数学建模中的预测方法:时间序列分析模型资料

合集下载

数学建模讲座--预测模型

数学建模讲座--预测模型

年份
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
时序 ( t) 12 13 14 15 16 17 18 19 20 21 22
总额 ( yt ) 604.5 638.2 670.3 732.8 770.5 737.3 801.5 858.0 929.2 1023.3 1106.7
k
(一) 直线趋势外推法
适用条件:时间序列数据(观察值)呈直线 上升或下降的情形。 该预测变量的长期趋势可以用关于时间 的直线描述,通过该直线趋势的向外延伸 (外推),估计其预测值。 两种处理方式:拟合直线方程与加权拟合直线 方程
例 3.1 某家用电器厂 1993~2003 年利润额数据资料如表 3.1 所示。试预测 2004、2005年该企业的利润。
二 、趋势外推法经常选用的数学模型
根据预测变量变动趋势是否为线性,又分为线性趋势外推法 和曲线趋势外推法。
ˆt b0 b (一)线性模型y 1t (二)曲线模型 1.多项式曲线模型 2.简单指数曲线模型 3.修正指数曲线模型 4.生长曲线模型 (龚珀资曲线模型)
2
ˆt b0 b1t b2t bk t y 多项式模型一般形式:
预测模型简介
数学模型按功能大致分三种: 评价、优化、预测 最近几年,在大学生数学建模竞赛常常出 现预测模型或是与预测有关的题目:
1.疾病的传播; 2.雨量的预报; 3.人口的预测。
统计预测的概念和作用
(一)统计预测的概念
概念: 预测就是根据过去和现在估计未来,预测未来。 统计预测属于预测方法研究范畴,即如何利用科学的统计 方法对事物的未来发展进行定量推测.

基于数学建模的股票价格预测模型研究

基于数学建模的股票价格预测模型研究

基于数学建模的股票价格预测模型研究随着互联网技术的不断发展,越来越多的人开始关注股票市场和股票投资。

股票价格的波动不仅受到市场经济波动、政策法规等因素的影响,更受到技术手段的干预。

因此,如何预测股票价格的走势成为了投资者们非常关注的一个问题。

近年来,随着数学建模技术的不断发展和应用,越来越多的人开始将数学建模应用于股票价格预测中。

在数学建模中,利用某些特征参数将数学模型应用到预测中,来预测股价走势变化。

一、基础理论在股票价格预测中,常用的数学方法有时间序列分析法、机器学习方法、神经网络分析法等。

1. 时间序列分析法:这是对股票价格的历史走势进行分析,并根据某类分析模型进行预测的方法。

这种方法根据历史走势,结合多种分析方法,如均值、方差、趋势线、周期分析等,对股票的未来波动进行预测。

2. 机器学习方法:机器学习方法是利用计算机科学和统计学中的算法和模型,通过学习大量历史数据来发现规律和预测未来趋势。

在股票预测中,机器学习方法可以通过训练数据集来预测股价和走势的变化。

3. 神经网络分析法:神经网络分析法是一种基于人工神经网络技术的分析方法。

神经网络是一种类似人脑神经系统的非线性系统,通过设定输入、中间层和输出层,模拟人类大脑过程,利用大量的历史数据进行训练,预测未来的股票价格波动。

二、数学建模在股票价格预测中的应用1. 基于时间序列分析法的股票价格预测模型时间序列分析法是一种对历史数据进行分析,然后根据历史数据的结果来预测未来趋势的方法。

在股票价格预测中,该方法可以对历史股票价格数据进行统计分析,然后通过数学模型对未来股价的波动进行预测。

时间序列分析法的主要思想是根据股票价格的历史走势,预测未来几个时期的股价波动情况。

该方法首先要建立一个时间序列模型,然后对这个模型进行分析,并用它预测未来的股票价格波动情况。

2. 基于机器学习的股票价格预测模型在数学建模中,机器学习是一种利用计算机来学习知识,并基于这些知识来预测未来趋势的方法。

使用数学建模技术预测市场趋势的有效方法

使用数学建模技术预测市场趋势的有效方法

使用数学建模技术预测市场趋势的有效方法在当今信息爆炸的时代,市场趋势的预测对于企业和投资者来说至关重要。

然而,市场的不确定性和复杂性使得准确预测市场走势成为一项极具挑战性的任务。

幸运的是,数学建模技术为我们提供了一种有效的方法来解决这个问题。

本文将探讨使用数学建模技术预测市场趋势的有效方法,并介绍其中一些常用的数学模型。

首先,我们来看看时间序列分析。

时间序列分析是一种基于历史数据的预测方法,通过对过去的数据进行统计和分析,来预测未来的市场趋势。

该方法基于一个关键假设,即未来的市场行为会受到过去的市场行为的影响。

时间序列分析可以帮助我们发现市场的周期性和趋势性,并据此进行预测。

常用的时间序列分析方法包括移动平均法、指数平滑法和ARIMA模型等。

其次,我们来看看回归分析。

回归分析是一种通过建立数学模型来描述变量之间关系的方法。

在市场预测中,回归分析可以帮助我们确定市场走势与其他因素之间的关系。

例如,我们可以建立一个回归模型来分析市场走势与经济指标、利率、政策等因素之间的关系。

通过对这些因素的分析,我们可以预测市场的未来走势。

回归分析在金融领域广泛应用,被认为是一种有效的市场预测方法。

除了时间序列分析和回归分析,还有一些其他常用的数学模型可以用于市场趋势的预测。

例如,神经网络模型是一种模拟人脑神经系统工作原理的数学模型,可以通过学习和训练来预测市场走势。

神经网络模型具有很强的自适应能力,能够从大量的数据中学习并发现隐藏的规律。

此外,支持向量机模型和遗传算法等也被广泛应用于市场预测领域。

尽管数学建模技术在市场预测中具有很大的潜力,但也存在一些挑战和限制。

首先,市场行为受到多种因素的影响,包括经济、政治、社会等因素,这使得建立准确的数学模型变得困难。

其次,市场的不确定性和变动性使得预测结果可能存在误差。

最后,数学模型需要大量的历史数据进行训练和验证,而市场行为的变化可能导致模型的失效。

为了提高市场趋势预测的准确性,我们可以采用以下几种方法。

大学生数学建模--时间序列模型初步

大学生数学建模--时间序列模型初步
• 趋势循环项(Trend- Cyclical) • 季节项(Seasonal):固定的周期; • 随机项(Random):随机变动。
At TCt St Rt
实际问题中,常用模型2;
时间序列的分解(模型3)
时间序列 {At}
• 趋势循环项(Trend- Cyclical) • 季节项(Seasonal):固定的周期; • 随机项(Random):随机变动。
• S= [36.4200 -1.0900 -13.2800 -22.0300 36.4200 -1.0900 13.2800 -22.0300 36.4200 -1.0900 -13.2800 -22.0300]
• T=A-S =[78.5800 91.0900 83.2800 87.0300 88.5800 91.0900 93.2800 92.0300 93.58Байду номын сангаас0 96.0900 103.2800 107.0300]
• “季节”的修正
• 若分解效果好,此处四项和为零 • 35.63 + (-1.88) + (-14.07) + (-22.82) = - 3.14 • 处理办法:- 3.14÷ 4 = - 0.79,同时加上-0.79 • 调整后(和为零):
• 确定趋势项
• A=[115 90 70 65 125 90 80 70 130 95 90 85]
时间序列 {At}
• 趋势项(Trend):较长时期、单一方向; • 季节项(Seasonal):固定的周期; • 循环项(Cyclical):非单一方向、长期的上下
波动、周期未必固定; • 随机项(Random):随机变动。
At Tt St Ct Rt

数学建模时间序列分析

数学建模时间序列分析
最小二乘估计
参数估计值
a ˆ84.699,8b ˆ8.1 92
拟合效果图
2.1.2 非线性拟合
使用场合 长期趋势呈现出非线形特征
参数估计指导思想 能转换成线性模型的都转换成线性模型, 用线性最小二乘法进行参数估计 实在不能转换成线性的,就用迭代法进行 参数估计
常用非线性模型
模型
变换
对趋势平滑的要求 移动平均的期数越多,拟合趋势越平滑
对趋势反映近期变化敏感程度的要求 移动平均的期数越少,拟合趋势越敏感
例2.3:病事假人数的移动平均
时 病事假人 5项移动 时间 病事假 5项移动 时间 病事假 5项移动


平均
人数
平均
人数
平均
1.1
4
1.2
7
1.3
8
1.4
11
1.5
18
2.1
质或预测序列将来的发展
1.4 时间序列分析软件
常用软件 S-plus,Matlab,Gauss,TSP,Eviews 和SAS
推荐软件——SAS 在SAS系统中有一个专门进行计量经济与时间序列分析 的模块:SAS/ETS。SAS/ETS编程语言简洁,输出功 能强大,分析结果精确,是进行时间序列分析与预测的 理想的软件 由于SAS系统具有全球一流的数据仓库功能,因此在进 行海量数据的时间序列分析时它具有其它统计软件无可 比拟的优势
特别的当 l 1
yT li
yˆTli yTli
,l i ,l i
y ˆT1yTyT1 n yTn1
例2.3
某一观察值序列最后4期的观察值为: 5,5.5,5.8,6.2
(1)使用4期移动平均法预测 xˆT 2。

数学建模地震预测模型

数学建模地震预测模型

数学建模竞赛论文题目:地震预测数学建模姓名:张志鹏学号:12291233 学院:电气工程学院姓名:赵鑫学号:10291033 学院:电气工程学院姓名:张书铭学号:12291232 学院:电气工程学院目录摘要 (3)一、问题重述 (4)二、问题的分析 (4)三、建模过程 (5)问题1:地震时间预测 (5)1、问题假设 (5)2、参数定义 (6)3、求解 (6)问题2:地震地点预测 (7)1、问题假设: (7)2、参数定义 (8)3、求解过程: (8)四、模型的评价与改进 (12)参考文献 (13)摘要大地振动是地震最直观、最普遍的表现。

在海底或滨海地区发生的强烈地震,能引起巨大的波浪,称为海啸。

在大陆地区发生的强烈地震,会引发滑坡、崩塌、地裂缝等次生灾害。

对人们的生产生活成巨大影响,严重威胁人们的生命和财产安全,所以,对地震的预测是十分必要的。

本文根据从1900年以来中国发生的八级以上地震的时间和地点分析,利用合理的数学建模方法,对下一次中国可能发生的八级以上地震的和时间和地点进行合理的预测。

建模方法分为对于时间的预测和地点的预测两个方面。

问题1:对于时间的预测采用的方法为指数平滑法,它是通过计算指数平滑值,配合一定的时间序列预测模型对现象的未来进行预测。

其原理是任一期的指数平滑值都是本期实际观察值与前一期指数平滑值的加权平均。

问题2:对于地点的预测根据长久的数据表明,八级以上地震主要发生在东经70°——110°,北纬20°——50°这个范围内,据此将整个地震带划分为100个区域,按顺序进行编号。

建立时间与地震区域编号的数学模型,利用线性回归的方法对下次地震地点预测。

关键词:地震,预测,数学建模,指数平滑法,线性回归一、问题重述地震预报问题,大地震的破坏性是众所周知的,为了减少大地震带来的灾难,人们提出了各种预报地震的方法,以求减少大地震产生的破坏。

本赛题请大家用数学建模的方式预报下一次大地震发生的时间和地点。

arima数学建模

arima数学建模

arima数学建模
摘要:
1.ARIMA 模型介绍
2.ARIMA 模型的组成部分
3.ARIMA 模型的应用
4.ARIMA 模型的优缺点
正文:
ARIMA(AutoRegressive Integrated Moving Average)模型是一种用于时间序列预测的数学建模方法。

它是由自回归模型(AR)、差分整合(I)和移动平均模型(MA)组合而成的。

这种模型主要用于分析和预测具有线性趋势的时间序列数据,例如股票价格、降雨量和气温等。

ARIMA 模型的组成部分主要包括三个部分:自回归模型(AR)、差分整合(I)和移动平均模型(MA)。

自回归模型(AR)是一种通过自身过去的值来预测当前值的线性模型。

差分整合(I)是为了使时间序列数据平稳而进行的一种数学处理。

移动平均模型(MA)则是通过计算时间序列数据的平均值来预测未来值的模型。

ARIMA 模型在实际应用中具有广泛的应用。

例如,在金融领域,ARIMA 模型可以用于预测股票价格和汇率等;在气象领域,ARIMA 模型可以用于预测降雨量和气温等;在工业生产领域,ARIMA 模型可以用于预测产量和销售量等。

尽管ARIMA 模型在时间序列预测方面具有很好的效果,但它也存在一些
优缺点。

首先,ARIMA 模型的优点在于其理论基础扎实,模型结构简单,计算简便,预测精度较高。

然而,ARIMA 模型也存在一些缺点,例如需要选择合适的模型参数,对非线性时间序列数据的预测效果较差,不能很好地处理季节性和周期性等因素。

总的来说,ARIMA 模型是一种重要的数学建模方法,它在时间序列预测领域具有广泛的应用。

数学建模中的预测方法时间序列分析模型

数学建模中的预测方法时间序列分析模型

数学建模中的预测方法时间序列分析模型时间序列分析模型是数学建模中常用的一种预测方法,它通过对时间序列数据的观察和分析,建立模型来预测未来的趋势和变化。

时间序列是按照时间顺序排列的数据序列,例如股票价格的变化、气温的变化、销售额的变化等等。

时间序列分析模型的基本思想是利用历史数据中的模式和规律,来预测未来的变化。

下面将介绍时间序列分析模型的基本步骤和常用的方法。

时间序列分析模型的基本步骤包括数据获取、数据预处理、模型建立、模型检验和预测。

首先,需要获取时间序列数据。

时间序列数据通常是从历史记录中获得的,可以是一定时间间隔内的观测值。

例如,如果我们要预测未来一年的销售额,那么可以用过去几年的销售额数据作为时间序列数据。

接下来,对数据进行预处理。

预处理的目的是去除数据中的噪声和异常值,使数据更加平滑和稳定。

常用的预处理方法包括平滑法(如移动平均法和指数平滑法)、差分法和季节性调整等。

然后,建立时间序列分析模型。

常用的时间序列分析模型包括移动平均模型(MA模型)、自回归模型(AR模型)、自回归移动平均模型(ARMA模型)和季节性自回归移动平均模型(SARMA模型)等。

这些模型都基于不同的假设和方法,可以用来描述时间序列数据的特征和变化规律。

模型建立完成后,需要对模型进行检验。

常用的检验方法包括残差分析、自相关图、偏自相关图等。

这些方法可以用来检验模型的拟合程度和预测效果,判断模型是否能够合理描述时间序列数据。

最后,使用建立好的模型进行预测。

根据模型的参数和特征,可以预测未来一段时间内时间序列数据的变化。

预测结果可以用来制定相应的决策和计划。

除了上述常用的时间序列分析模型,还有一些其他方法也可以用于时间序列的预测。

例如回归分析、神经网络模型、支持向量机等。

这些方法在一些特殊情况下可以提供更好的预测效果。

总之,时间序列分析模型是数学建模中常用的预测方法,它通过对时间序列数据的观察和分析,建立模型来预测未来的趋势和变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用案例 (1)CUMCM2003-A:SARS的传播问题; (2)CUMCM2005-A:长江水质的评价与预测; (3)CUMCM2006-B:艾滋病疗法的评价与预测; (4)CUMCM2008-B:高校学费标准探讨问题。
4.时间序列方法:大样本的随机因素或周期特征的 未来预测;
应用案例 (1)CUMCM2003-A:SARS的传播问题; (2)CUMCM2005-A:长江水质的评价与预测; (3)CUMCM2006-B:艾滋病疗法的评价与预测。
的根均在单位圆外
(2)移动平均【MA】模型
移动平均序列 :
X t ut 1ut1 2ut2 qutq
【3】
式【3】称为q 阶移动平均模型,记为MA(q )
注:实参数 1,2 , ,q 为移动平均系数,是待估参数
引入滞后算子,并令(B) 11B 2B2 qBq 则模型【3】可简写为
X t (B)ut
(1)自回归【 AR 】模型
自回归序列:
X t 1 X t1 2 X t2
p X t p ut 【1】
【1】式称为 p阶自回归模型,记为AR( p)
注1:实参数 1,2 , 称,为p 自回归系数,是待估参数.随机
项 是相互u独t 立的白噪声序列,且服从均值为0、方差为
的正态分布. 2随机项与滞后变量不相关。
5.神经网络方法:大样本的未来预测.
时间序列分析模型
一、时间序列分析模型【ARMA模型 】简介
1、概 述
ARMA模型是一类常用的随机时间序列模型,是一种 精度较高的时间序列短期预测方法.
通过对模型的分析研究,能够更本质地认识时间序列 的结构与特征,达到最小方差意义下的最优预测.
三种基本类型:自回归(AR:Auto-regressive)模 型;移动平均(MA:Moving Average)模型;自回归 移动平均(ARMA:Auto-regressive Moving Average)模型
注2:一般假定 X均t 值为0,否则令
X
t
Xt
记 B为k 步k 滞后算子,即
表示为
Bk X,t 则 X模t型k 【1】可
Xt 1BXt 2B2 Xt pBp Xt ut
令 (B) 11B 2B,2 模型可简pB写p 为
(B) X t ut
【2】
AR( p )过程平稳的条件是滞后多项式 (B)
存在相关,即序列是白噪声序列,其自相关系数应该与0 没有显著差异。
2)平稳性
若时间序列满足
1)对任意时间 t,其均值恒为常数; 2)对任意时间 t和 ,s 其自相关系数只与时间间隔 有关t ,s而与 和 的t起始点s无关。那么,这个时间序
列就称为平稳时间序列 。
3)季节性 时间序列的季节性是指在某一固定的时间间隔上,序
列重复出现某种特性.比如地区降雨量、旅游收入和空调 销售额等时间序列都具有明显的季节变化.
一般地,月度资料的时间序列,其季节周期为12个 月;季度资料的时间序列,季节周期为4个季.
判断时间序列季节性的标准为:自相关系数是否与0 有显著差异。
实际问题中,常会遇到季节性和趋势性同时存在的情 况,这时必须事先剔除序列趋势性再用上述方法识别序 列的季节性,否则季节性会被强趋势性所掩盖,以至判 断错误.
【4】
注1:移动平均过程无条件平稳
注2:滞后多项式的根都在单位圆外时,AR过程与MA过程 能相互表出,即过程可逆,
1 w1B w2B2
Xt
wi
Bi
Xt
ut
i0
注3:【2】满足平稳条件时,AR过程等价于无穷阶的MA
过程,即 Xt 1 v1B v2B2
ut
vjB
j
ut
j0
(3)自回归移动平均【ARMA】模型【B-J方法建 模】
自回归移动平均序列:
Xt 1Xt1 2 Xt2 p Xt p ut 1ut1 2ut2 qutq 【5】
【5】称为( p, q阶) 的自回归移动平均模型,记为ARMA ( p, q)
注1:自回归系数 1,2 , , p 移动平均系数 1,2, ,q 注2:【1】和【3】是【5】的特殊情形
数学建模中的预测方法
1. 插值与拟合方法:小样本内部预测
应用案例:
(1)CUMCM2001-A:血管的三维重建问题; (2)CUMCM2003-A:SARS的传播问题; (3)CUMCM2005-A:长江水质的评价与预测; (4)CUMCM2006-B:艾滋病疗法的评价与预测。
2.回归模型方法:大样本的内部预测
注3:引入滞后算子,模型【5】可简记为
(B) Xt (B)ut
注4:ARMA过程的平稳条件是(B) 的根均在单位圆外
【6】
可逆条件是 (B) 的根都在单位圆外
2、随机时间序列的特性分析
(1)时序特性的研究工具
1)自相关
构成时间序列的每个序列值之间的简单相关关系称为 自相关。
自相关程度由自相关系数 度 k量,表示时间序列中相
1
k 1
kk
k
k 1, j
j 1
k j
k 1
1 k 1, j j
j 1
k 1 k 2,3,
k 其中 k是滞后 期的自相关系数,
kj k1, j kk k1,k j , j 1, 2, , k 1
(2)时间序列的特性分用案例:
(1)CUMCM2004-A:奥运临时超市网点设计; (2)CUMCM2004-B:电力市场的输电阻塞管理; (3)CUMCM2005-A:长江水质的评价与预测; (4)CUMCM2006-B:艾滋病疗法的评价与预测; (5)CUMCM2008-B:高校学费标准探讨问题。
3.灰预测GM(1,1):小样本的未来预测
隔 期的k观测值之间的相关程度。
nk
( Xt X )( Xtk X )
k t1 n
(Xt X )2
t 1
2)偏自相关
偏自相关是指对于时间序列 X t ,在给定 Xt1, Xt2, , Xtk1
的条件下, X t 与 Xtk 之间的条件相关关系。其相关程度
用偏自相关系数 kk 度量,有 1 kk 1
包含季节性的时间序列也不能直接建立ARMA模型, 需进行季节差分消除序列的季节性,差分步长应与季节 周期一致.
3、模型的识别与建立
相关文档
最新文档