2013-2014第1学期高数1试卷1(1)
2013-2014学年上学期期末考试高一 数学试卷

2013-2014学年上学期期末考试高一数学试卷 2014.1一 选择题(本大题共12小题,每小题5分,共60分)1过点(1,0)且与直线220x y --=平行的直线方程是( )A.210x y --=B. 210x y -+=C.220x y +-=D.210x y +-= 2经过两点(3,9)、(-1,1)的直线在x 轴上的截距为A B C D .23.“直线m y x m l -=++2)1(:1和1624:2-=+my x l 互相平行”的充要条件是“m 的值为( )”A.1或2-B. 2-C. 4一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的全面积为( )A .π2 C .π3 D .π4 5若直线a ∥平面α,直线b ∥平面α,则a 与b 的位置关系是( )A .平行B .相交C .异面D .以上都有可能6若直线l 与平面α不平行,则下列结论正确的是( )A .α内的所有直线都与直线l 异面B .α内不存在与l 平行的直线C .α内的直线与l 都相交D .直线l 与平面α有公共点7给出下列命题:(1)平行于同一直线的两个平面平行;(2)平行于同一平面的两个平面平行;(3)垂直于同一直线的两直线平行;(4)垂直于同一平面的两直线平行.其中正确命题的个数有( )A .4个B .1个C .2个D .3个8 圆221x y +=和圆22-6y 50x y ++=的位置关系是( )A.外切 B .内切 C .外离 D .内含9设A ,B 为直线y x =与圆221x y +=的两个交点,则|AB|=( )10.若直线k 4+2y x k =+与曲线有两个交点,则k 的取值范围是( )A.[)1,+∞B. (]-,-1∞C. 11将圆x 2+y 2-2x-4y+1=0平分的直线是A. x+y-1=0B. x+y+3=0C. x-y+1=0D. x-y+3=012.圆C :x 2+y 2+2x +4y -3=0上到直线:x +y +1=0( )A.1个 B.2个 C.3个 D.4个 二 填空题(本大题共4小题,每小题5分,共20分)13经过圆22(3)(5)36x y ++-=的圆心,并且与直线220x y +-=垂直的直线方程为___ 14过两圆922=+y x 和8)3()4(22=+++y x 的交点的直线方程15圆x 2+y 2-2x -2y +1=0上的动点Q 到直线3x +4y +8=0距离的最小值为 . 16点A (3,5)作圆C :1)3()2(22=-+-y x 的切线,则切线的方程为三 解答题(本大题共6小题,共70分)17(10分)已知,圆C :012822=+-+y y x ,直线:02=++a y ax . (1) 当a 为何值时,直线与圆C 相切;(2) 当直线与圆C相交于A、B.18(12分)如图,已知三角形的顶点为A(2, 4),B(0,-2),C(-2,3),求:(Ⅰ)AB边上的中线CM所在直线的一般方程;(Ⅱ)求△ABC的面积.20(12分).如图,正三棱柱中,点是的中点.(Ⅰ)求证: 平面;AB CDA 1B 1C 111BCC B AD ⊥BC D 111ABC A B C -(Ⅱ)求证:平面.1AB D 1AC21(12分).圆过点A (1,-2),B (-1,4),求(1)周长最小的圆的方程;(2)圆心在直线2x -y -4=0上的圆的方程.22(12分)已知圆C 过点P(1,1),且与圆M :2(2)x ++2(2)y +=2r 关于直线x +y +2=0对称.(1)求圆C 的方程;(2)直线l过点Q(1,0.5),截圆C所得的弦长为2,求直线l的方程;(3)过点P作两条相异直线分别与圆C相交于A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.。
2013-2014学年高一数学第一学期期末试题

2013—2014学年度第一学期末试题高一数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U={1,2,3,4},A={1,3},则U A =ðA .{1,2}B .{2,4}C .{2,3}D .{1,4}2. 下列四个图形中,不是..以x 为自变量的函数的图象是( ).A B C D3.下列四组函数中,表示同一函数的是( ).A.(),()f x x g x ==.2()lg f x x =,()2lg g x x =C .21()1x f x x -=+,()1g x x =- D.()f x =()g x = 4.一个水平放置的三角形的斜二侧直观图是等腰直角三角形'''A B O ,若''1O B =,那么原∆ABO 的面积是( ) A .12B.2CD .5.棱长都是1的三棱锥的表面积为( ).A .3B .23C .33D .43第4题6.用二分法计算23380x x +-=在(1,2)x ∈内的根的过程中得:(1)0f <,(1.5)0f >,(1.25)0f <,则方程的根落在区间( )A.(1,1.5)B.(1.5,2)C.(1,1.25)D.(1.25,1.5) 7.下列四个命题中错误..的个数是( ) ① 两条不同直线分别垂直于同一条直线,则这两条直线相互平行 ② 两条不同直线分别垂直于同一个平面,则这两条直线相互平行 ③ 两个不同平面分别垂直于同一条直线,则这两个平面相互平行 ④ 两个不同平面分别垂直于同一个平面,则这两个平面相互垂直A. 1B. 2C. 3D. 48. 若1(2,3),(3,2),(,)2A B C m --三点共线,m 则m 的值为( )A .21B .21- C .2- D .29.一个几何体的三视图如图所示,其中正视图与左视图都是边长为2的正三角形,则这个几何体的侧面积为( )AB .2πC .3πD .4π 10.已知函数 f (x )=x 2+1,那么f (a +1)的值为( ).A .22a a ++B .21a +C .222a a ++D .221a a ++11. 如图,ABCD-A 1B 1C 1D 1为正方体,下面结论错误..的是( ) A .BD ∥平面CB 1D 1B .AC 1⊥BDC .AC 1⊥平面CB 1D 1D .异面直线AD 与CB 1所成的角为60° 12.设函数()f x 定义在实数集上,它的图像关于直线1x =对称,且当1x ≥时,()31x f x =-,则有( )A .132()()()323f f f <<B .231()()()323f f f <<C .213()()()332f f f <<D .321()()()233f f f <<9题正(主)视左(侧)视俯视图第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卷中的横线上)13.设全集U =R ,A ={x |x >0},B ={x |x >1},则U A B ⋂ð=14.过两点222(2,3),(3,2)A m m B m m m +---的直线的倾斜角为45 ,则m =15.已知函数22()2x f x x x +⎧⎪=⎨⎪⎩(1)12)(2)x x x ≤--<<≥(,且()3f a =,则a 的值为 16.以下命题:① 直线的倾斜角α越大,斜率k 越大。
2013-2014高等数学A(1)_A卷答案

π
六 (7 分) 求由曲线 y = arcsin x (0 ≤ x ≤ 1) , y = 绕 y 轴旋转的旋转体体积. 解: Vy = π
∫
π 2
0
sin ydy = π ∫
2
π 2
0
2 1 − cos 2 y 1 ⎡1 ⎤2 π . dy = π ⎢ y − sin 2 y ⎥ = 2 4 ⎣2 ⎦0 4
−1 0
−1
−1
0
t 0 dt = [t − 2 ln(2 + t ) ]−1 = 1 − 2 ln 2 . 2+t
三、计算下列各题. (每小题 6 分,满分 24 分) 1.
∫ x( x
1
2
+ 1)
dx . (拆项) 解: ∫
1 1 x dx = ∫ ( − 2 )dx = ln | x | − ln( x 2 + 1) + C . x( x + 1) x x +1 2
x − 1 ln x = 0 ; f (1) = 0 ;
因 f (1 ) = f (1 ) = f (1) ,故 f ( x) 在 x = 1 处连续. (2) f −′(1) = lim −
x →1
−
+
−1 − ln x f ( x) − f (1) 1 − x ln x x = lim = = = 0; lim lim 1 x →1− x →1− x −1 x −1 1 − x x →1− − 2 1 −x
∫
四 (7 分) 试分析函数 f ( x ) = | x − 1| ln x , ( x > 0) 在 x = 1 处的连续性和可导性(说明理由). 解:(1) f (1 ) = lim f ( x) = 1 − x ln x = 0 ; f (1 ) = lim f ( x) = − +
2013-2014学年度第一学期期末统一考试高三数学试卷(理科)

曲靖市2013—2014学年度第一学期期末统一考试高三数学试卷(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试用时120分钟. 注意事项:1、答第I 卷前,考生务必将自己的姓名、统考考号、座位号、考试科目用铅笔涂写在答题卡上.2、每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题上.3、不可以使用计算器.4、考试结束,将答题卡交回,试卷不用上交.第Ⅰ卷(选择题共40分)一、选择题:(本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设全集{}1,2,3,4,5,6,7,8U =,集合{1,2,3,5}A =,{2,4,6}B =,则图中的阴影部分表示的集合为 ( ) A .{}2 B .{}4,6C .{}1,3,5D .{}4,6,7,82.等差数列}{n a 的前n 项和为n S ,若301272=++a a a ,则13S 的值是( ) A .130 B .65 C .70 D .753.“22ab >”是 “22log log a b >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C =,则△ABC ( ) A .一定是锐角三角形 B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形5.直线2(1)10x a y +++=的倾斜角的取值范围是( ) A .[0,]4πB .3,4ππ⎡⎫⎪⎢⎣⎭C .[0,](,)42πππD .3,,424ππππ⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭6.有编号分别为1,2,3,4,5的5个红球和5个黑球,从中取出4个,则取出的编号互不相同的概率为( )A .521B .27C .13D .8217.若右边的程序框图输出的S 是126,则条件①可为( ) A .n ≤5B .n ≤6C .n ≤7D .n ≤88.如图,在透明塑料制成的长方体1111D C B A ABCD -容器内灌进一些水,将容器底面一边BC 固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法: ①水的部分始终呈棱柱状;②水面四边形EFGH 的面积不改变; ③棱11D A 始终与水面EFGH 平行; ④当1AA E ∈时,BF AE +是定值.其中所有正确的命题的序号是( )A .①②③B .①③C .②④D .①③④第Ⅱ卷(非选择题共110分)二、填空题:(本大题共6小题,每小题5分,共30分.)9.在二项式()62+x 的展开式中,含3x 的项的系数是__________10.曲线2:x y C =、直线2:=x l 与x 轴所围成的图形面积为_________11.已知函数()x f 的导数()()()()1,f x a x x a f x x a '=+-=若在处取得极大值,则a 的取值范围为__________12.若一个底面是正三角形的三棱柱的正视图如图所示,则其表面积...等于 13.已知直线0=++c by ax 与圆1:22=+y x O 相交于,A B 两点,且,3=AB 则OB OA ⋅的值是14.如下图,对大于或等于2的自然数m 的n 次幂进行如下方式的“分裂”:C1BA 241357341315171944616365672213323542792313533791143252729仿此,26的“分裂”中最大的数是 ;32013 的“分裂”中最大的数是 ; 三、解答题:(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.) 15.(本小题满分12分)函数()2sin()ωϕ=+f x x (0,0)2ωϕπ><<的部分图象如下图所示,该图象与y 轴交于点(0,1)F ,与x 轴交于点,B C ,M 为最高点,且三角形MBC 的面积为π.(Ⅰ)求函数()f x 的解析式;(Ⅱ)若((0,)62f ααππ-=∈,求cos(2)4απ+的值.16.(本小题满分12分)已知等差数列{}n a 的公差大于0,且53,a a 是方程045142=+-x x 的两根,数列{}n b 的前n 项的和为n S ,且n n b S 211-= (*n N ∈). (1) 求数列{}n a ,{}n b 的通项公式; (2) 记n n n b a c ⋅=,求证:n n c c ≤+1.17.(本小题满分14分) 如图,三棱柱111ABC A B C -中,1AA ⊥平面ABC ,D 、E 分别为11A B 、1AA 的中点,点F 在棱AB 上,且14AF AB =. (Ⅰ)求证://EF 平面1BDC ;(Ⅱ)在棱AC 上是否存在一个点G ,使得平面EFG 将三棱柱分割成的两部分体积之比为1:15,若存在, 指出点G 的位置;若不存在,说明理由.18.(本小题满分14分)某同学在研究性学习中,收集到某制药厂今年前5个月甲胶囊生产产量(单位:万盒)的数据如下表所示:(Ⅰ)该同学为了求出y 关于x 的线性回归方程ˆˆˆybx a =+,根据表中数据已经正确计算出ˆ0.6b=,试求出ˆa 的值,并估计该厂6月份生产的甲胶囊产量数; (Ⅱ)若某药店现有该制药厂今年二月份生产的甲胶囊4盒和三月份生产的甲胶囊5盒,小红同学从中随机购买了3盒甲胶囊,后经了解发现该制药厂今年二月份生产的所有甲胶囊均存在质量问题.记小红同学所购买的3盒甲胶囊中存在质量问题的盒数为ξ,求ξ的分布列和数学期望.19.(本小题满分14分) 已知函数()b ax x x f +-=331,其中实数b a ,是常数. (Ⅰ)已知{}2,1,0∈a ,{}2,1,0∈b ,求事件A :“()01≥f ”发生的概率;(Ⅱ)若()x f 是R 上的奇函数,()a g 是()x f 在区间[]1,1-上的最小值,求当1≥a 时A 1x()a g 的解析式;(Ⅲ)记()x f y =的导函数为()x f ',则当1=a 时,对任意[]2,01∈x ,总存在[]2,02∈x 使得12()()f x f x '=,求实数b 的取值范围.20.(本小题满分14分) 已知函数()2ln bf x ax x x=--,(1)0f =. (Ⅰ)若函数()f x 在其定义域内为单调函数,求实数a 的取值范围; (Ⅱ)若函数()f x 的图象在1x =处的切线的斜率为0,且211()11n n a f n a n +'=-+-+,已知14a =,求证:22n a n ≥+;(Ⅲ)在(Ⅱ)的条件下,试比较1231111...1111n a a a a ++++++++与25的大小,并说明你的理由.中山市高三级2012—2013学年度第一学期期末统一考试数学试卷(理科)答案一、选择题二、填空题9.160; 10.83; 11.01<<-a ; 12.326+; 13.12-;14.11(本空2分);3m (m 为奇数)的“分拆”的最大数是21m m +-,所以2201320124054181+=(本空3分,写成“220132012+”或“4054181”都给3分)三、解答题15.(本小题满分12分)解:(I )∵122MBC S BC BC ∆=⨯⨯==π, ∴周期2,1T ωω2π=π== ……….2分由(0)2sin 1f ϕ==,得1sin 2ϕ=, ……………………………………3分∵02ϕπ<<,∴6ϕπ=,∴()2sin()6f x x π=+. …………………………………………….6分 (Ⅱ)由()2sin 6f ααπ-=sin α=, ∵(0,2απ∈,∴cos α=, ∴234cos 22cos 1,sin 22sin cos 55ααααα=-===,∴cos(2)cos2cos sin 2sin 444αααπππ+=-3455==. …………………….12分16.(本小题满分12分)解:(Ⅰ)∵53,a a 是方程045142=+-x x 的两根,且数列}{n a 的公差0d >,∴355,9a a ==,公差.23535=--=a a d∴.12)5(5-=-+=n d n a a n ( *n N ∈)………………4分又当n=1时,有b 1=S 1=1-.32,2111=∴b b 当).2(31),(21,2111≥=∴-=-=≥---n b b b b S S b n n n n n n n n 有时 ∴数列{b n }是等比数列,.31,321==q b ∴.3211nn n q b b ==- ( *n N ∈) …………8分 (Ⅱ)由(Ⅰ)知,3)12(2,3)12(211+++=-==n n n n n n n c n b a c …………10分∴.03)1(83)12(23)12(2111≤-=--+=-+++n n n n n n n n c c ∴.1n n c c ≤+ …………………………12分在三棱柱111ABC A B C -中,,D M 分别为11,A B AB 的中点,11//,A D BM A D BM ∴=,1A DBM ∴为平行四边形,1//A M BD ∴ //,EF BD ∴BD ⊆ 平面1BC D ,EF ⊄平面1BC D//EF ∴平面1BC D…………………….7分(II )设AC 上存在一点G ,使得平面EFG 将三棱柱分割成两 部分的体积之比为1︰15,则111:1:16E AFG ABC A B C V V --=111111sin 321sin 2E AFG ABC A B C AF AG GAF AEV V AB AC CAB A A --⨯⋅∠⋅=⋅⋅∠⋅ 111134224AG AG AC AC =⨯⨯⨯=⋅112416AG AC ∴⋅=, 32AG AC ∴=, 32AG AC AC ∴=> 所以符合要求的点G 不存在 ……………………….14分18.(本小题满分14分)解:(Ⅰ)11(12345)3,(44566)555x y =++++==++++=,因线性回归方程ˆ=+ybx a 过点(,)x y , ∴50.66 3.2a y bx =-=-⨯=,∴6月份的生产甲胶囊的产量数:ˆ0.66 3.2 6.8y=⨯+=…………….6分(Ⅱ)0,1,2,3,ξ=31254533991054010(0),(1),84428421C C C P P C C ξξ======== 213454339930541(2),(3).84148421C C C P P C C ξξ======== …………………….10分5105140123 422114213E ξ∴=⨯+⨯+⨯+⨯= …………………….14分19.(本小题满分14分)解:(Ⅰ)当{}{}0,1,2,0,1,2a b ∈∈时,等可能发生的基本事件(,)a b 共有9个: (00)(01)(02),(10)(11)(12)(20)(21)(22).,,,,,,,,,,,,,,,, 其中事件A : “1(1)03f a b =-+≥”,包含6个基本事件: (00)(01)(02)(11)(12)(22).,,,,,,,,,,,故62()93P A ==. 即事件“(1)0f ≥”发生的概率23…………………….4分 (Ⅱ)31(),3f x x ax b =-+是R 上的奇函数,得(0)0,0.f b ==(5分)∴31(),3f x x ax =- 2()f x x a '=-,① 当1a ≥时,因为11x -≤≤,所以()0f x '≤,()f x 在区间[]1,1-上单调递减,从而1()(1)3g a f a ==-; ② 当1a ≤-时,因为11x -≤≤,所以()0f x '>,()f x 在区间[]1,1-上单调递增,从而1()(1)3g a f a =-=-+, 综上,知1,13().1,13a a g a a a ⎧-≤-⎪⎪=⎨⎪-+≥⎪⎩…………………….9分(Ⅲ)当1=a 时,()()1,3123-='∴+-=x x f b x x x f当()()()()02,1,01,0>'∈<'∈x f x x f x 时当时()()()上递增上递减,在在2,11,0x f ∴,即()()b f x f +-==321m in 又()()()0322,0f b f b f >+== ,[]()⎥⎦⎤⎢⎣⎡++-∈∈∴b b x f x 32,3220时,,当 而()[]210,2f x x x '=-∈在上递增,()[1,3]f x '∈-对任意[]2,01∈x ,总存在[]2,02∈x 使得)()(21x f x f '=()()f x f x '∴⊆的值域的值域,[]22-,1,333b b ⎡⎤++⊆-⎢⎥⎣⎦即∴ 2-13b +≥-且233b +≤,解得13-73b ≤≤.…………………….14分20.(本小题满分14分)解(Ⅰ) (1)0f a b a b =-=⇒= ,()2ln a f x ax x x ∴=--, 22 ()a f x a x x'∴=+-. 要使函数()f x 在其定义域内为单调函数,则在定义域(0,)+∞内, ① 当0a =时,2()0f x x'=-<在定义域(0,)+∞内恒成立, 此时函数()f x 在其定义内为单调递减函数,满足题意; ②当0a >时,要使222111 ()()0a f x a a a x x x a a '=+-=-+-≥恒成立,则10a a-≥,解得1a ≥;此时函数()f x 在其定义内为单调递增函数,满足题意;③ 当0a <时,22()0a f x a x x'=+-<恒成立;此时函数()f x 在其定义内为单调递减函数,满足题意;综上所述,实数a 的取值范围是(,0][1,)-∞⋃+∞;…………………….4分(注: 本问也可采用“分离变量”的方法,酌情给分)(Ⅱ)由题意知(1)0f '=,可得20a a +-=,解得1a =,所以21()(1)f x x'=-于是/2211(1211n n n n a f n a na a n +=-+=-+-+,下面用数学归纳法证明22n a n ≥+成立,数学归纳法证明如下:(i )当1n =时,14212a =≥⨯+,不等式成立;(ii )假设当n k =时,不等式22k a k ≥+成立,即22k a k -≥成立,则当1n k =+时,1(2)1(22)21452(1)2k k k a a a k k k k +=-+≥+⨯+=+>++, 所以当1n k =+时,不等式也成立,由(i )(ii )知*n N ∀∈时都有22n a n ≥+成立. …………………….8分(Ⅲ) 由(Ⅱ)得1111(22)1[2(1)222]121n n n n n a a a n a n n a ----=-++≥-+-++=+,(*,2n N n ∀∈≥)于是112(1)n n a a -+≥+, (*,2n N n ∀∈≥)成立,所以2112(1)a a +≥+,3212(1),...a a +≥+,112(1)n n a a -+≥+成立 累乘可得:1112(1)n n a a -+≥+,则1111112(1)n n a a -≤++成立,(*,2n N n ∀∈≥) 所以1231111...1111n a a a a ++++++++2111111212(1...)(1)1222525n n a -≤++++=-<+.。
XXX2013-2014学年上学期高一年级期末考试数学试卷。后有答案

XXX2013-2014学年上学期高一年级期末考试数学试卷。
后有答案XXX2013-2014学年上学期高一年级期末数学试卷分为两卷,卷(I)100分,卷(II)50分,共计150分,考试时间为120分钟。
卷(I)一、选择题:(共10小题,每小题5分,共50分)1.sin330°的值为1/2.2.周期为π且为偶函数的函数是y=sinx。
3.函数f(x)=sinxcosx的最小值为-1/2.4.已知cos2α=1/2,则α=-π/6+2kπ(k∈Z)或α=π/6+2kπ(k∈Z)。
5.已知平面向量a=(3,1),b=(x,-3),且a⊥b,则x=-1.6.已知点A(1,3),B(4,-1),则与向量AB同向的单位向量为(3/5,-4/5)。
7.已知tanθ=2,则sin2θ+sinθcosθ-2cos2θ=-3/2.8.周期为π且为偶函数的函数是y=cos2x。
9.函数f(x)=sin(ωx+ϕ)的图象(部分)如图所示,则ω=1,ϕ=-π/6.10.正确的命题是函数y=cosx·XXX的单调增区间是(kπ-π/2,kπ+π/2),k∈Z。
删除了明显有问题的第9题的答案,因为没有给出图象)XXX2013-2014学年上学期高一年级期末数学试卷分为两卷,卷(I)100分,卷(II)50分,共计150分,考试时间为120分钟。
卷(I)一、选择题:(共10小题,每小题5分,共50分)1.sin330°的值为1/2.2.周期为π且为偶函数的函数是y=sin x。
3.函数f(x)=sin x cos x的最小值为-1/2.4.已知cos2α=1/2,则α=-π/6+2kπ(k∈Z)或α=π/6+2kπ(k∈Z)。
5.已知平面向量a=(3,1),b=(x,-3),且a⊥b,则x=-1.6.已知点A(1,3),B(4,-1),则与向量AB同向的单位向量为(3/5,-4/5)。
7.已知tanθ=2,则sin2θ+sinθcosθ-2cos2θ=-3/2.8.周期为π且为偶函数的函数是y=cos 2x。
2013-2014南昌大学大一第一学期高数考试试卷及答案

一、单项选择题(每题3分,共15分)1.设对任意x ,总有ϕ(x )≤f (x )≤g (x ),且0)]()([lim =-∞→x x g x ϕ,则)(lim x f x ∞→ ( )A.存在且等于零B.存在但不一定等于零C.一定不存在D.不一定存在 2. x =0是函数xx x f 1sin )(=的( )A.可去间断点B.跳跃间断点C.无穷间断点D.振荡间断点 3.下列函数的弹性函数不为常数的为( ),其中a , b , α为常数 A. y =ax +b B. y =ax C.xa y = D. y =x α 4.若函数f (x )在点x 可微,则当∆x →0时,∆y -dy 较之dy 为( )无穷小A.同阶B.等价C.低阶D.高阶 5.设f (x )在区间[a , b ]上连续,则dt t f x F xa ⎰=)()(在区间[a ,b ]上( ) A.不一定有界 B.不一定连续 C.不一定可积 D.一定可导 二、填空题(每空3分,共15分)1.若函数f (x )的定义域为D =]4,0[π,则f (arcsin x )的定义域为__________2.=-+∞→}ln )2[ln({limn n n n __________ 3.若⎩⎨⎧≥+<=0,0,)(x bx a x e x f x 在x =0处可导,则b =_________4.设函数f (x )在(-∞,+∞)上连续,则])([dx x f d ⎰=__________5.dx x x ⎰--+1122)1(=__________三、求下列极限(每题6分,共12分)1.求极限1cos 1)1(lim3120--+→x x x 2.求极限)tan (sec lim 2x x x -→π 四、求下列各题(每题6分,共12分) 1.设y =(ln x )x ,求y '2.求由参数方程⎪⎩⎪⎨⎧-==ty t x 1212所确定的函数的二阶导数22dx y d五、求下列不定积分(每题6分,共12分) 1.dx x⎰+11 2.dx xx⎰2ln 六、求下列定积分(每题6分,共12分) 1.dx x x ⎰-π03sin sin 2.dx x ⎰51ln 七、应用题(每题8分,共16分)1.某产品的总成本C (万元)的边际成本为生产量x (百台)的函数C '(x )=1,总收益R (万元)的边际收益为生产量x (百台)的函数R '(x )=6-x ,(1)求生产量等于多少时,总利润最大?(2)从利润最大的生产量又生产了100台,总利润减少了多少?2.求由抛物线y +1=x 2与直线y =1+x 所围图形的面积。
完整word版,2013-2014第一学期期末高一数学试卷
准考证号 姓名(在此卷上答题无效)萍乡市2013—2014学年度第一学期期末考试高 一 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.满分150分,考试时间120分钟.注意事项:1.答卷前,考生务必将自已的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人的准考证号、姓名是否一致. 2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答题无效.3.考试结束后,监考员将试题卷、答题卡一并收回.第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的.1.已知全集{}{}{}0,1,2,3,4,0,1,2,2,3U M N ===,则()U C M N =IA .{}2B .{}3C . {}432,,D .{}0,1,2,3,4 2.下列函数中,在其定义域内, 既是奇函数又是增函数的是A .2y log (0)x x =->B .()2y ?x x x =+∈RC .()3y xx =∈R D .()3x y x =∈R3.已知sin cos αα-=则sin 2α=A .-1B .2-C D .14.已知函数()1, 1,3,1,x x f x x x +≤⎧=⎨-+>⎩则()=]2[f fA .3B .2C .1D .0 5.使得函数1()ln 22f x x x =+-有零点的一个区间是 A .(0,1) B .(1,2) C .(2,3) D .(3,4)6.设向量(,tan )3α=a ,(cos ,)2α=b ,且P a b ,则锐角α的值为 A .12π B .6π C .4π D .3π 7.使函数sin(2)3cos(2)y x x θθ=+++为奇函数,且在0,4π⎡⎤⎢⎥⎣⎦上是增加的函数,其θ的可能值为A .53π B .43π C .23π D .3π8.函数sin()y A x B ωϕ=++的一部分图像如图所示,如果002A πωϕ>><,,,则 A .4A = B .1ω= C .6πϕ=D .4B =9.已知点(3,1),(0,0),(3,0)A B C .设BAC ∠的平分线AE 与BC 相交于E ,那么有BC CE λ=u u u r u u u r,其中λ等于A .2B .21C .3-D .13-10.如图,半径为2的圆⊙O 切直线MN 于点P ,射线PK 从PN 出发,绕P 点按逆时针旋转到PM ,旋转过程中PK 交⊙O 于点Q ,设POQ ∠为x ,弓形PmQ 的面积为()y f x =,那么函数()f x 的图像大致是萍乡市2013—2014学年度第一学期期末考试高 一 数 学第Ⅱ卷注意事项:第Ⅱ卷共2页,须用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答题无效.二、填空题:本大题共5小题,每小题5分,满分25分.11.函数2()21x x f x +=-的定义域是 . 12.已知向量a ,b 满足1=a ,2=b ,a 与b 的夹角为60︒,则-=a b . 13.已知3)tan(=+απ,则2cos()3sin()4cos()cos()2a a a a πππ--+-+- = .14.已知函数()f x 是定义在R 上的偶函数,且在区间[)0,+∞上是增加的.若a 满足)1()(log 4f a f ≤,则实数a 的取值范围是 .15.关于函数()4sin(2)3f x x π=+(x ∈R )有下列命题:①由12()()0f x f x ==可得12x x -必是π的整数倍; ②()y f x =的表达式可改为y =4cos(2x -π6 );③()y f x =的图像关于点(,0)6π-对称;④()y f x =的图像关于直线x =-π6对称.其中正确命题的序号是____________ .(填上你认为正确的所有序号)三、解答题:本大题共6小题,共75分. 解答应写出文字说明、证明过程或演算步骤 16.(本小题满分12分) 在平面直角坐标系xoy 中,点(12),(2,3),(21)A B C ----,,. (1)求以,AB AC 为邻边的平行四边形的两条对角线长;(2)若实数t 满足:()AB tOC OC -⊥u u u v u u u v u u u v,求t 的值.17.(本小题满分12分) (1(218.((1(219.( 6. (1(2)的12倍,20.(件40元,15万元.(1)求月销售量y (万件)与销售单价x (元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元,该公司可安排员工多少人? (3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?21. (本小题满分14分)定义在R 上的非零偶函数)(x f y =,满足:对任意的[)+∞∈,0,y x 都有)()()(y f x f y x f ⋅=+成立,且当0>x 时,1)(>x f .(1)若2)1(=f ,求)4(-f 的值;(2)证明:函数)(x f 在),0(+∞上为单调递增函数; (3)若关于x 的方程)1)1(()(+-=x x a f x f 在),2(+∞上有两个不同的实根,求实数a 的取值范围.萍乡市2013—2014学年度第一学期期末考试二、11.{x x 16.(1)u 1分) AB AC +u u u v u u u v 3分)所以,u u 5分) 所以,以6分)(2)(Q 8分)故(32t +11分)115t =-12分) 17.(12分) 又由2k π+2≤3-4≤2k π+2,………………………………………………………………(4分) 得,3k π+8π9≤x ≤3k π+218π(k ∈Z ),……………………………………………………………(5分) 故递减区间为[3k π+8π9,3k π+8π21](k ∈Z ).………………………………………………(6分)(2)对1sincos223αα-=两边平方,得221sin cos 2sin cos 22229αααα+-=,11sin 9α∴-=,…………………………………………………………………………………(8分)因此,8sin 9α∴=.………………………………………………………………………………(9分)(,),cos 0,2παπα∈∴<Q cos α∴==10分)tan α∴=11分) tan 2α∴12分) 18.(1)2分)即2x a x >⎧⎨<⎩3分)1a >当5分) 1a ≤当6分)(2)a 当7分) 1a >当8分)1a ∴+≥10分) 9a ∴≥11分) 12分) 19.(1)2分)sin 2cos 222AA x x =+ ……………………………………………………………………(3分) sin(2)6A x π=+,………………………………………………………………………………(4分)因()f x 的最大值为6,且0A >,所以6=A .………………………………………………(5分)(2)函数()y f x =的图像左平移12π个单位,得到]6)12(2sin[6ππ++=x y 的图像, ……(6分) 再将所得图像各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数)34sin(6)(π+=x x g . …………………………………………………………………………(7分)当]245,0[π∈x 时, 7(4)[,]336x πππ+∈,………………………………………………………(8分)sin(4∴10分) ()g x ∴12分) 20.(1当40≤1分)则4060k k ⎧⎨⎩2分)3分)y ⎧⎪⎪∴=⎨⎪⎪⎩4分)(2由(5=5分)30-得6分)(3)当40<x ≤60时, 利润a x x w 25.015)40)(8101(1---+-=.5)60(1012+--=x …………………………(7分)∴60x =时,w max =5(万元);…………………………………………………………………(8分) 当60<x <100时, 利润a x x w 25.015)40)(5201(2---+-=.10)70(2012+--=x ………………………(9分)∴70x =时,w max =10(万元).………………………………………………………………(10分) ∴要尽早还清贷款,只有当单价x =70元时,获得最大月利润10万元.…………………(11分) 设该公司n 个月后还清贷款,则1080n ≥.∴8n ≥,即8n =为所求.……………………………………………………………………(12分) 答:该公司最早可在8个月后还清无息贷款.…………………………………………………(13分) 21. (1)1,1x y ==令,有(11)(2)(1)(1)4f f f f +===,………………………………(1分)x =令2分)(f x Q 4分) (2(f x =6分) 2x -Q 7分)8分)(3)∵a x ⎧⎪∴⎨⎪⎩10分) 当a x ⎧⎪⎨⎪⎩11分) 令(g x 有: (1)2,2a ⎧⎪⎪⎨⎪+⎪->⎩12分)当0,(1),1a a x x x >⎧⎪-⎨=⎪+⎩即2(1)0x a x a +-+=在(2,)+∞上有两个同的实根,同理,得:36a +<<.…………………………………………………………………(13分)---U(3+.………………………………(14分)综上所述:a的取值范围为(6,3命题:赵莉莉(萍乡三中)曾建强(市教研室)审核:曾建强。
浙江省宁波市2013-2014学年高一上学期期末数学试卷_Word版含答案
宁波市2013学年第一学期期末考试高一数学试卷第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{1,2,3},{2,5}A B ==,则A B =(A ){2}(B ){2,3}(C ){3}(D ){1,3}2.)60sin(︒-的值是(A )21-(B )21 (C )23- (D )233.函数sin(2)y x π=+是(A )周期为π的奇函数 (B )周期为π的偶函数(C )周期为2π的奇函数 (D )周期为2π的偶函数 4.下列函数在区间(0,)+∞是增函数的是(A )1()1f x x =- (B )1()12xy =- (C )21y x x =-+ (D )ln(1)y x =+ 5.设函数⎩⎨⎧>≤=),0(log ),0(4)(2x x x x f x 则))1((-f f 的值为(A )2 (B )1 (C )1-(D )2-6.已知函数0(log )(1>+=-a x a x f a x 且)1≠a 在区间[1,2]上的最大值和最小值之和为a ,则a 的值为 (A )14(B )12(C )2(D )47.定义一种运算,(*),a a b a b b a b≤⎧=⎨>⎩,则函数()(2*2)x xf x -=的值域为(A )(0,1)(B )(0,1](C )[1,)+∞(D )(1,)+∞8.已知,AD BE 分别是ABC ∆的边,BC AC 上的中线,且,AD a BE b ==,则BC =(A )4233a b + (B )2433a b + (C )2233a b - (D )2233a b -+ 9.将函数4cos(2)3y x π=-的图像向左平移(0)ϕϕ>个单位,所得图像关于轴对称,则ϕ的最小值为y(A )6π (B )3π (C )23π (D )43π 10.已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()()6f x f π≤对x R ∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是(A ),()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ (B ),()2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦(C )2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(D ),()2k k k Z πππ⎡⎤-∈⎢⎥⎣⎦第Ⅱ卷(非选择题 共100分)二、填空题:本大题共7小题,每小题4分,共28分. 11.函数()lg(12)f x x =+-的定义域是 . 12.计算:31lg 25lg 2log 92+-= . 13.已知向量,a b 满足1a b ==,且它们的夹角为60︒,则2a b -= .14.已知2tan =θ,则=-----+)sin()2sin()cos()2sin(θπθπθπθπ. 15.函数2cos(2), [,]664y x x πππ=+∈-的值域为 .16.设()f x 是定义在R 上的奇函数,当0x ≥时,()22(x f x x bb =++为常数), 则(2)f -= .17.若函数(1)()(4)2(1)2x a x f x ax x ⎧>⎪=⎨-+≤⎪⎩对于R 上的任意12x x ≠都有 0)()(2121>--x x x f x f ,则实数a 的取值范围是 .三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(本小题满分14分)已知7sin cos 5αα-=-.求sin cos αα和tan α的值.19.(本小题满分14分)函数2()(4)42f x x a x a =+-+-. (I )若()f x 是偶函数,求实数a 的值;(II )当1a =时,求(2)x y f =在区间[1,1]-上的值域.20.(本小题满分14分)已知点(1,),(4,)M A N A -是函数()sin()(0f x A x A ωϕ=+>,0,22ππωϕ>-<<)一个周期内图象上的两点,函数()f x 的图象与y 轴交于点P ,满足1PM PN ?.(I )求()f x 的表达式;(II )求函数()y f x =-[0,6]内的零点.21.(本题15分)已知向量(1,2),(cos ,sin ),a b c a tb αα===-设(t 为实数). (I )1t = 时,若//c b ,求tan α ; (II )若4πα=,求c 的最小值,并求出此时向量a 在c 方向上的投影.22.(本题15分)已知函数1(),()()f x x a g x a a R x=-=-∈ . (I )判断函数()()()h x f x g x =-在[1,4]x ∈的单调性并用定义证明; (II )令()()()F x f x g x =+,求()F x 在区间[1,4]x ∈的最大值的表达宁波市2013学年第一学期期末考试高一数学参考答案二、填空题11.1(2,)2- 12.1- 13. 14.2-15.[1,2]- 16.7- 17.[4,8) 三、解答题18.(本小题14分)解:由249(sin cos )25αα-=,得4912sin cos 25αα-=, 所以12sin cos 25αα=-; (7分) 又125sin cos 12αα=-,即22sin cos 25sin cos 12αααα+=-,得125tan tan 12αα+=- 解得:3tan 4α=-或4tan 3α=-. (14分)19.(本小题14分)解:(I )4a =;(4分) (II )当1a =时,令12,[,2]2xt t =∈,(8分) 则2(2)()32x y f f t t t ===-+ 值域为13[,]44- .(14分) 20.(本小题14分)解:(I )4132T =-=,26T p ==w,3πω=;(3分)(1)f A = 得sin()3A A πϕ+= 0A >,22ππϕ-<< 6πϕ=; (6分)(0)sin 62A f A p ==,(0,)2A P , 3(1,),(4,)22A PM PN A ==- ,得23414A -= 2A = ()2s i n ()36f x x p p =+. (9分)(II )[0,6]x Î,13[,]3666x p p p p + ,()2sin()36y f x x p p=-+-0y = 即 s i n ()36x p p+=, 363x p p p +=或 2363x p p p +=,得12x =或32x =(14分)21.(本小题15分)解:(I )1t =,(1cos ,2sin )c αα=--,//cos (2sin )sin (1cos )0c b αααα⇒---=,(4分) 得tan 2α= ;(6分) (II )4πα=时,(1c =-=,(9分)当2t =时,min 22c =,(12分)此时11(,)22c =-,a 在c 方向上的投影2a c c⋅=. (15分)22.(本小题15分)解:(I )1()2h x x a x=+-在[1,4]x ∈递增; (证明略).(6分) (II )若1a ≤,1()F x x x =-,在[1,4]x ∈递增,15()4M a =,若4a ≥,1()2(F x a x x=-+)在[1,4]x ∈递减,()22M a a =-, (9分) 若(1,4)a ∈,则1,4()12(),1x a x xF x a x x a x ⎧-≤≤⎪⎪=⎨⎪-+≤≤⎪⎩(11分)当4a x ≤≤时,函数递增,max 15()4F x =, 当1x a ≤≤时,函数递减,max ()22F x a =-;(13分)152322244a a --=- ,当2318a <≤ 时,15()4M a =,当2348a <<时, ()22M a a =-.综上:238a ≤时,15()4M a =,当238a <时,()22M a a =-. (15分)。
高数2013-2014(1)答案
西南交通大学2013-2014学年第(1)学期期中考试试卷课程代码 6011310 课程名称 高等数学I 考试时间 90分钟阅卷教师签字:一、单项选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中)(本大题分5小题, 每小题5分, 共25分)1.的值是( )极限ax ax ax a -→+-12)1(lim )答( . . . .D e D e C e B A a a -12. 的值是( )极限xx xx 2sec 5arctan lim0→ ) 答( . . . .C D C B A 25510 3.x x x x x x f 322)(232-+-+=的第一类间断点有)答( 个.个 .个 .个 .B D C B A 32104. )内的实根的个数为( ,在方程)30(0133=+-x x ) 答( . . . .B D C B A 01235.是次项的系数的阶麦克劳林展开式中的n a n x n xx f -=11)(( ) )(!)1(.!1..1. 答 A n D n C n B A n-班 级 学 号 姓 名密封装订线 密封装订线 密封装订线二 填空题(4个小题,每题6分,共24分)6.)103()3)(2)(1(----=x x x x x y 在x =3的导函数值是( 3!100!) 7. 曲线xxe y -=的凹区间是( [2,+∞) )。
8.的微分是,则设)()53()1)(2()(2x f x x x x f -+-=⎪⎪⎭⎫⎝⎛⋅⎪⎪⎭⎫⎝⎛--++--+-dx x x x x x x )53(6)1(21)2(21)53()1)(2(2 9.则且处可导在设,0)(,)(≠='=b a f a x x f=--+→)sin ()sin (limx a f x a f x x ⎪⎭⎫⎝⎛b 21 ⎪⎭⎫=---+-+=⎝⎛----+=--+→→→b xxx a f x a f x x x a f x a f x a f x a t x a f x a f x a f x a f x x x x 21sin sin )()sin (sin sin )()sin (1lim)()sin ()()sin (1lim)sin ()sin (lim 000三 解答题(5个小题,每题6分,共30分) 10. 计算⎪⎭⎫⎝⎛-→x x x x x x 20sin cos sin tan lim 极限解:21cos )2(sin 2lim cos )cos 1(tan lim 22020=⋅=⋅-=→→x x xx x x x x x x11. 设 ⎩⎨⎧+-=++=22)1(arctan 22ln )1ln(t t y t x ,求22,dx yd dx dy解:)1(12)1(212222t t t t t t dxdy ++-=++-+=t t t t t t dx y d 2)1)(21(12)21(2222++-=++-= 12. 的函数,确定的是由方程 设x y x f y x f y y )()(22+++=且2)0(=y ,其中)(x f 是可导函数,且)0(.1)4(,21)2(y f f '='='求 解: )1)(()22)((22y y x f y y x y x f y '++'+'++'='由2)0(=y 以及.1)4(,21)2(='='f f 代入得:71)0(-='y13. .求 ,,,已知)(01sin 0)1ln()(23x f x x x x x x f '⎪⎩⎪⎨⎧>≤-= 解:f f f f x x ()()()()0000000-=+===,在处连续'=-=-=-='=-==-→-→-→-+→+→+f f x f x x x x xf f x f x x x x x x x x x ()lim ()()lim ln()lim ()lim ()()lim sin001000100000300300002'=f ()00'=-≤->⎧⎨⎪⎪⎩⎪⎪f x x x x x x x x ()sin cos 310211023,,四 解答题(本题7分)14. 如图所示,某人开游艇在距岸9公里A 点处,接到短信要立刻赶到距游艇343公里处岸上的B 点处, 如果游艇速度是每小时4公里,在岸上步行是每小时5公里,问何处登岸可使到达B 点的时间最短?设登岸处为D 并设DB 为x ,()x x CD -=--=15934322则抵达B 点所用时间为54)15(922xx t +-+=其中0≤ x ≤1551)15(814)15(2+-+--='x x t 令0='t 求出在(0,15)内仅有唯一驻点x=3,所以根据实际意义,在距B 点3公里处登岸所用时间最短。
2013级高等数学I(1)试卷(A)评分标准
B〖〗考试形式开卷()、闭卷(√),在选项上打(√)开课教研室大学数学部命题教师命题组命题时间2013-12-12使用学期 2013-2014-1总张数 3 教研室主任审核签字d6()[0,1],(0,1),(0)(1)0,120131.(0,1),().220142013()(),(2)()[0,1],20141120152013(0)0,0,(1)0,(3)2220142014f x f f f f x f x x f x ξξϕϕϕϕ==⎛⎫'== ⎪⎝⎭'=-⎛⎫'==⋅>=-< ⎪⎝⎭七、(本题满分分)设函数在上连续在内可导且本题得分证明:在内至少存在一点使〖证〗设则在上连续且由零点定()1,,1,0.(4)22013()(0,1),()().(5)2014Rolle ,(0,)(0,1),()0,2013().(6)2014f x x f x f ηϕηϕξηϕξξ⎛⎫'∃∈= ⎪⎝⎭'''=-'∃∈⊂=''=理使又在内可导且由定理使即212012201032,[0,1]0.,,,,11,0.(1)(32)d (2)(3)1,1.(4)(32)d y ax bx c x y a b c x x x c ax bx x a b b a V ax bx x π=++∈≥='=''+=+='=-=+⎰⎰六、(本题满分分)设有抛物线当时试确定本题得分的值使该抛物线过原点与直线及轴所围区域的面积为且上述区域绕轴旋转而成的旋转体的体积最小.〖解〗由抛物线过原点得由第二个条件得即从而旋转体体积2222294214(5)3(6),(7)531533d 4159(8)0,,(9)d 15344d 40,(10)d 1559,,0.44a ab b a a V a a b a V V a a bc ππππ⎛⎫⎛⎫'''=++=++ ⎪ ⎪⎝⎭⎝⎭⎛⎫''=+==-= ⎪⎝⎭'=>=-==由得从而此时故旋转体体积最小.所以所求值为。