )=(ln8)′+(ln x )′=

1x

. (2) 设y =5log 2u ,u =2x +1,则y ′=5(log 2u )′(2x +1)′=10

ln 2u =10(21)ln 2

x +.

(3) 法一:y ′=(sin2x -cos2x )′=(sin2x )′-(cos2x )′=2cos2x +2sin2x =

sin(2x +4

π). 法二:∵y

sin(2x -

4π),∴y

cos(2x -4π) ·2=

x +4

π). 【点评】

把一部分量或式子暂时当作一个整体,这个整体就是中间变量。求导数时需要记住中间变量,注意逐层求导,不能遗漏。求导数后,要把中间变量转换成自变量的函数。 举一反三:

【变式1】.求下列函数导数.

(1)ln(2)y x =+; (2)21

e x y +=; (3)2

cos(21)y x =+.

【答案】

(1)ln y u =,2u x =+

∴'''(ln )'(2)'x u x y y u u x =?=?+ 11

12

u x =?=

+ (2)e u

y =,21u x =+.

∴'''(e )'(21)'u

x u x y y u x =?=?+212e 2e u x +==

(3)cos y u =,2

21u x =+,

∴2

'''(cos )'(21)'x u x y y u u x =?=?+2

4sin 4sin(21)x u x x =-=-+.

例4 求下列函数导数.

(1)

22y x ?=-<

; (2)2cos (2)3

y x π

=+

【解析】

(1) 设u=1-2x 2,则1

2

y u

-=。

∴321'''(4)2x u x y y u u x -??

=?=-?- ???

332222

1(12)(4)2(12)2x x x x --=---=-=。

(2)设2

μ=y ,μ=cosv ,3

+

=x v ,则

''''2sin 2x V x y y v v μμμ=??=-??

2cos(2)sin(2)2

33

22sin(4)

3

x x x ππ

π

=-+?+?=-+

在熟练掌握复合函数求导以后,可省略中间步骤: 2

'cos (2)'2cos(2)cos(2)'333y x x x πππ??

??

=+

=+?+?????

???

2cos(2)sin(2)(2)'333

2

2sin(4)

3

x x x x πππ

π=-+?+?+=-+

【点评】

(1)复合函数求导数的步骤是:

①分清复合关系,适当选定中间变量,正确分解复合关系(简称分解复合关系); ②分层求导,弄清每一步中哪个变量对哪个变量求导数(简称分层求导); ③将中间变量代回为自变量的函数。

简记为分解——求导——回代,当省加重中间步骤后,就没有回代这一步了, 即分解(复合关系)——求导(导数相乘)。

(2)同一个问题可有多种不同的求导方法,若能化简的式子,则先化简,再求导。 举一反三:

【变式1】 求y =sin 4x +cos 4x 的导数.

【答案】

【解法一】y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2cos 2x =1-

2

1sin 2

2 x =1-

41(1-cos 4 x )=43+4

1

cos 4 x .y ′=-sin 4 x . 【解法二】y ′=(sin 4 x )′+(cos 4 x )′=4 sin 3 x (sin x )′+4 cos 3x (cos x )′

=4 sin 3 x cos x +4 cos 3 x (-sin x )=4 sin x cos x (sin 2 x -cos 2 x ) =-2 sin 2 x cos 2 x =-sin 4 x

【变式2】求下列函数导数:

(1)()(cos sin )x

f x e x x -=+

(2).求函数2

2

cos sin x y x ??= ???

的导数(sin 0x ≠)。(3)y=ln (x +2

1x +); 【答案】 (1)'()()'(cos sin )(cos sin )'x

x f x e

x x x e x x --=?-++?+

(cos sin )(sin cos )x

x

e x x e x x --=-++-+ (sin cos cos sin )x

e x x x x -=-+-- (2sin )x e x -=- 2sin x e x -=-?

(2).方法一:222226cos cos 2cos (cos )'sin cos (sin )'

'2'sin sin sin sin x x x x x x x y x x x x

-??=?=

? ??? 323352cos (sin 2cos sin )2cos 4cos sin 6sin sin x x x x x x

x x x

--?==--。

方法二:∵24

cos sin x

y x

=,∴24248(cos )'sin cos (sin )''sin x x x x y x -= 42338352cos (sin )sin cos 4sin cos 2cos 4cos sin sin sin x x x x x x x x

x x x

--?==--。

(3)

''y x =

+

类型四:利用导数求函数式中的参数

例5 (1)3

2

()32f x ax x =++,若'(1)4f -=,则a 的值为( )

A .

103 B .133 C .163 D .193

(2)设函数())(0)f x ??π=+<<,若()'()f x f x +是奇函数,

则?=________。

【解析】 (1)∵2

'()36f x ax x =+, ∴'(1)364f a -=-=,∴10

3

a =

,故选A 。

(2)由于'())f x ?=+,

∴5()'()cos(3)3sin(3)2sin 36

f x f x x x x π?????+=+-+=++

??

?

, 若()'()f x f x +是奇函数,则(0)'(0)0f f +=,即502sin 6

π???=+ ??

?

, 所以5()6

k k Z π

?π+

=∈。 又因为0?π<<,所以6

π

?=

【点拨】 求函数的导数的基本方法是利用函数的和、差、积、商的导数运算法则以及复合函数的导

数运算法则,转化为常见函数的导数问题,再利用求导公式来求解即可。

【变式1】已知()f x 是关于x 的多项式函数,

(1)若2

()2(1)f x x xf '=+,求(0)f ';

(2)若2

()36f x x x '=-且(0)4f =,解不等式()0f x >. 【解析】显然(1)f '是一个常数,所以'()22(1)f x x f '=+

所以'(1)212(1)f f '=?+,即'(1)2f =- 所以'(0)202(1)4f f '=?+=-

∵2

()36f x x x '=-,∴可设3

2

()3f x x x c =-+ ∵(0)4f c == ∴3

2

2

()34(1)(2)f x x x x x =-+=+- 由()0f x >,解得{}|12x x x >-≠且

【变式2】

已知函数3

2

()f x ax bx cx =++过点(1,5),其导函数'()y f x =的图象 如图所示, 求()f x 的解析式。 【答案】∵2'()32f x ax bx c =++,

由'(1)0f =,'(2)0f =,(1)5f =,得

32012405a b c a b c a b c ++=??++=??++=?,解得2912a b c =??

=-??=?

∴函数()y f x =的解析式为32

()2912f x x x x =-+。

例6.已知函数()f x 可导,若(1)3f =,'(1)3f =,求21()3

lim 1x f x x →--

【解析】22211()3()3

lim

lim[(1)]11x x f x f x x x x →→--=?+-- ((1)3f =) 221()(1)

lim[

(1)]1

x f x f x x →-=?+- 2211()(1)lim lim(1)1

x x f x f x x →→-=?+- (令t=x 2

,x →1,t →1) 1

()(1)2lim

1

t f t f t →-=-

2'(1)236f ==?=

【点拨】 善于观察极限式中的结构和导数的定义的关系是解决本题的关键。 举一反三:

【变式】已知函数()f x 可导,若(3)2f =,'(3)2f =,求323()

lim 3

x x f x x →--

【答案】3323()(26)63()

lim

lim

33

x x x f x x f x x x →→--+-=-- 33[2()]lim{2}3x f x x →-=+-3(3)()23lim 3x f f x x →-=+-3()(3)

23lim

3

x f x f x →-=-- 23'(3)23(2)8f =-=-?-=

高中数学导数与积分知识点

高中数学教案—导数、定积分 一.课标要求: 1.导数及其应用 (1)导数概念及其几何意义 ① 通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵; ②通过函数图像直观地理解导数的几何意义。 (2)导数的运算 ① 能根据导数定义求函数y=c ,y=x ,y=x 2,y=x 3 ,y=1/x ,y=x 的导数; ② 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax+b ))的导数; ③ 会使用导数公式表。 (3)导数在研究函数中的应用 ① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间; ② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。 (4)生活中的优化问题举例 例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。 (5)定积分与微积分基本定理 ① 通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念; ② 通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。 (6)数学文化 收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。 二.命题走向 导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常以解答题形式和其它数学知识结合起来,综合考察利用导数研究函数的单调性、极值、最值. 三.要点精讲 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值 x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。 如果当0→?x 时, x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

人教版高中数学《导数》全部教案

导数的背景(5月4日) 教学目标 理解函数的增量与自变量的增量的比的极限的具体意义 教学重点 瞬时速度、切线的斜率、边际成本 教学难点 极限思想 教学过程 一、导入新课 1. 瞬时速度 问题1:一个小球自由下落,它在下落3秒时的速度是多少? 析:大家知道,自由落体的运动公式是2 2 1gt s = (其中g 是重力加速度). 当时间增量t ?很小时,从3秒到(3+t ?)秒这段时间内,小球下落的快慢变化不大. 因此,可以用这段时间内的平均速度近似地反映小球在下落3秒时的速度. 从3秒到(3+t ?)秒这段时间内位移的增量: 222)(9.44.2939.4)3(9.4)3()3(t t t s t s s ?+?=?-?+=-?+=? 从而,t t s v ?+=??= - -9.44.29. 从上式可以看出,t ?越小,t s ??越接近29.4米/秒;当t ?无限趋近于0时, t s ??无限趋近于29.4米/秒. 此时我们说,当t ?趋向于0时,t s ??的极限是29.4. 当t ?趋向于0时,平均速度t s ??的极限就是小球下降3秒时的速度,也叫做 瞬时速度. 一般地,设物体的运动规律是s =s (t ),则物体在t 到(t +t ?)这段时间 内的平均速度为t t s t t s t s ?-?+= ??)()(. 如果t ?无限趋近于0时,t s ??无限趋近于某个常数a ,就说当t ?趋向于0时,t s ??的极限为a ,这时a 就是物体在时刻t 的瞬时速度. 2. 切线的斜率 问题2:P (1,1)是曲线2x y =上的一点,Q 是曲线上点P 附近的一个点,当点Q 沿曲线逐渐向点P 趋近时割线PQ 的斜率的变化情况.

高中数学选修2-2导数--导数的运算(解析版)

高中数学选修2-2导数--导数的运算(解析版) 1.若f (x )=sin π 3 -cos x ,则f ′(α)等于( ) A .Sin α B .Cos α C .sin π3+cos α D .cos π 3+sin α [答案] A [解析] ∵f (x )=sin π 3 -cos x ,∴f ′(x )=sin x ,∴f ′(α)=sin α,故选A. 2.设函数f (x )=x m +ax 的导数为f ′(x )=2x +1,则数列{1 f (n ) }(n ∈N *)的前n 项和是( ) A.n n +1B .n +2n +1C.n n -1 D .n +1n [答案] A [解析] ∵f (x )=x m +ax 的导数为f ′(x )=2x +1,∴m =2,a =1,∴f (x )=x 2+x , ∴f (n )=n 2+n =n (n +1),∴数列{1 f (n ) }(n ∈N *)的前n 项和为: S n =11×2+12×3+13×4+…+1 n (n +1)=????1-12+????12-13+…+????1n -1n +1 =1-1n +1=n n +1 ,故选A. 3.已知二次函数f (x )的图象如图所示,则其导函数f ′(x )的图象大致形状是( ) [答案] B [解析] 依题意可设f (x )=ax 2+c (a <0,且c >0),于是f ′(x )=2ax ,显然f ′(x )的图象为直线,过原点,且斜率2a <0,故选B. 4.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(e)+ln x ,则f ′(e)=( ) A .e - 1B .-1C .-e - 1 D .-e [答案] C [解析] ∵f (x )=2xf ′(e)+ln x ,∴f ′(x )=2f ′(e)+1x ,∴f ′(e)=2f ′(e)+1 e , 解得f ′(e)=-1 e ,故选C.

高中数学《导数的概念及几何意义》公开课优秀教学设计

《导数的概念及几何意义》教学设计 教材内容分析 本节课的教学内容选自人教社普通高中课程标准实验教科书( A 版)数学选修2-2第一章第一节的《变化率与导数》,《导数的概念及几何意义》是在学习了函数平均变化率以后,过渡到瞬时变化率,从而得出导数的概念,再从平均变化率的几何意义,迁移至瞬时变化率即导数的几何意义。 导数是微积分的核心概念之一,是从生产技术和自然科学的需要中产生的,它深刻揭示了函数变化的本质,其思想方法和基本理论在在天文、物理、工程技术中有着广泛的应用,而且在日常生活及经济领域也日渐显示出其重要的功能。 在中学数学中,导数具有相当重要的地位和作用。 从横向看,导数在现行高中教材体系中处于一种特殊的地位。它是众多知识的交汇点,是解决函数、不等式、数列、几何等多章节相关问题的重要工具, 它以更高的观点和更简捷的方法对中学数学的许多问题起到以简驭繁的处理。 从纵向看,导数是函数一章学习的延续和深化,也是对极限知识的发展, 同时为后继研究导数的几何意义及应用打下必备的基础, 具有承前启后的重要作用。 学生学情分析 学生在高一年级的物理课程中已经学习了瞬时速度,因此,先通过求物体在某一时刻的平均速度的极限去得出瞬时速度, 再由此抽象出函数在某点的平均变化率的极限就是瞬时变化率的的模型, 并将瞬时变化率定义为导数,这是符合学生认知规律的. 而在第一课时平均变化率的学习中,课本给出了一个思考,观察函数 )(x f y 的图像,平均变化x y 表示什么?这个思考为研究导数的几何意义埋下 了伏笔。因此,在将瞬时变化率定义为导数之后, 立即让学生继续探索导数的几何意义,学生会对导数的几何意义有更为深刻的认识。 教学目标 1、知识与技能目标会从数值逼近、几何直观感知,解析式抽象三个角度认识导数的含义,应用导数的定义求简单函数在某点处的导数, 掌握求导数的基本步骤,初步学会求解 简单函数在一点处的切线方程。 2、过程与方法目标 通过动手计算培养学生观察、分析、比较和归纳能力,通过问题的探究体会逼近、类比、以及用已知探求未知、从特殊到一般的数学思想方法。 3、情感态度与价值观

(word完整版)高中数学导数练习题(分类练习)讲义

导数专题 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 解析:()2'2 +=x x f ,所以()3211'=+=-f 答案:3 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1 (1))M f ,处的切线方程是1 22 y x =+,则(1)(1)f f '+= 。 解析:因为21= k ,所以()2 1 1'=f ,由切线过点(1 (1))M f ,,可得点M 的纵坐标为25,所以()2 5 1=f ,所以()()31'1=+f f 答案:3 例3.曲线32 242y x x x =--+在点(1 3)-,处的切线方程是 。 解析:443'2 --=x x y ,∴点(1 3)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。

解析:Θ直线过原点,则()000 ≠= x x y k 。由点()00,y x 在曲线C 上,则02 030023x x x y +-=,∴ 2302 00 0+-=x x x y 。又263'2+-=x x y ,∴ 在() 00,y x 处曲线C 的切线斜率为()263'02 00+-==x x x f k ,∴ 2632302 0020+-=+-x x x x , 整理得:03200=-x x ,解得:2 3 0=x 或00=x (舍),此时,830- =y ,41-=k 。所以,直线l 的方程为x y 4 1 -=,切点坐标是?? ? ??-83,23。 答案:直线l 的方程为x y 41- =,切点坐标是?? ? ??-83,23 点评:本小题考查导数几何意义的应用。解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值范围。 解析:函数()x f 的导数为()163'2 -+=x ax x f 。对于R x ∈都有()0'a 时,函数()x f 在R 上存在增区间。所以,当3->a 时,函数()x f 在 R 上不是单调递减函数。 综合(1)(2)(3)可知3-≤a 。

高中数学导数及其应用电子教案

高中数学导数及其应用一、知识网络 二、高考考点 1、导数定义的认知与应用; 2、求导公式与运算法则的运用; 3、导数的几何意义; 4、导数在研究函数单调性上的应用; 5、导数在寻求函数的极值或最值的应用; 6、导数在解决实际问题中的应用。

三、知识要点 (一)导数 1、导数的概念 (1)导数的定义 (Ⅰ)设函数在点及其附近有定义,当自变量x在处有增量△x(△x可 正可负),则函数y相应地有增量,这两个增量的比 ,叫做函数在点到这间的平均变化率。如果 时,有极限,则说函数在点处可导,并把这个极限叫做在点 处的导数(或变化率),记作,即 。 (Ⅱ)如果函数在开区间()内每一点都可导,则说在开区间() 内可导,此时,对于开区间()内每一个确定的值,都对应着一个确定的导数,这样在开区间()内构成一个新的函数,我们把这个新函数叫做在开区间() 内的导函数(简称导数),记作或,即 。 认知: (Ⅰ)函数的导数是以x为自变量的函数,而函数在点处的导数 是一个数值;在点处的导数是的导函数当时的函数值。 (Ⅱ)求函数在点处的导数的三部曲: ①求函数的增量;

②求平均变化率; ③求极限 上述三部曲可简记为一差、二比、三极限。 (2)导数的几何意义: 函数在点处的导数,是曲线在点处的切线的斜率。 (3)函数的可导与连续的关系 函数的可导与连续既有联系又有区别: (Ⅰ)若函数在点处可导,则在点处连续; 若函数在开区间()内可导,则在开区间()内连续(可导一定连续)。 事实上,若函数在点处可导,则有此时, 记 ,则有即在点处连续。 (Ⅱ)若函数在点处连续,但在点处不一定可导(连续不一定可导)。 反例:在点处连续,但在点处无导数。

高中数学-导数的概念及运算练习

高中数学-导数的概念及运算练习 1.y =ln 1 x 的导函数为( ) A .y ′=-1 x B .y ′=1 x C .y ′=lnx D .y ′=-ln(-x) 答案 A 解析 y =ln 1x =-lnx ,∴y ′=-1 x . 2.(·东北师大附中摸底)曲线y =5x +lnx 在点(1,5)处的切线方程为( ) A .4x -y +1=0 B .4x -y -1=0 C .6x -y +1=0 D .6x -y -1=0 答案 D 解析 将点(1,5)代入y =5x +lnx 成立,即点(1,5)为切点.因为y ′=5+1x ,所以y ′|x =1=5+1 1=6. 所以切线方程为y -5=6(x -1),即6x -y -1=0.故选D. 3.曲线y =x +1 x -1在点(3,2)处的切线的斜率是( ) A .2 B .-2 C.12 D .-12 答案 D 解析 y ′=(x +1)′(x -1)-(x +1)(x -1)′(x -1)2=-2 (x -1)2,故曲线在(3,2)处的切线的斜率k = y ′|x =3=-2(3-1)2=-1 2 ,故选D. 4.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-32t 2 +2t ,那么速度为零的时刻是( ) A .0秒 B .1秒末 C .2秒末 D .1秒末和2秒末 答案 D 解析 ∵s=13t 3-32t 2+2t ,∴v =s ′(t)=t 2 -3t +2. 令v =0,得t 2 -3t +2=0,t 1=1或t 2=2. 5.(·郑州质量检测)已知曲线y =x 2 2-3lnx 的一条切线的斜率为2,则切点的横坐标为( ) A .3 B .2 C .1 D.12 答案 A

高等数学导数的概念学习教案.docx

教学合班 1:专业班合计人授课 合班 2:专业班合计人日期对象 合班 3:专业班合计人地点教学第二章导数与微分计划 内容 第一节导数的概念 2学时 (课题) 通过学习,学生能够: 1.理解导数概念,会用定义求函数在一点处的导数; 2.理解导数的几何意义,会求曲线的切线; 3.理解可导与连续的关系。 具体目标如下: 教学 目的 知识目标:技能目标:素养目标: 教学重点难点教学资源 1.理解导数的概念;1.会用定义求函数在一点处 1 .培养学生的数学思维 2.理解导数的几何意义;的导数;能力和解决问题的能 3.把握可导与连续的关系。2.会求曲线的切线。力; 2.培养学生严谨、求实 的作风。 重点:导数的定义。 难点:理解导数的几何意义。 教材、例子(幻灯片)、课件。 教学后记 对培养方案、大纲修改意见对授课计划修改意见对本教案修改意见需增加资源其他教研室主任:系主任:教务处:

教学活动流程 教学步骤与内容教学目标教学方法时间 对前面的知 识进行复习 A. 复习内容与巩固,并简述 1.极限的定义为新知识和6mins 2.极限的计算方法新技能的学 习奠定必要 的基础。 板书 ( 或 PPT展 B. 板书课题,明确学习目标及主要学习内容示)课题简介 明确本次课的辅以2mins (略。详见教案首页)内容重点及目PPT展示 标 C.讲授新知 导数与微分是微积分的基本概念,要更好地理解导数 的概念,应从解决实际问题的背景出发,在解决问题的过 程中自然抽象出导数的概念。导数与微分在理论上和实践 中都有非常广泛的应用。 一、瞬时速度、曲线的切线斜率 1.变速直线运动的瞬时速度 设一质点作变速直线运动,质点的运行路程s与时间t的 关系为 s s(t ) ,求质点在 t0时刻的瞬时速度. 分析:如果质点做匀速直线运动,给时间一个增量t ,讲解20mins 那么质点在时刻 t0与时刻 t0t 间隔内的平均速度也就是 辅以 PPT展示 引入导数概念 质点在时刻 t0的瞬时速度为 v0v s(t0t ) s(t0 ) t 在匀速直线运动中,这个比值是常数,但是如果质点作 变速直线运动,它的运行速度时刻都在发生变化,为了计算 瞬时速度,首先在时刻 t0任给时间一个增量t ,考虑质点由 t0到 t0 Vt 这段时间的平均速度:v s(t0t )s(t0 ) t

人教版高中数学《导数》全部教案课程

导数的背景 (5月4日) 教学目标 理解函数的增量与自变量的增量的比的极限的具体意义 教学重点 瞬时速度、切线的斜率、边际成本 教学难点 极限思想 教学过程 一、导入新课 1. 瞬时速度 问题1:一个小球自由下落,它在下落3秒时的速度是多少? 析:大家知道,自由落体的运动公式是2 2 1gt s = (其中g 是重力加速度). 当时间增量t ?很小时,从3秒到(3+t ?)秒这段时间内,小球下落的快慢变化不大. 因此,可以用这段时间内的平均速度近似地反映小球在下落3秒时的速度. 从3秒到(3+t ?)秒这段时间内位移的增量: 从而,t t s v ?+=??= - -9.44.29. 从上式可以看出,t ?越小,t s ??越接近29.4米/秒;当t ?无限趋近于0时,t s ??无限趋近于29.4 米/秒. 此时我们说,当t ?趋向于0时,t s ??的极限是29.4. 当t ?趋向于0时,平均速度t s ??的极限就是小球下降3秒时的速度,也叫做瞬时速度. 一般地,设物体的运动规律是s =s (t ),则物体在t 到(t +t ?)这段时间内的平均速度为 t t s t t s t s ?-?+= ??)()(. 如果t ?无限趋近于0时,t s ??无限趋近于某个常数a ,就说当t ?趋向于0时,t s ??的极限为a ,这时a 就是物体在时刻t 的瞬时速度. 2. 切线的斜率 问题2:P (1,1)是曲线2x y =上的一点,Q 是曲线上点P 附近的一个点,当点Q 沿曲线逐渐向点P 趋近时割线PQ 的斜率的变化情况. 析:设点Q 的横坐标为1+x ?,则点Q 的纵坐标为(1+x ?)2,点Q 对于点P 的纵坐标的增量 (即函数的增量)22)(21)1(x x x y ?+?=-?+=?, 所以,割线PQ 的斜率x x x x x y k PQ ?+=??+?=??=2)(22.

导数的运算法则及基本公式应用

120 导数的运算法则及基本公式应用 导数是中学限选内容中较为重要的知识,本节内容主要是在导数的定义,常用求等公式.四则运算求导法则和复合函数求导法则等问题上对考生进行训练与指导. ●难点磁场 (★★★★★)已知曲线C :y =x 3-3x 2+2x ,直线l :y =kx ,且l 与C 切于点(x 0,y 0)(x 0≠0),求直线l 的方程及切点坐标. ●案例探究 [例1]求函数的导数: )1()3( )sin ()2( cos )1(1)1(2322+=-=+-=x f y x b ax y x x x y ω 命题意图:本题3个小题分别考查了导数的四则运算法则,复合函数求导的方法,以及抽象函数求导的思想方法.这是导数中比较典型的求导类型,属于★★★★级题目. 知识依托:解答本题的闪光点是要分析函数的结构和特征,挖掘量的隐含条件,将问题转化为基本函数的导数. 错解分析:本题难点在求导过程中符号判断不清,复合函数的结构分解为基本函数出差错. 技巧与方法:先分析函数式结构,找准复合函数的式子特征,按照求导法则进行求导. x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x y 222222222222222222222cos )1(sin )1)(1(cos )12(cos )1(] sin )1(cos 2)[1(cos )1(cos )1(]))(cos 1(cos )1)[(1(cos )1(cos )1(]cos )1)[(1(cos )1()1(:)1(++-+--=++---+-=+'++'+--+-=-+'+--+'-='解 (2)解:y =μ3,μ=ax -b sin 2ωx ,μ=av -by v =x ,y =sin γ γ=ωx y ′=(μ3)′=3μ2·μ′=3μ2(av -by )′ =3μ2(av ′-by ′)=3μ2(av ′-by ′γ′) =3(ax -b sin 2ωx )2(a -b ωsin2ωx ) (3)解法一:设y =f (μ),μ=v ,v =x 2+1,则 y ′x =y ′μμ′v ·v ′x =f ′(μ)·2 1v -21·2x =f ′(12+x )·21 112+x ·2x =),1(122+'+x f x x 解法二:y ′=[f (12+x )]′=f ′(12+x )·(12+x )′

高中数学导数讲义完整版

高中数学导数讲义完整版 第一部分 导数的背景 一、导入新课 1. 瞬时速度 问题1:一个小球自由下落,它在下落3秒时的速度是多少? (2 2 1gt s =,其中g 是重力加速度). 2. 切线的斜率 问题2:P (1,1)是曲线2 x y =上的一点,Q 是曲线上点P 附近的一个点,当点Q 沿曲线逐渐向点P 趋近时割线PQ 的斜率的变化情况. 3. 边际成本 问题3:设成本为C ,产量为q ,成本与产量的函数关系式为103)(2 +=q q C ,我们来研究当q =50时,产量变化q ?对成本的影响. 二、小结: 瞬时速度是平均速度 t s ??当t ?趋近于0时的极限;切线是割线的极限位置,切线的斜率是割线斜率x y ??当x ?趋近于0时的极限;边际成本是平均成本 q C ??当q ?趋近于0时的极限. 三、练习与作业: 1. 某物体的运动方程为2 5)(t t s =(位移单位:m ,时间单位:s )求它在t =2s 时的速度. 2. 判断曲线2 2x y =在点P (1,2)处是否有切线,如果有,求出切线的方程. 3. 已知成本C 与产量q 的函数关系式为522 +=q C ,求当产量q =80时的边际成本. 4. 一球沿某一斜面自由滚下,测得滚下的垂直距离h (单位:m )与时间t (单位:s )之间的函数关系为2 t h =,求t =4s 时此球在垂直方向的瞬时速度. 5. 判断曲线2 2 1x y = 在(1,21)处是否有切线,如果有,求出切线的方程. 6. 已知成本C 与产量q 的函数关系为742 +=q C ,求当产量q =30时的边际成本.

高中数学导数教案

个性化教学辅导教案学科:数学任课教师:林老师授课时间:

.B ()()f x g x < .C ()()()()f x g a g x f a +>+ .D ()()()()f x g b g x f b +>+ 问题2.()f x 的导函数()y f x '= 的图象如图所示,则()y f x =的图象最有可能的是 问题3.求下列函数的导数: ()1()2 1sin y x =+; ()41 1 x x e y e +=-; ()6ln x y e x =? () 7sin 1cos x y x = +; ()8()21sin cos y x x x x =-?+? ()932x x x y e e =?-+ ()10()()33421y x x x =-?- 问题4.()1求过点()1,1P 且与曲线3y x =相切的直线方程. ()2(06全国Ⅱ文)过点()1,0-作抛物线21y x x =++的切线,则其中一条切线为 .A 220x y ++= .B 330x y -+= .C 10x y ++= .D 10x y -+= ()3(08届高三攸县一中)已知曲线m x y += 3 3 1的一条切线方程是44y x =-,则m 的值为 .A 43 .B 283- .C 43或283- .D 23或13 3 - (三)课后作业: 1.若0()2f x '=,求0 lim →k k x f k x f 2) ()(00-- 2.(07届高三皖南八校联考)已知2()2(2)f x x xf =+',则(2)f '=

设函数)(x f 在[]b a ,上连续,在(,)a b 内可导,则求)(x f 在[]b a ,上的最大值与最小值的步骤如下: ()1求)(x f 在(,)a b 内的极值; ()2将)(x f 的各极值与)(a f 、)(b f 比较得出函数)(x f 在[]b a ,上的最值p 9.求参数范围的方法:①分离变量法;②构造(差)函数法. 10.构造函数法是证明不等式的常用方法:构造时要注意四变原则:变具体为抽象,变常量为变量,变主 元为辅元,变分式为整式. 11.通过求导求函数不等式的基本思路是:以导函数和不等式为基础,单调性为主线,最(极值)为 助手,从数形结合、分类讨论等多视角进行综合探索. (二)典例分析: 问题1.()1函数)(x f y =在定义域)3,2 3 (-内可导,其图象如图所示,记)(x f y = 的导函数为 )(x f y '=,则不等式0)(≤'x f 的解集为 .A [)3,2]1,31 [Y - .B ]38,34[]21,1[Y - .C [)2,1]2 1 ,23[Y - .D ?? ??????? ??--3,38]34,21[1,23Y Y ()3设(),()f x g x 均是定义在R 上的奇函数,当0x <时,()()f x g x '+ ()()0f x g x '>,且(2)0f -=,则不等式()()0f x g x ?<的解集是 .A ()()2,02,-+∞U .B ()2,2- .C ()(),22,-∞-+∞U .D ()(),20,2-∞-U 问题2.()1如果函数3()f x x bx =-+在区间()0,1上单调递增,并且方程()0f x =的根都在区间 []2,2-内,则b 的取值范围为 ()2已知2()12f x x x =+-,那么[]()()g x f f x = .A 在区间()2,1-上单调递增 .B 在()0,2上单调递增 .C 在()1,1-上单调递增 .D 在()1,2上单调递增 ()3函数R x x x x f ∈+-=,56)(3, (Ⅰ)求)(x f 的单调区间和极值; (Ⅱ)若关于x 的方程a x f =)(有3个不同实根,求实数a 的取值范围. (Ⅲ)已知当(1,)x ∈+∞时,()f x ≥(1)k x -恒成立,求实数k 的取值范围.

导数的运算-高中数学知识点讲解

导数的运算1.导数的运算 【知识点的知识】 1、基本函数的导函数 ①(为常数) C=0 C ②()=() x n nx n﹣1 n R ③()= sinx cosx ④()=﹣ cosx sinx ⑤()= e e x x ⑥()=()* (>0且1) a a lna a a x x ⑦= [log x)] a 11 (log e)(a>0且a 1) ?* = ???? a lnx ⑧=1.? 2、和差积商的导数 ① [ (f x)g(x)]=f (x )g(x) ② [ (f x)﹣g(x)]=f(x)﹣g(x) ③ [ (f x)g(x)]=f(x)(g x)(f x)g(x) ?(?) ④[?(?)]′=[?′(?)?(?)― ?(?)?′(?)] . [?(?)2]

3、复合函数的导数 设,则 y=(u t),t=(v x)y(x)=u(t)v(x)=u[(v x)]v(x) 1/ 3

【典型例题分析】 题型一:和差积商的导数 典例 1:已知函数,为的导函数,则(f x)=asinx bx 3 (4a R,b R)f (x)(f x)(2014)(﹣2014)(2015)﹣(﹣2015)=() f f f f A.0 B.2014 C.2015 D.8 f (x)=acosx 3bx 2 解:, ∴f (﹣x)=aco(s ﹣x ) 3(b ﹣x) 2 ∴为偶函数; f (x) f ( 2015)﹣f (﹣2015)=0 ∴()(﹣) f 2014 f 2014 =asi(n)b asi(n﹣)(b﹣)=; 2014 ? 20143 4 2014 2014 3 4 8 (f2014)(f﹣2014)f(2015)﹣(f ﹣2015)=8 故选D. 题型二:复合函数的导数 典例 2:下列式子不正确的是() A.B.=()=﹣(lnx﹣2x ) 3x 2 cosx 6x sinx 1?―2?ln2 ????C.()=D.()′= 2sin2x 2cos2x ??????―???? ?2 解:由复合函数的求导法则 对于选项,成立,故正确; A (3x 2 cosx )=6x﹣sinx A

高中数学导数知识点归纳总结

核心出品 必属精品 免费下载 导 数 考试内容: 导数的背影.导数的概念.多项式函数的导数.利用导数研究函数的单调性和极值.函数的最大值和最小值.考试要求:(1)了解导数概念的某些实际背景.(2)理解导数的几何意义.(3)掌握函数,y=c(c 为常数)、y=xn(n ∈N+)的导数公式,会求多项式函数的导数.(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.(5)会利用导数求某些简单实际问题的最大值和最小值. §14. 导 数 知识要点 1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+= ??) ()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做

)(x f y =在0x 处的导数, 记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注:①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系: ⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ?+=0,则0x x →相当于0→?x . 于是)]()()([lim )(lim )(lim 0000 00 x f x f x x f x x f x f x x x x +-+=?+=→?→?→ ). ()(0)()(lim lim ) ()(lim )]()()([ lim 000'0000000000 x f x f x f x f x x f x x f x f x x x f x x f x x x x =+?=+??-?+=+???-?+=→?→?→?→?⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为x x x y ??= ??| |,当x ?>0时,1=??x y ;当x ?<0时, 1-=??x y ,故x y x ??→?0lim 不存在. 注:①可导的奇函数函数其导函数为偶函数. ②可导的偶函数函数其导函数为奇函数. 3. 导数的几何意义: 函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=- 4. 求导数的四则运算法则: ''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=?+++=? ''''''')()(cv cv v c cv u v vu uv =+=?+=(c 为常数) )0(2''' ≠-=?? ? ??v v u v vu v u 注:①v u ,必须是可导函数. ②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、 积、商不一定不可导. 例如:设x x x f 2sin 2)(+=,x x x g 2 cos )(-=,则)(),(x g x f 在0=x 处均不可导,但它们和=+)()(x g x f x x cos sin +在0=x 处均可导. 5. 复合函数的求导法则:)()())(('''x u f x f x ??=或x u x u y y '''?= 复合函数的求导法则可推广到多个中间变量的情形.

北师大版数学高二-高中数学《导数的计算》教案5 选修2-2

高中数学《导数的计算》教案5 选修2-2 教学目标: 1.使学生应用由定义求导数的三个步骤推导四种常见函数y c =、y x =、2y x =、1y x =的导数公式; 2.掌握并能运用这四个公式正确求函数的导数. 教学重点:四种常见函数y c =、y x =、2y x =、1y x =的导数公式及应用 教学难点: 四种常见函数y c =、y x =、2 y x =、1y x =的导数公式 教学过程: 一.创设情景 我们知道,导数的几何意义是曲线在某一点处的切线斜率,物理意义是运动物体在某一时刻的瞬时速度.那么,对于函数()y f x =,如何求它的导数呢? 由导数定义本身,给出了求导数的最基本的方法,但由于导数是用极限来定义的,所以求导数总是归结到求极限这在运算上很麻烦,有时甚至很困难,为了能够较快地求出某些函数的导数,这一单元我们将研究比较简捷的求导数的方法,下面我们求几个常用的函数的导数. 二.新课讲授 1.函数()y f x c ==的导数 根据导数定义,因为()()0y f x x f x c c x x x ?+?--===??? 所以00 lim lim 00x x y y x ?→?→?'===? 0y '=表示函数y c =图像(图3.2-1)上每一点处的切线的斜率都为0.若y c =表示路程关于时间的函数,则0y '=可以解释为某物体的瞬时速度始终为0,即物体一直处于静止状态. 2.函数()y f x x ==的导数

因为()()1y f x x f x x x x x x x ?+?-+?-===??? 所以00 lim lim11x x y y x ?→?→?'===? 1y '=表示函数y x =图像(图3.2-2)上每一点处的切线的斜率都为1.若y x =表示路程关于时间的函数,则1y '=可以解释为某物体做瞬时速度为1的匀速运动. 3.函数2 ()y f x x ==的导数 因为22 ()()()y f x x f x x x x x x x ?+?-+?-==??? 222 2()2x x x x x x x x +?+?-==+?? 所以00 lim lim(2)2x x y y x x x x ?→?→?'==+?=? 2y x '=表示函数2y x =图像(图3.2-3)上点(,)x y 处的切线的斜率都为2x ,说明随着x 的变化,切线的斜率也在变化.另一方面,从导数作为函数在一点的瞬时变化率来看,表明:当0x <时,随着x 的增加,函数2y x =减少得越来越慢;当0x >时,随着x 的增加,函数2y x =增加得越来越快.若2y x =表示路程关于时间的函数,则2y x '=可以解释为某物体做变速运动,它在时刻x 的瞬时速度为2x . 4.函数1()y f x x ==的导数 因为11()()y f x x f x x x x x x x -?+?-+?==???

高中数学-导数的计算练习

高中数学-导数的计算练习 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列求导运算正确的是 A .211()1x x x '+=+ B .21 (log )ln 2 x x '= C .3(3)3log x x x '= D .2 (cos )2sin x x x x '=- 【答案】B 【解析】因为211()x x '=- ,所以A 项应为2 11x -;由1(log )ln a x x a '=知B 项正确;由()ln x x a a a '=可知C 项错误;D 项中,2 2 (cos )2cos sin x x x x x x '=-,所以D 项是错误的,综上所述,正确选项为B . 2.已知函数3 ()f x x =在点P 处的导数值为3,则P 点的坐标为 A .(2,8)-- B .(1,1)-- C .(2,8)--或(2,8) D .(1,1)--或(1,1) 【答案】D 3.已知函数()f x 的导函数为()f x ',且满足()(1)2ln xf f x x ='+,则(1)f '等于 A .e - B . 1- C .1 D .e 【答案】B 【解析】∵函数()f x 的导函数为()f x ',且满足()(1)2ln (0)f x x xf x ='+>, ∴1 ()1()2f x f x '='+ ,把1x =代入()f x '可得(1)2(1)1f f '='+,解得(1)1f '=-.故选B . 4.曲线e x y =在点2 (2,e )处的切线与坐标轴所围成的三角形的面积为 A .2e 2 B .23e C .26e D .29e 【答案】A

(精心整理)高中数学导数知识点归纳总结

§14. 导 数 知识要点 1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+= ??) ()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数, 记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注:①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系: ⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ?+=0,则0x x →相当于0→?x . 于是)] ()()([lim )(lim )(lim 0000 00 x f x f x x f x x f x f x x x x +-+=?+=→?→?→

北师大版数学高二选修1-1 瞬时变化率—导数 教案

3.1.1瞬时变化率—导数 教案 教学目标: (1)理解并掌握曲线在某一点处的切线的概念 (2)会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度 (3)理解导数概念 实际背景,培养学生解决实际问题的能力,进一步掌握在一点处的导数的定义及其几何意义,培养学生转化问题的能力及数形结合思想 教学过程:时速度我们是通过在一段时间内的平均速度的极限来定义的,只要知道了物体的运动方程,代入公式就可以求出瞬时速度了.运用数学工具来解决物理方面的问题,是不是方便多了.所以数学是用来解决其他一些学科,比如物理、化学等方面问题的一种工具,我们这一节课学的内容以及上一节课学的是我们学习导数的一些实际背景 一、复习引入 1、什么叫做平均变化率; 2、曲线上两点的连线(割线)的斜率与函数f(x)在区间[x A ,x B ]上的平均变化率 3、如何精确地刻画曲线上某一点处的变化趋势呢? 下面我们来看一个动画。从这个动画可以看出,随着点P 沿曲线向点Q 运动,随着点P 无限逼近点Q 时,则割线的斜率就会无限逼近曲线在点Q 处的切线的斜率。 所以我们可以用Q 点处的切线的斜率来刻画曲线在点Q 处的变化趋势 二、新课讲解 1、曲线上一点处的切线斜率 不妨设P(x 1,f(x 1)),Q(x 0,f(x 0)),则割线PQ 的斜率为0101)()(x x x f x f k PQ --= , 设x 1-x 0=△x ,则x 1 =△x +x 0, ∴x x f x x f k PQ ?-?+=)()(00 当点P 沿着曲线向点Q 无限靠近时,割线PQ 的斜率就会无限逼近点Q 处切线斜率,即当△x 无限趋近于0时,x x f x x f k PQ ?-?+=)()(00无限趋近点Q 处切线斜率。 2、曲线上任一点(x 0,f(x 0))切线斜率的求法: x x f x x f k ?-?+=)()(00,当△x 无限趋近于0时,k 值即为(x 0,f(x 0))处切线的斜率。 3、瞬时速度与瞬时加速度 (1)平均速度: 物理学中,运动物体的位移与所用时间的比称为平均速度 (2) 位移的平均变化率:t t s t t s ?-?+)()(00 (3)瞬时速度:当无限趋近于0 时, t t s t t s ?-?+)()(00无限趋近于一个常数,这个常数称为t=t 0时的瞬时速度 求瞬时速度的步骤:

相关文档
最新文档