平面向量 的减法
平面向量的运算法则

平面向量的运算法则平面向量是解决平面几何问题的重要工具,通过向量的运算可以简化平面几何问题的处理过程。
本文将介绍平面向量的基本概念和运算法则,以及其在几何问题中的应用。
一、平面向量的表示平面向量用有序数对表示,常用形式为A(x₁, y₁)和B(x₂, y₂),其中A和B分别表示向量的起点和终点,(x₁, y₁)和(x₂, y₂)表示向量的坐标。
二、平面向量的加法平面向量的加法指的是将两个向量按照特定的法则相加,得到一个新的向量。
设有向量A(x₁, y₁)和B(x₂, y₂),则向量A与向量B的和C可以表示为C(x₁ + x₂, y₁ + y₂)。
三、平面向量的减法平面向量的减法指的是计算出一个新的向量,使得用该向量加上被减向量等于另一个向量。
设有向量A(x₁, y₁)和B(x₂, y₂),则向量A 与向量B的差D可以表示为D(x₁ - x₂, y₁ - y₂)。
四、平面向量的数量乘法平面向量的数量乘法指的是将一个向量乘以一个实数,得到一个新的向量。
设有向量A(x, y)和实数k,kA可以表示为kA(kx, ky)。
五、平面向量的点乘平面向量的点乘指的是两个向量的对应坐标相乘后相加的运算。
设有向量A(x₁, y₁)和向量B(x₂, y₂),则向量A与向量B的点乘可以表示为A·B = x₁x₂ + y₁y₂。
六、平面向量的叉乘平面向量的叉乘指的是两个向量按照一定的法则相乘,得到一个新的向量。
设有向量A(x₁, y₁)和向量B(x₂, y₂),则向量A与向量B的叉乘可以表示为A×B = x₁y₂ - x₂y₁。
七、平面向量的模长平面向量的模长指的是一个向量的长度,可以通过勾股定理求得。
设有向量A(x, y),则向量A的模长可以表示为|A| = √(x² + y²)。
八、平面向量的单位向量平面向量的单位向量指的是模长为1的向量,可以通过将向量除以其模长得到。
设有向量A(x, y),则向量A的单位向量可以表示为Â = (x/|A|, y/|A|)。
平面向量的加法与减法

平面向量的加法与减法在数学中,平面向量是用来描述平面上的位移和力的工具。
平面向量具有大小和方向两个特征,可以通过数学运算来完成加法和减法操作。
本文将详细介绍平面向量的加法和减法运算,并探讨其应用。
一、平面向量的表示方法平面向量通常用字母加箭头来表示,如AB→表示从点A到点B的位移向量。
平面向量还可以用坐标表示,如向量→AB的坐标表示为(ABx , ABy)。
其中,ABx表示向量在x轴上的分量,ABy表示向量在y轴上的分量。
二、平面向量的加法两个平面向量的加法是指将两个向量的对应分量相加的操作。
设有两个向量→AB和→CD,其坐标分别为(ABx , ABy)和(CDx , CDy)。
那么,向量→AB与→CD的和为→AB + →CD,其坐标为(ABx + CDx , ABy + CDy),即两个向量的横坐标分量相加得到新向量的横坐标,纵坐标分量相加得到新向量的纵坐标。
三、平面向量的减法平面向量的减法是指将一个向量减去另一个向量的操作。
设有两个向量→AB和→CD,其坐标分别为(ABx , ABy)和(CDx , CDy)。
那么,向量→AB减去向量→CD的差为→AB - →CD,其坐标为(ABx - CDx , ABy - CDy),即两个向量的横坐标分量相减得到新向量的横坐标,纵坐标分量相减得到新向量的纵坐标。
四、平面向量的应用平面向量的加法与减法在数学中有广泛的应用。
以下列举几个常见的应用场景:1. 位移问题:平面向量的加法可用于求解物体在空间中的位移问题。
通过将各个位移向量进行加法运算,可以得到物体的总位移向量。
2. 力的合成:力的合成是指多个力的作用下,合成后产生的力。
通过将各个力向量进行加法运算,可以得到合成力的大小和方向。
3. 航空航天:在航空航天领域中,平面向量的加法与减法被广泛运用于导航和控制系统中,用以计算飞行器的位置和速度。
4. 平面几何:平面向量的加法与减法在平面几何中也有重要应用。
平面向量的运算

平面向量的运算在数学中,平面向量是由大小和方向确定的量,常用于表示物体在平面上的位移或力的作用方向。
平面向量的运算是指对平面向量进行加法、减法、数乘和点乘等操作。
本文将介绍平面向量的基本概念和运算规则。
一、平面向量的表示方法平面向量通常用有向线段表示,由两个点确定,例如AB表示从点A到点B的平面向量。
可以用字母加箭头(如→)表示平面向量,如:AB →其中A为向量的起点,B为终点。
二、平面向量的加法对于两个平面向量AB → 和CD →,它们的和可以通过平行四边形法则得到。
具体步骤如下:1. 将向量CD → 的起点与向量AB → 的终点相重合,得到新的向量AC →;2. 连接向量AB → 的起点和向量CD → 的终点,得到新的向量AD →;3. 新的向量AD → 就是原始向量AB → 和CD → 的和,即AD → = AB → + CD →。
三、平面向量的减法向量的减法可以通过向量加法的逆运算得到。
对于向量AB → 和CD →,它们的差可以表示为AB → - CD →,具体步骤如下:1. 取向量CD → 的终点B为新向量的起点,向量AB → 的起点A为新向量的终点,得到新的向量BA →;2. 新的向量BA → 就是原始向量AB → 和CD → 的差,即BA → = AB → - CD →。
四、平面向量的数乘平面向量的数乘是指将向量的长度乘以一个实数,从而改变向量的大小。
设有向量AB → 和实数k,它们的数乘表示为kAB →,其具体步骤如下:1. 将向量AB → 的长度乘以实数k,得到新向量AC →;2. 新的向量AC → 的方向与原来向量AB → 相同,而长度为原来的k倍,即AC → = kAB →。
五、平面向量的点乘平面向量的点乘(内积)运算可以得到两个向量的乘积,结果为一个实数。
设有向量AB → 和CD →,它们的点乘表示为AB → · CD →,具体计算方法如下:1. 将向量AB → 和CD → 的长度相乘,得到实数AC;2. 计算向量AB → 与向量CD → 之间夹角的余弦值,得到实数cosθ;3. 点乘的结果为AB → · CD → = ACcosθ。
高中数学-平面向量的减法

2、向量加法的平行四边形法则 Db C
a a a a a a a a a a a+b
bb
b
A
b
b
作法:(1)在平面内任取一点A;
a
B
(2)以点A为起点以向量a、b为邻边作平行
四边形ABCD.即AD=BC=a,AB=DC=b ;
(3)则以点A为起点的对角线AC=a+b. 注意起点相同.共线向量不适用
例3:如图平行四边形ABCD, AB a,
DA b,OC c, 证明:b c a OA
D
C
b
c
O
A
B
a
证明:b c DA OC OC CB OB
b c a OB AB OB BA OA
练习1
1.如图,已知a,b,求作a b.
(1)
a
(2)
a
b
b
(3)
a
(4)
a
b
b
练习2
(1)化简AB AC BDCD
解:原式 CB BDCD CD CD 0
(2)化简OA OC BO CO
解 : 原式 (OA BO) (OC CO) (OA OB) 0 BA
Come on!
知识小结
1、理解向量减法的定义 2、掌握向量减法的三角形法则并能加以运用
思想方法小结
D
b, 使它们起点相同,那么
b的终点指向a的终点的向量就是a b.
二、向量减法的三角形法则
1在平面内任取一点O A
2作OA a,OB b
3则向量BA a b
.a
O
ab
B
b
注意: 1、两个向量相减,则表示两个向量起点的字母必须相同 2、减向量的终点指向被减向量的终点
(完整版)平面向量的减法运算

A、 AD =0 C、ABCD是矩形
思路分析:
B、AB =0或AD =0 D、ABCD是正方形
在平行四边形ABCD中,AB+AD = AB-AD ,
即 AC = DB ,可得ABCD是特殊的平行四边形 即是矩形。?
2 如图所示,在矩形ABCD中,O是对角线AC与BD
的交点。若 AB =a,BC =b,OB=c,试证明:
(1) (ra)r= a, a (a) = (a) a = 0
(2) r 0 = 0r
rr
rr r
(3) a = b, b = a, a b = 0
ar2.向量减法的平r行四Ouu边Cur 形= ar法则br
rB b
C
b
uuur r r BA = a b
O
r aA
例题分析:
例1、已知向量a、b、c、d,求作向量a-b,c-d。
b
d
a
c
d b a
c
课堂练习:
1、如图,已知a、b,求作a-b。
(1)
(2)
b a
(3)
a
a
b
b
2、填空: AB-AD= DB BA-BC= CA BC-BA= AC OD-OA= AD OA-OB= BA
(4)
a
b
能力训练:
1、在平行四边形ABCD中,若
C AB +AD = AB -AD 则:
记作 a .
r r 注:1.零向量的相反向量仍是零向量; 0=0
2.任一ar向量(与ar其)相=反(向ar量) 的 和ar 是= 零0r 向量;
uuur uuur 重要提示 : AB = BA
1.什么叫r 做向r量的差?什么是向量r 的r减法? 向量a加r 上rb的r相反r向量,叫做 a与b的差,
平面向量的运算法则

平面向量的运算法则平面向量的运算法则是指在平面向量的加法、减法和数乘运算中遵循的规则和原则。
这些法则是基于平面向量的定义和性质而得出的,能够帮助我们简化向量计算和解决与向量相关的问题。
本文将详细介绍平面向量的加法、减法和数乘运算法则,以及运用这些法则解决实际问题的方法。
一、平面向量的定义平面向量是指在平面上有大小和方向的量,用箭头来表示。
平面向量通常用大写字母表示,例如A、B等。
平面向量可以表示位移、速度、力等物理量,也可以表示复杂的数学概念,如几何矢量、向量函数等。
二、平面向量的加法法则1. 三角形法则:设有两个平面向量A和B,以A为起点,在A的末端画出向量B,则以A为起点、B的末端为终点的直线段就表示了平面向量A+B。
2. 平行四边形法则:设有两个平面向量A和B,以A为起点,在A 的末端画出平行于B的直线段,则以A为起点、B的终点为终点的直线段就表示了平面向量A+B。
加法运算满足交换律和结合律,即对于任意平面向量A、B和C,有:A+B=B+A (交换律)(A+B)+C=A+(B+C) (结合律)三、平面向量的减法法则平面向量的减法可以看作是加法的逆运算。
设有两个平面向量A和B,要计算A-B,可以先求出B的相反向量-B,然后将A与-B相加,即可得到A-B。
四、平面向量的数乘法则设有一个平面向量A和一个实数k,要计算kA,可以将向量A的长度乘以k,并保持与A同向或反向(根据k的正负确定)。
得到的新向量kA的长度是原向量A的长度的k倍,方向与A相同或相反。
数乘运算满足分配律和结合律,即对于任意平面向量A和B,以及任意实数k和m,有:k(A+B)=kA+kB (分配律)(km)A=k(mA) (结合律)五、平面向量运算法则的应用平面向量运算法则在解决与向量相关的问题时具有广泛的应用。
应用这些法则可以帮助我们简化向量运算过程,提高计算的准确性和效率。
1. 合成与分解:利用平面向量的加法法则,可以将一个向量表示为若干个已知向量的和,这称为合成。
平面向量基本公式大全
平面向量基本公式大全平面向量是数学中的一个重要概念,用于描述两个方向和大小都有所限定的量。
平面向量有很多重要的基本公式,这些公式在数学和物理学中都有广泛的应用。
下面就来介绍一下平面向量的基本公式。
1、平面向量的模长公式平面向量的模长(也叫长度)是平面向量的重要特性之一,表示向量在平面上的长度。
平面向量的模长公式为:AB,=√(某2-某1)2+(y2-y1)2其中,A(某1,y1)和B(某2,y2)表示向量AB的起点和终点坐标。
2、平面向量的加法和减法公式平面向量的加法和减法公式是指两个向量相加或相减的规则。
其公式为:A+B=(A某+B某,Ay+By)A-B=(A某-B某,Ay-By)其中,A、B分别表示两个向量,A某、Ay、B某、By分别表示两个向量在某轴和y轴上的分量。
3、平面向量的数量积公式数量积是向量中另一个重要的特性,用于描述两个向量之间的夹角。
平面向量的数量积公式为:A·B=,A,B,cosθ其中,A、B分别表示两个向量,A,和,B,表示它们的模长,θ表示两个向量之间的夹角。
4、平面向量的叉积公式叉积也是向量中的一种运算,用于计算两个向量所在平面的法向量,常用于计算力矩和面积等。
平面向量的叉积公式为:A某B=,A,B,sinθ其中,A、B分别表示两个向量,A,和,B,表示它们的模长,θ表示两个向量之间的夹角。
5、平面向量的坐标表示对于向量AB,在平面直角坐标系中,可以用一个有序数组(某,y)表示其坐标。
例如A(1,2)和B(3,4),则向量AB可以表示为(2,2)。
6、平面向量的方向角公式平面向量的方向角指向量与正方向某轴之间的夹角,其公式为:θ=tan-1(y/某)其中,某、y分别表示向量的某轴和y轴分量。
7、平面向量的正交公式两个向量如果互相垂直,则称它们是正交的。
平面向量的正交公式为:A·B=0其中,A、B分别表示两个向量,·表示数量积运算。
总之,平面向量的基本公式是理解和应用平面向量的关键。
第33课 平面向量的减法
第四单元4.2.2《平面向量的减法》教案一、创设情境激发兴趣问题:我们知道,两个实数可以进行加减法运算.向量的加法已经学过了,那么两个向量的减法是怎么进行的呢?分析:我们把与向量a长度相等且方向相反的向量,叫作向量a的相反向量,记作-a. 其中a和-a互为相反向量.则有:(1)-(-a )= a .(2)任一向量与其相反向量的和是零向量 , 即 a+(−a)=(−a)+a=0.(3)若a,b互为相反向量 , 那么a = -b,b = - a,a + b= 0.规定:零向量的相反向量还是零向量.a加上b的相反向量叫作a与b的差 ,即a+(-b)= a -b= 0.求两个向量差的运算,叫向量的减法.二、自主探究讲授新知如图 4-18,CB=b,根据相反向量的定义有:CB BC-== - b,则()AB CB AB BC AB CB-=+=+-.可见,在向量减法运算中类似结论依然成立.图 4-18由上述分析,可得结论:在向量运算中,减一个向量等于加上这个向量的相反向量.把求两个向量差的运算,叫作向量的减法,即a -b= a+(-b).问题1:如何求两个非零向量的差向量呢?了解观看课件思考自我分析思考理解记忆类比实数的加减法运算,使学生自然理解知识点,激发学生学习兴趣带领学生分析引导式启发学生得出结果带领学生总结加深理解1.不共线的两个非零向量a 与b 的减法:作法:如图4-19,在平面上任取一点A ,依次作AB = a ,BC =-b ,因为 a -b= a +(-b ),对向量 a 与(-b )使用向量加法的三角形法则,得 a -b= a +(-b )=AB +BC =AC .2. 共线的两个非零向量的减法: 当非零向量a 与b 共线时 , 在平面上任取一点A ,首尾相接作AB = a ,BC =-b ,同样可得 a -b= a +(-b ) =AB +BC =AC .情形一:a 与 b 方向相同,如图 4-20:作法:(1)以A 为起点,作AB ⃗⃗⃗⃗⃗ = a ,(2)以B 为起点,作BC ⃗⃗⃗⃗⃗ =−b ,那么 AC⃗⃗⃗⃗⃗ = a -b 情形二:a 与 b 方向相反,如图 4-21:作法:(1)以A 为起点,作AB ⃗⃗⃗⃗⃗ = a ,(2)以B 为起点,作BC ⃗⃗⃗⃗⃗ =−b ,那么 AC⃗⃗⃗⃗⃗ = a -b .理解记忆 思考 辨析 思考 归纳引导启发 学生 思考 仔细 分析 关键 词语 “首尾 相接“ 进一步 理解 加深 记忆第2课时教学过程教学活动学生活动设计思路三、典型例题巩固知识例 1如图4-22(1) , 已知向量a,b,求作向量a-b,并指出其几何意义.解:如图 4-22(2)所示,以平面上任一点A为起点,作AB= a,AD=b,BC=-b,由向量减法的定义可知 ,AC=a+(-b)=a-b .连接AC,则向量AC即为所求的差向量.又因为AD+DB=AB,即b+DB=a ,所以DB=a-b .因此,向量减法的几何意义是:a-b表示把a与b平移到同一起点后 , 向量b 的终点指向向量a 的终点的向量.例2填空:(1)AB AD-=_____________ ;(2)BC BA-=_____________ ;(3)OD OA-=_____________ .解:根据向量减法的定义,减一个向量等于加上它观察思考主动求解小组讨论交流通过例题领会帮助学生更好理解掌握知识点通过例题进一步领会的相反向量,可知, (1)AB AD -=+AB AD -()=+AB DA DA AB DB =+=;(2)BC BA -=+BC BA -()=+BC AB AB BC AC =+=;(3)OD OA -=+OD OA -()=+OD AO AO OD AD +==.思考:当向量a 与b 不共线时,把和向量a+b 与差向量 a -b 作在一个图上,可以得出什么结论?方法提炼:向量减法作图的两种常用方法: 1. 定义法.向量 a 与 b 的差,即是向量 a 加上向量 b 的相反向量,即 a -b = a +(-b ).此时向量a 与向量-b 依然遵循“首尾相接,由始至终”的向量加法口诀.作法如图4-23所示:2. 几何意义法.如图 4-24,把向量a 与向量b 平移到同一起点后,向量b 的终点指向向量a 的终点的向量就是 a -b .即“同一起点,减指被减”.(减向量指向被减向量)思考 归纳 理解 记忆观察 思考 主动 求解 归纳 领会 掌握观察 学生 是否 理解 知识 点 及时 了解 学生 知识 掌握 的情 况 强化 思想 及时 练习 巩固 所学 知识四、随堂练习 强化运用 1.填空.(1)AB AD -=_____________;(2)BA BC -=_____________; (3)BC BA -=_____________;(4)OA OB -=_____________; (5)OD OA -=_____________.2.已知下列各组向量a ,b ,求作 a +b 和 a -b .3.根据图形填空.(1)OA OB -=_____________; (2)OC OA -=_____________ . 五、 课堂小结 归纳提高1. 向量减法的定义及几何意义.2. 向量减法的运算法则:三角形法则.3. 向量减法作图的两种常用方法. 六、布置作业 拓展延伸1.分层作业:(必做)习题4.2.2水平一;(选做)水平二2.读书部分:教材观察 思考领会 掌握 主动 求解 归纳 总结记录检验 学生 学习 效果 关注 学生 练习 中的 错误 使得 学生 在总 结中 提高 分层次 要求教学反思根据教师上课实际情况,课后填写:学生知识、技能的掌握情况、情感态度、思维情况、学生合作交流的情况,及时总结反思。
平面向量知识点归纳
平面向量知识点归纳平面向量是高中数学中的重要内容,也是大学数学中的基础知识,它是向量的一种。
向量是数学中的一个概念,它有方向和大小,用有向线段表示。
平面向量是指在平面中的向量,以下是平面向量的知识点归纳。
一、平面向量的定义平面向量是表示平面上有大小和方向的箭头的数学概念。
平面向量AB用符号→AB表示,它的长度表示向量大小,而方向则由方向角表示。
二、平面向量的加减法1. 平面向量的加法平面向量加法是指将一条平面向量按照另一条向量的方向和大小来平移,并合成为一条新的向量。
记作→AB+→BC=→AC。
向量加法满足交换律、结合律、分配律。
2. 平面向量的减法平面向量减法是将另一向量的方向翻转,依次相加,得到一个新向量。
记作→AB-→AC=→CB。
三、平面向量的数量积平面向量的数量积是指两个向量之间相乘得到的标量。
记作→a⋅→b=a·b·cosθ,其中a、b是两个向量,θ是它们之间的夹角。
四、平面向量的叉积平面向量的叉积是在二维平面内的两个向量所形成的向量垂直于平面,大小等于两个向量所组成的平行四边形的面积。
记作→a×→b,其中a、b是两个向量。
五、平面向量的共线、垂直及夹角1. 平面向量的共线两个向量共线的充要条件是它们的数量积等于它们的模的乘积,即→a//→b,当且仅当a·b=|a||b|。
2. 平面向量的垂直两个向量垂直的充要条件是它们的数量积等于0,即→a⊥→b当且仅当a·b=0。
3. 平面向量的夹角两个向量的夹角是指它们之间的夹角,记作θ,其中θ的范围是0≤θ≤π。
六、平面向量的投影与单位向量1. 平面向量的投影平面向量投影是指一个向量在另一个向量上的投影,也是向量的一个重要应用。
投影的值等于向量的模与夹角的余弦的乘积。
记作pr→a。
2. 平面向量的单位向量单位向量是模等于1的向量,它表示的方向与原向量相同。
单位向量是向量的一种特殊情况,用符号→e表示。
平面向量的加法和减法
平面向量的加法和减法平面向量是研究平面内物体运动和力的重要工具,而平面向量的加法和减法是计算和描述物体在平面上移动的基本操作。
本文将详细介绍平面向量的加法和减法,并给出相应的计算方法和示例。
一、平面向量的定义在平面直角坐标系中,一个向量由其起点和终点确定,方向由起点指向终点,长度由起点和终点的距离表示。
平面向量常用加粗的小写字母表示,如a、b、c等。
二、平面向量的表示1. 坐标表示法:平面向量可用坐标表示法表示。
设向量a的起点为点A(x1, y1),终点为点B(x2, y2),则向量a可以表示为a = (x2 - x1, y2 - y1)。
2. 分量表示法:平面向量也可用分量表示法表示。
设向量a的起点为原点O(0,0),终点为点P(x, y),则向量a可以表示为a = x * i + y * j,其中i和j分别是x轴和y轴的单位向量。
三、平面向量的加法平面向量的加法遵循平行四边形法则。
设向量a的起点为点A,终点为点B,向量b的起点为点B,终点为点C,所求的向量为向量c,起点为点A,终点为点C。
则向量c = a + b。
计算向量c的坐标表示法:y1 + y2)。
计算向量c的分量表示法:设向量a = x1 * i + y1 * j,向量b = x2 * i + y2 * j,则向量c = a + b = (x1 + x2) * i + (y1 + y2) * j。
示例:已知向量a = (3, 4),向量b = (-2, 1),求向量c = a + b的坐标表示法和分量表示法。
解:根据坐标表示法的计算公式,向量c的坐标表示法为:c = a + b = (3 + (-2), 4 + 1) = (1, 5)。
根据分量表示法的计算公式,向量c的分量表示法为:c = a + b = (3 - 2) * i + (4 + 1) * j = i + 5 * j。
四、平面向量的减法平面向量的减法可以看作是向量加法的逆运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
EF0 EF .
(3)(A B C)D (A C B)D .
解法一: 原式 AB CD AC BD
A BD CC ABD A BBD D C CA
0.
解法二: 原式 AB CD AC BD
(AB AC )(BD D)C
A
5
向量的减法:
向a 量 加b上 的相反 , 叫向 a 做 与 b 量 的, 差 即
ab a(b ) .
(与a长度相等,方向向 相量 反, 的叫a做 的
相反向量 ,记作 a,a与a 互为相反向量.
规定, 0 0 . a(a ) (a)a 0 . )
定义:求两个向量差的运算叫向量的减法.
定义:求两个向量差的运算叫向量的减法.
2.2 向量的 减法
A
1
一、复 习:1. 向量加法法则:
a a a a a a a a aa
b
b b b bO b
A
B
b
ba+b b
三角形法则
Db C
a a a a a a a a a a a+b
a
B
bb
b
A
b
b
平行四边形法则
2. 运算性质:
ab ba (a b) c a (b c) a00a aAC思考 NhomakorabeaA
8
例1:如图,已知向量a, b, c, d,
求作向量a-b, c-d.
bd
a
c
B
a b
A b
a
O
D
d
c d
C
c
A
9
作图验证: (ab)ab.
B
C
D
a
ab
b
.
O
b
ab
a
A
F
E
例2.化简下列各式:
(1) ABCABC;
( 2) O EO FO D D; O
(3)(A B C)D (A C B)D . 解:(1)原 式 (A BB)C CA
CBBC
0.
检测:
1.ΔABC中,BC=a, CA=b,则,AB=( B) A.a+b B.–(a+b) C. a-b D. b-a
2.已知|AB|=8,|AC|=5,则|BC|的取值范围是_(__3_,1. 3)
3、已知|a|=6,|b|=8,且|a+b|=|a-b|, 求|a-b|.
10
(1)相反向量 (2)向量减法转化为向量加法 (3)向量减法的作图方法
图示:
O.
A
bb b b aa
bbb b
a a Ba a
a aa
a-b
作法: 1 在 平 面 内 任 取 一 点 O
2作 O A a,O B b3则向 B A 量 ab
即 ab可以表示 b的 为 终 从 点 向 a 指 的 量 向 终向 点 .
特殊情况
1.共线同向
a
b
2.共线反向
a
b
AC
B
B
CBab
一般地:
A 0 A 1 A 1 A 2 A 2 A 3 A n 2 A n 1 A n 1 A n A0 A n A 1 A 2 A 2 A 3 A 3 A 4 A n 1 A n A n A 1 0
口诀:首尾相接首尾相连.
学习目标: 1. 了解相反向量的概念; 2. 掌握向量的减法,会作两个向量的减向量, 并理解其几何意义; 3. 通过阐述向量的减法运算可以转化成向量的 加法运算,使学生理解事物之间可以相互转化的 辩证思想.
1、将两向量移到共同起点 2、连接两向量的终点,方向指向被减向量 注意与作和向量的区别
A
14
证明:如图所示,
BGCD,
B
C