0-1整数规划

合集下载

一个使用Lingo求解多目标0-1整数规划问题答案

一个使用Lingo求解多目标0-1整数规划问题答案

AK是一家空调制造商,其面临的需求增长很快。

预计2001年,其全国的需求在南部将为180,000单位,在中部为120,000单位,在东部为110,000单位,在西部为100,000单位。

DryIce在设计物流网络时,有四个备选的地点:New York, Atlanta, Chicago和San Diego。

在这四个地点建厂,工厂的生产能力将要么为200,000单位,要么为400,000单位。

工厂的年固定运营成本及从工厂所在地生产出产品并运往四个销售区域的生产和运输的单位成本如表所示。

请为该设施网络的设计建立模型,并请对模型作简要说明。

设定变量如下表所示:其中M11 M12等一系列值为0.1变量,即可得到如下式子:m12+9200000*m22+232*x12+212*x22+230*x32+280*x42+5600000*m13+9300000*m 23+238*x13+230*x23+215*x33+270*x43+6100000*m14+10200000*m24+299*x14+2 80*x24+270*x34+225*x44;m11*200000+m21*400000>=x11+x21+x31+x41;m12*200000+m22*400000>=x12+x22+x32+x42;m13*200000+m23*400000>=x13+x23+x33+x43;m14*200000+m24*400000>=x14+x24+x34+x44;x11+x12+x13+x14>=110000;x21+x22+x23+x24>=180000;x31+x32+x33+x34>=120000;x41+x42+x43+x44>=100000;@bin(m11);@bin(m21);@bin(m12);@bin(m22);@bin(m13);@bin(m23);@bin(m14);@bin(m24);通过运行LINGO得到如下结果:Global optimal solution found.Objective value: 0.1294800E+09Extended solver steps: 0Total solver iterations: 131Variable Value Reduced CostM11 0.000000 -6200000.M21 0.000000 -0.1440000E+08 X11 0.000000 0.000000X21 0.000000 41.00000X31 0.000000 31.00000X41 0.000000 136.0000M12 0.000000 -2500000.M22 1.000000 -6800000.X12 110000.0 0.000000X22 180000.0 0.000000X32 110000.0 0.000000X42 0.000000 95.00000M13 0.000000 -5400000.M23 0.000000 -0.1270000E+08 X13 0.000000 21.00000X23 0.000000 33.00000X33 0.000000 0.000000X43 0.000000 100.0000M14 1.000000 6100000.M24 0.000000 0.1020000E+08 X14 0.000000 27.00000X24 0.000000 28.00000X34 10000.00 0.000000X44 100000.0 0.000000Row Slack or Surplus Dual Price1 0.1294800E+09 -1.0000002 0.000000 -61.000003 0.000000 -40.000004 0.000000 -55.000005 90000.00 0.0000006 0.000000 -272.00007 0.000000 -252.00008 0.000000 -270.00009 0.000000 -225.0000如下表:总成本为:$129480000。

第四讲 0 1整数线性规划要点

第四讲 0 1整数线性规划要点

? ??
x25 、? 项x1目3和4只能选中一项 x3i 、? 项0,1目5被i ?选1中,2,的? 前,5提是项目 1被选中;如何
在 满足上述条件下选择一个最好的投资
解:设 xi为决方策案变,量使(投i资? 1收,2益,?最,5大)
?1 投资第i个项目
xi ? ?
?0 不投资第i个项目
项目
1 2 3 4
整数规划建模举例
练习1 :组合投资问题。
某财团有 B 万元的资金,经过其考察选中 n个投资
项目,其中第 j个项目需投资金额为 a j 万元,预
计获利 c j( j ? 1,2..., n)万元,由于种种原因,
有两个附加条件:第一,项目 2和项目3至少选择一
个;第二项目 5,6,7恰好选择两个。问应如何选
例1:一个旅行者要到某地作两周的带包旅行 ,装背包时,他 发现除了已装的必需物件外,他还能再装5公斤重的东西.他 打算从下列4种东西中选取,使增加的重量不超过5公斤又 能使使用价值最大.这4种东西的重量和使用价值( 这里用打 分数的办法表示价值) 如下表所示,问旅行者应该选取哪些 物件为好?
解:建立模型为 max Z=6x 1 ? 7 x 2 ? 3 x3 ? 9 x4
在 满足上述条件下选择一个最好的投资
解:设 xi为决方策案变,量使(投i资? 1收,2益,?最,5大)
?1 投资第i个项目
xi ? ?
?0 不投资第i个项目
项目
1 2 3 4
投资额 (万元) 210 300 100 130
投资收益 (万元) 150 210 60 80
Z表示投资效益
5
260
180
max=150*x1+210*x2 +60*x3+80*x4+180* x5; 210*x1+300*x2+100 *x3+130*x4+260*x5 <=600; x1+x2+x3>=1; x3+x4=1; x5<=x1; @bin(x1); @bin(x2); @bin(x3); @bin(x4); @bin(x5);

运筹学-0-1规划指派问题PPT课件

运筹学-0-1规划指派问题PPT课件
在0-1规划问题中,遗传算法通过模拟生物进化过程中的基因突变、交叉 和选择等过程来寻找最优解。算法从一个初始种群出发,通过不断迭代 进化,最终找到最优解。
遗传算法的优点是能够处理大规模、复杂的优化问题,且具有较强的鲁 棒性和全局搜索能力。缺点是算法实现较为复杂,需要较高的计算资源 和时间,且在某些情况下可能会陷入局部最优解。
指派问题通常具有整数约束和 0-1约束,即每个工人只能被分 配一项任务,且每个任务只能 由一个工人完成。
指派问题的解通常具有最优子 结构和局部最优解的特性。
变量定义
• $x{ij}$:如果第i个工人被分配第j项任务,则$x{ij}=1$; 否则$x_{ij}=0$。
目标函数
• $min \sum{i=1}^{n} \sum{ j=1}^{n} c{ij} x{ij}$: 最小化总成本。
04
指派问题在0-1规划中的应用
指派问题的定义
• 指派问题是一种组合优化问题,旨在将一组任务分配给一组工 人,使得总成本最小化。每个工人只能完成一项任务,每项任 务只能由一个工人完成。目标是找到一种最优的分配方式,使 得总成本最低。
指派问题的特点
指派问题具有NP难解的特点, 即没有已知的多项式时间算法 来解决该问题。
04
总结词:整数规划
பைடு நூலகம்
案例三:旅行商问题
总结词:旅行商问题
总结词:图论
详细描述:旅行商问题是一个经典的组合优 化问题,涉及到寻找一条最短路径,使得一 个旅行商能够访问一系列城市并返回出发城 市,同时最小化总旅行距离。
详细描述:图论是研究图形和图形结构的数 学分支,提供了解决旅行商问题和其他优化 问题的理论基础。
在0-1规划问题中,分支定界法将问题分解为多个子问题,每个子问题对应一种指派 方案。算法通过不断排除不可能的解来缩小搜索范围,最终找到最优解。

例析0-1整数规划及隐枚举法的应用

例析0-1整数规划及隐枚举法的应用

例析0-1整数规划及隐枚举法的应用自主招生近年来成为各大高校又一招纳人才的举措,面试在自主招生中扮演着越来越重要的角色,考生面试的成绩不容忽视。

因此如何确定面试专家的分配方案,使录取工作真正公平合理的进行,是各大高校积极考虑的问题。

本文通过采用0-1整数规划及隐枚举法建立相关模型,较好地解决了这一问题。

1 预备知识简介1.1 线性规划[1]在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。

此类问题构成了运筹学的一个重要分支——数学规划,而线性规划则是数学规划的一个重要分支。

若在线性规划模型中,变量限制为整数,则为整数线性规划。

0-1整数规划是整数规划中的特殊情形,它的变量仅取0或1。

合理地引用0-1规划能够容易且高效率地求解相关问题。

1.2 隐枚举法[2]隐枚举法是Balas E在1965年提出的,是求解0-1规划问题的一种有效方法。

它只检查一部分变量组合,在这过程中根据已有信息自动舍弃许多不可能成为最优解的组合,求得最优解,从而大大减少了工作量。

隐枚举法只需比较目标函数在小部分组合点上的取值大小,就能求得最优解和最优值。

2 问题描述与建模2.1 问题描述某高校采用通过专家面试的方式进行自主招生,经过初选合格进入面试的考生有N人,拟聘请老师M人进行面试。

每位学生要分别接收“面试组”每位老师的单独面试,每个面试组由4名老师组成。

已知要求面试不同考生的“面试组”成员不能完全相同。

试求在考生数N已知的条件下,聘请老师数M至少应为多大,才能做到任两位学生的“面试组”都没有两位面试老师相同。

2.2 数学建模该问题是一个单目标规划问题,解决的是满足一定约束条件要求,计算在给出一定的学生人数下,所需要教师的最少人数。

根据实际情况分析,一般面试学生的个数要远大于教师的个数。

因为教师人数较少,容易进行分组(即按照约束条件将教师每4人分成一组),满足约束条件的情况下,所能组合的最大组数目即可面试学生的最大人数[3~4]。

第5章 整数-割平面法与0-1整数规划

第5章 整数-割平面法与0-1整数规划

(5 − 8)
2. 相互排斥的约束条件
在本章开始的例1 在本章开始的例1中,关于运货的体积限制为 • (55x1+4x2≤24 (5-9) • 今设运货有车运和船运两种方式,上面的条件系 今设运货有车运和船运两种方式, 用车运时的限制条件, 用车运时的限制条件,如用船运时关于体积的限 制条件为 • 10) 7x1+3x2≤45 (5-10) • 这两条件是互相排斥的。为了统一在一个问题中, 这两条件是互相排斥的。为了统一在一个问题中, 引入0 变量y 引入0-1变量y,令
3 3 1 − x3 + x4 ≤ 0 4 4 4
3 3 1 − x3 + x4 ≤ 0 4 4 4
- 3 x 3 - x 4 ≤ -3 ⑧ 这就得到一个切割方程( 这就得到一个切割方程 ( 或称为切割约 将它作为增加约束条件,再解例3 束),将它作为增加约束条件,再解例3。 • 引入松弛变量x5,得到等式 引入松弛变量x • -3x3-x4+x5=-3 • 将新的约束方程加到表5-2的最终计算表, 将新的约束方程加到表5 的最终计算表, 得表5 得表5-3。
cj CB XB 1 x1 1 x2 0 x3 cj-zj b 1 1 1 2 1 x1 1 0 0 0 1 x2 0 1 0 0 0 x3 0 0 1 0 0 x4 1/3 0 1/3 -1/3 0 x5 -1/12 1/4 -1/3 -1/6
由于 x1、x2 的值已都是整数,解题已完成。
注意: 注意: 新得到的约束条件⑧ 如用x 表示, 新得到的约束条件⑧ -3x3-x4≤-3如用x1、x2表示, 由⑥、⑦式得 3(1+x1-x2)+(4-3x1-x2)≥3 • x2≤1 这就是(x1,x2)平面内形成新 平面内形成新 这就是 平面内 的可行域,即包括平行于x 的可行域,即包括平行于x1 轴的直线x =1和这直线下的 轴的直线x2=1和这直线下的 可行区域,整数点也在其中, 可行区域,整数点也在其中, 没有切割掉。 没有切割掉。直观地表示在 图5 - 7 中。

用Lingo求解整数(0-1)规划模型.

用Lingo求解整数(0-1)规划模型.

Lingo 程序: max=2*x1+5*x2+3*x3+4*x4;
-4*x1+x2+x3+x4>=0; -2*x1+4*x2+2*x3+4*x4>=1; x1+x2-x3+x4>=1; @bin(x1);@bin(x2);@bin(x3);@bin(x4);
温州大学城市学院
例 2 用Lingo软件求解整数规划问题 min z 2 x1 5 x2 3 x3
温州大学城市学院
注意:
Lingo 默认变量的取值从0到正无穷大,
变量定界函数可以改变默认状态.
@free(x): 取消对变量x的限制(即x可取任意实数值)
例 4 求函数 z x 2 y 2 的最小值.
2 2
温州大学城市学院 例 4 求函数 z x 2 y 2 的最小值.
,8
温州大学城市学院
温州大学城市学院
上机作业题
要求:
1、建立数学模型,
2、用lingo循环语句编写程序.
温州大学城市学院
上机作业题
人员安排问题
某城市的巡逻大队要求每天的各个时间段都有一 定数量的警员值班, 以便随时处理突发事件, 每人连续 工作6h, 中间不休息. 如表所示是一天8个班次所需值 班警员的人数情况统计:
成绩 甲 乙 丙 丁 自由泳 / s 56 63 57 55 蛙泳 / s 74 69 77 76 蝶泳 / s 61 65 63 62 仰泳 / s 63 71 67 62
甲, 乙, 丙, 丁 四名队员各自游什么姿势 , 才最有可能取得好成绩?
温州大学城市学院

0-1规划1

0-1规划1

0-1型整数线性规划0-1型整数线性规划是一类变量仅取0或1的特殊的整数规划;一般描述如下⎩⎨⎧===10),,1(..min 或取n i A t s f i x bx cx 其中),,(,)(,),,(),,,(111'=='==⨯m n m ij n n b b a A x x c c b x c 。

此时的决策变量称为0-1变量或二进制变量。

在实际问题中,如果引进0-1变量,就可以把各种需要分别讨论的线性(或非线性)规划问题统一在一个问题中讨论。

13.6.2 求解0-1线性规划的隐牧举法分枝定界法就是一种解整数规划的隐牧举法,0-1规划可以通过增加限定10≤≤i x 的整数规划来求解。

对于n 个变量的0-1规划,如果使用穷举法,则需要检查2n 个取值组合,这显然不是聪明的办法。

这里所说的隐牧举法,是根据0-1规划的特点,设计的一些方法,只检查变量组合的一部分,而不是全部。

值得说明的是,对于有些问题(例如一部分变量是0-1变量的混合线性规划)隐牧举法有时是不适用的,还得使用穷举法。

隐牧举法原理与算法步骤:(ⅰ)记∞=f f 0,将n 个决策变量构成的x 的2n 个取值组合按二进制(或某种顺序)排列;(ⅱ)按上述顺序对x 的取值首先检验0f f cx ≤=是否成立,若不成立则放弃该取值的x ,按次序换(ⅰ)中下一x 的取值重复上述过程;若成立,则转下一步;(ⅲ)对x 逐一检验b x A ≤中的m 个条件是否满足,一旦某一条件不满足便停止检验后面的条件,而放弃这一x 的取值,按次序换(ⅰ)中下一x 的取值执行(ⅱ),若m 个条件全满足,则转下一步;(ⅳ)记),,min(00f f f = 按次序换(ⅰ)中下一x 的取值,执行(ⅱ); (ⅴ)最后一组满足b x cx A f f ≤≤=和0的x 即为最优解。

求解0-1型整数线性规划的MATLAB 程序Ⅰ、转换十进制数为二进制数的程序如下是枚举和隐枚举程序中要调用的把十进制数转换为二进制数的程序。

整数规划与01规划

整数规划与01规划

. y j
1, 0,
采用第 j种方式,即x j 0, 不采用第 j种方式,即x j 0
于是目标函数
min z (k1 y1 c1x1) (k2 y2 c2 x2 ) (k3 y3 c3x3 )
23
0-1型整数规划解法之一(过滤隐枚举法)
解0-1型整数规划最容易想到的方法,和一般整数规 划的情形一样,就是穷举法,即检查变量取值为0或1 的每一种组合,比较目标函数值以求得最优解,这就 需要检查变量取值的2n个组合。对于变量个数n较大 (例如n>10),这几乎是不可能的。因此常设计一些 方法,只检查变量取值的组合的一部分,就能求到问 题的最优解。这样的方法称为隐枚举法(Implicit Enumeration),分枝定界法也是一种隐枚举法。当然, 对有些问题隐枚举法并不适用,所以有时穷举法还是 必要的。
24
例6
Max
z 3x1 2x2 5x3
x1 2x2 x3 2
x1 x1
4x2 x2 , x3 0或1
求解思路及改进措施:
1.
先试探性求一个可行解,易看出
且相应的目标函数值为 z 3
(
x1,
x2
,
x3
)
(1,
0,
0)
满足约束条件,故为一个可行解,
z 为 。
14
小结(续)
z z ii)用观察法找问题A的一个整数可行解,一般可取 xj 0, j 1,L , n 试探,求得其目标函数值,并记作 。以 * 表示问题的最优目标 函数值;这时有 z z* z
其次,进行迭代。
第一步:分枝,在B的最优解中任选一个不符合整数条件的变量xj,其值为bj,以[bj]
表示小于bj的最大整数。构造两个约束条件: x j [bj ] x j [bj ] 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0-1整数规划
整数规划是线性规划的一个特殊情况,其决策变量是整数。

在0-1整数规划中,决策变量只能取0或1的整数值。

0-1整数规划是一类NP-hard问题,通常以优化问题的形式出现。

0-1整数规划在实际生活中有广泛的应用。

它可以用于资源分配、生产计划、物流运输等方面。

下面将通过一个具体的例子来说明0-1整数规划的应用:
假设某公司生产两种产品A和B,分别需要使用两种原材料X和Y。

每个单位的产品A需要消耗1个单位的原材料X和3个单位的原材料Y;每个单位的产品B需要消耗2个单位的原材料X和2个单位的原材料Y。

该公司每天可以获得100
个单位的原材料X和150个单位的原材料Y。

假设产品A的利润为5元,产品B的利润为8元。

问如何安排生产,使得利润最大化。

首先,我们定义决策变量:设产品A的生产数量为x,产品B 的生产数量为y,决策变量为整数。

则可以列出目标函数和约束条件。

目标函数:maximize 5x + 8y
约束条件:
1x + 2y ≤ 100 (原材料X的限制)
3x + 2y ≤ 150 (原材料Y的限制)
x,y为0或1的整数
根据上述目标函数和约束条件,可以构建0-1整数规划模型。

然后,可以使用相应的算法求解该模型,确定最优的生产方案,使得利润最大化。

对于这个例子来说,通过计算可以得到最优解为x=25,y=37,即生产25个单位的产品A和37个单位的产品B时,利润最大,为325元。

总结起来,0-1整数规划是一种重要的优化工具,可以应用于
各种实际问题中。

通过明确决策变量的整数限制,可以获得最优解,实现最大化或最小化的目标。

在实际应用中,需要结合具体问题的特点和约束条件,构建相应的数学模型,并运用适当的算法求解。

这样可以有效地解决实际问题,提高效率和经济效益。

相关文档
最新文档