补课:第一章 常用逻辑用语
高中数学第一章_集合与常用逻辑用语

第一章⎪⎪⎪集合与常用逻辑用语第一节集__合1.集合的相关概念(1)集合元素的三个特性:确定性、无序性、互异性. (2)元素与集合的两种关系:属于,记为∈;不属于,记为∉. (3)集合的三种表示方法:列举法、描述法、图示法. (4)五个特定的集合:集合 自然数集正整数集 整数集 有理数集实数集 符号NN *或N +ZQR2.集合间的基本关系表示关系文字语言符号语言 记法基本关系子集集合A 的元素都是集合B 的元素x ∈A ⇒x ∈B A ⊆B 或B ⊇A真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不属于AA ⊆B ,且存在x 0∈B ,x 0∉A A B 或B A相等 集合A ,B 的元素完全相同 A ⊆B ,B ⊆A A =B 空集不含任何元素的集合.空集是任何集合A 的子集任意的x ,x ∉∅,∅⊆A∅3.集合的基本运算表示 运算 文字语言符号语言 图形语言 记法交集属于集合A 且属于集合B 的元素组成的集合{x |x ∈A ,且x ∈B }A ∩B并集属于集合A 或属于集合B 的元素组成的集合{x |x ∈A ,或x ∈B }A ∪B补集全集U 中不属于集合A 的元{x |x ∈U ,且x ∉A }∁U A素组成的集合4.集合问题中的几个基本结论 (1)集合A 是其本身的子集,即A ⊆A ;(2)子集关系的传递性,即A ⊆B ,B ⊆C ⇒A ⊆C ;(3)A ∪A =A ∩A =A ,A ∪∅=A ,A ∩∅=∅,∁U U =∅,∁U ∅=U . (4)A ∩B =A ⇒A ⊆B ,A ∪B =B ⇒A ⊆B . [小题体验]1.已知集合A ={1,2},B ={x |0<x <5,x ∈N },则满足A ⊆C ⊆B 的集合C 的个数为( ) A .1 B .2 C .3 D .4答案:D2.已知集合A ={1,2,3},B ={2,4,5},则集合A ∪B 中元素的个数为________. 答案:53.(2018·江苏高考)已知集合A ={0,1,2,8},B ={-1,1,6,8},那么A ∩B =________. 解析:A ∩B ={0,1,2,8}∩{-1,1,6,8}={1,8}. 答案:{1,8}1.认清集合元素的属性(是点集、数集或其他情形)和化简集合是正确求解集合问题的两个先决条件. 2.解题时注意区分两大关系:一是元素与集合的从属关系;二是集合与集合的包含关系. 3.易忘空集的特殊性,在写集合的子集时不要忘了空集和它本身. 4.运用数轴图示法易忽视端点是实心还是空心.5.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.[小题纠偏]1.(2019·浙江名校联考)已知∁R M ={x |ln|x |>1},N =⎩⎨⎧⎭⎬⎫y ⎪⎪y =1x ,x >0,则M ∪N =( ) A .(0,e] B .[-e ,+∞) C .(-∞,-e]∪(0,+∞)D .[-e ,e]解析:选B 由ln|x |>1得|x |>e ,∴M =[-e ,e].N =(0,+∞),∴M ∪N =[-e ,+∞).故选B. 2.若集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},且B ⊆A ,则由m 的可能取值组成的集合为________.解析:当m +1>2m -1,即m <2时,B =∅,满足B ⊆A ;若B ≠∅,且满足B ⊆A ,如图所示,则⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5,即⎩⎪⎨⎪⎧m ≥2,m ≥-3,m ≤3,所以2≤m ≤3.故m <2或2≤m ≤3,即所求集合为{m |m ≤3}.答案:{m |m ≤3}3.已知集合A ={0, x +1,x 2-5x },若-4∈A ,则实数x 的值为________. 解析:∵-4∈A ,∴x +1=-4或x 2-5x =-4. ∴x =-5或x =1或x =4.若x =1,则A ={0, 2,-4},满足条件; 若x =4,则A ={0, 5,-4},满足条件; 若x =-5,则A ={0,-4,50},满足条件. 所以x =1或x =4或-5. 答案:1或4或-5考点一 集合的基本概念(基础送分型考点——自主练透)[题组练透]1.下列命题正确的有( ) ①很小的实数可以构成集合;②(易错题)集合{}y |y =x 2-1与集合{(x ,y )|y =x 2-1}是同一个集合; ③1,32,64,⎪⎪⎪⎪-12,0.5这些数组成的集合有5个元素; ④集合{(x ,y )|xy ≤0,x ,y ∈R }是指第二和第四象限内的点集. A .0个 B .1个 C .2个D .3个解析:选A 由题意得,①不满足集合的确定性,故错误;②两个集合,一个是数集,一个是点集,故错误;③中⎪⎪⎪⎪-12=0.5,出现了重复,不满足集合的互异性,故错误;④不仅仅表示的是第二、四象限的点,还可表示原点,故错误.综上,没有正确命题,故选A.2.已知a >0,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,4,b a ={a -b,0,a 2},则a 2+b 2的值为( )A .2B .4C .6D .8解析:选B 由已知得a ≠0,则ba =0,所以b =0,于是a 2=4,即a =2或a =-2,因为a >0,所以a =2,故a 2+b 2=22+02=4.3.若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a 等于( ) A.92 B.98C .0D .0或98解析:选D 若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根.当a =0时,x =23,符合题意.当a ≠0时,由Δ=(-3)2-8a =0,得a =98,所以a 的值为0或98.4.(易错题)(2019·江西重点中学协作体联考)设集合A ={1,2,3},B ={2,3,4} ,M ={x |x =ab ,a ∈A ,b ∈B },则M 中的元素个数为________.解析:结合题意列表计算M 中所有可能的值如下:观察可得:M ={2,3,4,6,8,9,12},据此可知M 中的元素个数为7. 答案:7[谨记通法]与集合中的元素有关问题的求解策略(1)确定集合的元素是什么,即集合是数集还是点集. (2)看这些元素满足什么限制条件.(3)根据限制条件列式求参数的值或确定集合中元素的个数,但要注意检验集合是否满足元素的互异性. 考点二 集合间的基本关系(重点保分型考点——师生共研)[典例引领]1.已知集合M ={1,2,3,4},则集合P ={x |x ∈M 且2x ∉M }的子集有( ) A .8个 B .4个 C .3个D .2个解析:选B 由题意,得P ={3,4},所以集合P 的子集有22=4个. 2.已知集合A ={x |x 2+x -2=0},B ={x |ax =1},若B ⊆A ,则a =( ) A .-12或1B .2或-1C .-2或1或0D .-12或1或0解析:选D 集合A ={x |x 2+x -2=0}={-2,1}.当x =-2时,-2a =1,解得a =-12;当x =1时,a =1;又因为B 是空集时也符合题意,这时a =0,故选D.[由题悟法]集合间基本关系的两种判定方法和一个关键[即时应用]1.集合{a ,b ,c ,d ,e }的真子集的个数为( ) A .32 B .31 C .30D .29解析:选B 因为集合有5个元素,所以其子集的个数为25=32个,其真子集的个数为25-1=31个. 2.已知集合A ={x |-1<x <3},B ={x |-m <x <m },若B ⊆A ,则m 的取值范围为________. 解析:当m ≤0时,B =∅,显然B ⊆A . 当m >0时, ∵A ={x |-1<x <3}.当B ⊆A 时,在数轴上标出两集合,如图,∴⎩⎪⎨⎪⎧-m ≥-1,m ≤3,-m <m .∴0<m ≤1.综上所述m 的取值范围为(-∞,1]. 答案:(-∞,1]考点三 集合的基本运算(题点多变型考点——多角探明) [锁定考向]集合运算多与解简单的不等式、函数的定义域、值域相联系,考查对集合的理解及不等式的有关知识;有些集合题为抽象集合题或新定义型集合题,考查学生的灵活处理问题的能力.常见的命题角度有: (1)集合的运算;(2)利用集合运算求参数; (3)新定义集合问题.[题点全练]角度一:集合的运算1.(2018·北京高考)已知集合A ={x ||x |<2},B ={-2,0,1,2},则A ∩B =( ) A .{0,1} B .{-1,0,1} C .{-2,0,1,2}D .{-1,0,1,2}解析:选A ∵A ={x ||x |<2}={x |-2<x <2},B={-2,0,1,2},∴A∩B={0,1}.故选A.2.(2018·全国卷Ⅰ)已知集合A={x|x2-x-2>0},则∁R A=()A.{x|-1<x<2} B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2} D.{x|x≤-1}∪{x|x≥2}解析:选B∵x2-x-2>0,∴(x-2)(x+1)>0,∴x>2或x<-1,即A={x|x>2或x<-1}.则∁R A={x|-1≤x≤2}.故选B.角度二:利用集合运算求参数3.(2019·浙江联盟校联考)已知集合P={x|-1<x<1},Q={x|0<x<a},若P∪Q={x|-1<x<2},则实数a的值为()A.1 B.2C.12D.32解析:选B因为P={x|-1<x<1},Q={x|0<x<a},所以当a≤1时,P∪Q={x|-1<x<1},不符合题意;当a>1时,P∪Q={x|-1<x<a},结合P∪Q={x|-1<x<2},可得a=2.角度三:新定义集合问题4.如果集合A,B,同时满足A∪B={1,2,3,4},A∩B={1},A≠{1},B≠{1},就称有序集对(A,B)为“好集对”.这里有序集对(A,B)是指当A≠B时,(A,B)和(B,A)是不同的集对,那么“好集对”一共有()个()A.5个B.6个C.7个D.8个解析:选B因为A∪B={1,2,3,4},A∩B={1},A≠{1},B≠{1},所以当A={1,2}时,B={1,3,4};当A={1,3}时,B={1,2,4};当A={1,4}时,B={1,2,3};当A={1,2,3}时,B={1,4};当A={1,2,4}时,B={1,3};当A={1,3,4}时,B={1,2}.所以满足条件的“好集对”一共有6个,故选B.[通法在握]解集合运算问题4个技巧[演练冲关]1.(2019·浙江十校联盟适考)已知集合A={x|1<x<4},B={x∈Z|x2-6x<0},则(∁R A)∩B=() A.{1,4} B.{4,5}C.{1,4,5} D.{2,3}解析:选C法一:由x2-6x<0可得0<x<6,所以B={1,2,3,4,5},又∁R A={x|x≤1或x≥4},所以(∁R A)∩B={1,4,5}.法二:因为求的是(∁R A)∩B,故排除D,又1,5∈∁R A,1,5∈B,故选C.2.(2019·长沙模拟)已知集合A={1,2,3},B={x|x2-3x+a=0,a∈A},若A∩B≠∅,则a的值为() A.1 B.2C.3 D.1或2解析:选B当a=1时,x2-3x+1=0,无整数解,则A∩B=∅;当a=2时,B={1,2},A∩B={1,2}≠∅;当a=3时,B=∅,A∩B=∅.因此实数a=2.3.(2019·杭州高三四校联考)设集合A={x|(x-3)(x-a)=0,a∈R},B={x|(x-1)(x-4)=0},则A∪B 的子集个数最多为()A.2 B.4C.8 D.16解析:选D由题意可知,要使A∪B的子集个数最多,则需A∪B中的元素个数最多,此时a≠1,a≠3,且a≠4,即集合A={3,a},B={1,4},A∪B={1,3,4,a},故A∪B的子集最多有24=16个.4.如图所示的Venn图中,A,B是非空集合,定义集合A B为阴影部分表示的集合.若x,y∈R,A={x|y=2x-x2},B={y|y=3x,x>0},则A B为()A.{x|0<x<2} B.{x|1<x≤2}C.{x|0≤x≤1或x≥2} D.{x|0≤x≤1或x>2}解析:选D因为A={x|0≤x≤2},B={y|y>1},A∪B={x|x≥0},A∩B={x|1<x≤2},所以A B =∁A∪B(A∩B)={x|0≤x≤1或x>2},故选D.一抓基础,多练小题做到眼疾手快1.(2019·浙江考前热身联考)已知集合M={x|y=2x-x2},N={x|-1<x<1},则M∪N=() A.[0,1)B.(-1,2)C.(-1,2] D.(-∞,0]∪(1,+∞)解析:选C法一:易知M={x|0≤x≤2},又N={x|-1<x<1},所以M∪N=(-1,2].故选C.法二:取x=2,则2∈M,所以2∈M∪N,排除A、B;取x=3,则3∉M,3∉N,所以3∉M∪N,排除D,故选C.2.(2019·浙江三地联考)已知集合P={x|||x<2},Q={x|-1≤x≤3},则P∩Q=()A.[-1,2) B.(-2,2)C.(-2,3] D.[-1,3]解析:选A由|x|<2,可得-2<x<2,所以P={x|-2<x<2},所以P∩Q=[-1,2).3.(2018·嘉兴期末测试)已知集合P={x|x<1},Q={x|x>0},则()A.P⊆Q B.Q⊆PC.P⊆∁R Q D.∁R P⊆Q解析:选D由已知可得∁R P=[1,+∞),所以∁R P⊆Q.故选D.4.(2018·浙江吴越联盟第二次联考)已知集合M={0,1,2,3,4},N={2,4,6},P=M∩N,则P的子集有________个.解析:集合M={0,1,2,3,4},N={2,4,6},P=M∩N={2,4},则P的子集有∅,{2},{4},{2,4},共4个.答案:45.已知集合A={x|x≥3},B={x|x≥m},且A∪B=A,则实数m的取值范围是________.解析:因为集合A={x|x≥3},B={x|x≥m},且A∪B=A,所以B⊆A,如图所示,所以m≥3.答案:[3,+∞)二保高考,全练题型做到高考达标1.(2019·杭州七校联考)已知集合A={x|x2>1},B={x|(x2-1)(x2-4)=0},则集合A∩B中的元素个数为()A.1 B.2C.3 D.4解析:选B A={x|x<-1或x>1},B={-2,-1,1,2},A∩B={-2,2},故选B.2.(2019·浙江六校联考)已知集合U={x|y=3x},A={x|y=log9x},B={y|y=-2x}则A∩(∁U B)=()A.∅B.RC.{x|x>0} D.{0}解析:选C由题意得,U=R,A={x|x>0},因为y=-2x<0,所以B={y|y<0},所以∁U B={x|x≥0},故A∩(∁U B)={x|x>0}.故选C.3.(2019·永康模拟)设集合M={x|x2-2x-3≥0},N={x|-3<x<3},则()A.M⊆N B.N⊆MC.M∪N=R D.M∩N=∅解析:选C由x2-2x-3≥0,解得x≥3或x≤-1,所以M={x|x≤-1或x≥3},所以M∪N=R.4.(2019·宁波六校联考)已知集合A={x|x2-3x<0},B={1,a},且A∩B有4个子集,则实数a的取值范围是()A.(0,3) B.(0,1)∪(1,3)C.(0,1) D.(-∞,1)∪(3,+∞)解析:选B∵A∩B有4个子集,∴A∩B中有2个不同的元素,∴a∈A,∴a2-3a<0,解得0<a <3且a≠1,即实数a的取值范围是(0,1)∪(1,3),故选B.5.(2018·镇海中学期中)若集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪y =lg2-xx ,N ={x |x <1},则M ∪N =( ) A .(0,1) B .(0,2) C .(-∞,2)D .(0,+∞)解析:选C 集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪y =lg2-xx ={x |0<x <2},N ={x |x <1}.M ∪N ={x |x <2}=(-∞,2).故选C.6.设集合A ={x |x 2-x -2≤0},B ={x |x <1,且x ∈Z },则A ∩B =________.解析:依题意得A ={x |(x +1)(x -2)≤0}={x |-1≤x ≤2},因此A ∩B ={x |-1≤x <1,x ∈Z }={-1,0}. 答案:{-1,0}7.(2018·嘉兴二模)已知集合A ={x |-1≤x ≤2},B ={x |x 2-4x ≤0},则A ∪B =________,A ∩(∁R B )=________.解析:因为B ={x |x 2-4x ≤0}={x |0≤x ≤4},所以A ∪B ={x |-1≤x ≤4};因为∁R B ={x |x <0或x >4},所以A ∩(∁R B )={x |-1≤x <0}.答案:{x |-1≤x ≤4} {x |-1≤x <0}8.设集合A ={(x ,y )|y ≥|x -2|,x ≥0},B ={(x ,y )|y ≤-x +b },A ∩B ≠∅. (1)b 的取值范围是________;(2)若(x ,y )∈A ∩B ,且x +2y 的最大值为9,则b 的值是________. 解析:由图可知,当y =-x 往右移动到阴影区域时,才满足条件,所以b ≥2;要使z =x +2y 取得最大值,则过点(0,b ),有0+2b =9⇒b =92.答案:(1)[2,+∞) (2)929.已知集合A ={x |4≤2x ≤16},B =[a ,b ],若A ⊆B ,则实数a -b 的取值范围是________. 解析:集合A ={x |4≤2x ≤16}={x |22≤2x ≤24}={x |2≤x ≤4}=[2,4],因为A ⊆B ,所以a ≤2,b ≥4,所以a -b ≤2-4=-2,即实数a -b 的取值范围是(-∞,-2].答案:(-∞,-2]10.已知集合A ={x |(x +2m )(x -m +4)<0},其中m ∈R ,集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1-x x +2>0. (1)若B ⊆A ,求实数m 的取值范围; (2)若A ∩B =∅,求实数m 的取值范围. 解:(1)集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1-x x +2>0={x |-2<x <1}.当A =∅时,m =43,不符合题意.当A ≠∅时,m ≠43.①当-2m <m -4,即m >43时,A ={x |-2m <x <m -4},又因为B ⊆A ,所以⎩⎪⎨⎪⎧ m >43,-2m ≤-2,m -4≥1,即⎩⎪⎨⎪⎧m >43,m ≥1,m ≥5,所以m ≥5.②当-2m >m -4,即m <43时,A ={x |m -4<x <-2m },又因为B ⊆A ,所以⎩⎪⎨⎪⎧m <43,-2m ≥1,m -4≤-2,即⎩⎪⎨⎪⎧m <43,m ≤-12,m ≤2,所以m ≤-12.综上所述,实数m 的取值范围为⎝⎛⎦⎤-∞,-12∪[5,+∞). (2)由(1)知,B ={x |-2<x <1}. 当A =∅时,m =43,符合题意.当A ≠∅时,m ≠43.①当-2m <m -4,即m >43时,A ={x |-2m <x <m -4},又因为A ∩B =∅,所以-2m ≥1或者m -4≤-2, 即m ≤-12或者m ≤2,所以43<m ≤2.②当-2m >m -4,即m <43时,A ={x |m -4<x <-2m },又因为A ∩B =∅,所以m -4≥1或者-2m ≤-2, 即m ≥5或者m ≥1,所以1≤m <43.综上所述,实数m 的取值范围为[1,2]. 三上台阶,自主选做志在冲刺名校1.对于复数a ,b ,c ,d ,若集合S ={a ,b ,c ,d }具有性质“对任意x ,y ∈S ,必有xy ∈S ”,则当⎩⎪⎨⎪⎧a =1,b 2=1,c 2=b 时,b +c +d 等于( )A .1B .-1C .0D .i解析:选B ∵S ={a ,b ,c ,d },由集合中元素的互异性可知当a =1时,b =-1,c 2=-1,∴c =±i ,由“对任意x ,y ∈S ,必有xy ∈S ”知±i ∈S ,∴c =i ,d =-i 或c =-i ,d =i ,∴b +c +d =(-1)+0=-1.2.对于集合M ,N ,定义M -N ={x |x ∈M ,且x ∉N },M ⊕N =(M -N )∪(N -M ),设A =⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥-94,x ∈R ,B ={x |x <0,x ∈R },则A ⊕B =( )A.⎝⎛⎭⎫-94,0B.⎣⎡⎭⎫-94,0 C.⎝⎛⎭⎫-∞,-94∪[0,+∞) D.⎝⎛⎦⎤-∞,-94∪(0,+∞) 解析:选C 依题意得A -B ={x |x ≥0,x ∈R },B -A =⎩⎨⎧x ⎪⎪⎭⎬⎫x <-94,x ∈R ,故A ⊕B =⎝⎛⎭⎫-∞,-94∪[0,+∞).故选C.3.已知函数f (x )=x -3-17-x的定义域为集合A ,且B ={x ∈Z |2<x <10},C ={x ∈R |x <a 或x >a +1}.(1)求:A 和(∁R A )∩B ;(2)若A ∪C =R ,求实数a 的取值范围. 解:(1)要使函数f (x )=x -3-17-x, 应满足x -3≥0,且7-x >0,解得3≤x <7, 则A ={x |3≤x <7}, 得到∁R A ={x |x <3或x ≥7},而B ={x ∈Z |2<x <10}={3,4,5,6,7,8,9}, 所以(∁R A )∩B ={7,8,9}.(2)C ={x ∈R |x <a 或x >a +1},要使A ∪C =R , 则有a ≥3,且a +1<7,解得3≤a <6. 故实数a 的取值范围为[3,6).第二节命题及其关系、充分条件与必要条件1.命题概念 使用语言、符号或者式子表达的,可以判断真假的陈述句特点 (1)能判断真假;(2)陈述句分类真命题、假命题2.四种命题及其相互关系 (1)四种命题间的相互关系:(2)四种命题中真假性的等价关系:原命题等价于逆否命题,原命题的否命题等价于逆命题.在四种形式的命题中真命题的个数只能是0,2,4.3.充要条件若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 成立的对象的集合为A ,q 成立的对象的集合为B p 是q 的充分不必要条件 p ⇒q 且q ⇒/p A 是B 的真子集 集合与充要条件p 是q 的必要不充分条件p ⇒/ q 且q ⇒pB 是A 的真子集p 是q 的充要条件 p ⇔q A =B p 是q 的既不充分也不必要条件 p ⇒/ q 且q ⇒/pA ,B 互不包含[小题体验]1.下列命题是真命题的是( )A .若log 2a >0,则函数f (x )=log a x (a >0,a ≠1)在其定义域上是减函数B .命题“若xy =0,则x =0”的否命题C .“m =3”是“直线(m +3)x +my -2=0与mx -6y +5=0垂直”的充要条件D .命题“若cos x =cos y ,则x =y ”的逆否命题 答案:B2.(2019·温州高考适应性测试)已知α,β∈R ,则“α>β”是“cos α>cos β ”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件解析:选D α>β ⇒/ cos α>cos β,如α=π3,β=π6,π3>π6,而cos π3<cos π6;cos α>cos β ⇒/ α>β,如α=π6,β=π3,cos π6>cos π3,而π6<π3.故选D.3.设a ,b 是向量,则命题“若a =-b ,则|a |=| b |”的逆否命题为:________. 答案:若|a |≠|b |,则a ≠-b1.易混淆否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.2.易忽视A 是B 的充分不必要条件(A ⇒B 且B ⇒/A )与A 的充分不必要条件是B (B ⇒A 且A ⇒/B )两者的不同.[小题纠偏]1.(2019·杭州模拟)“x<0”是“ln(x+1)<0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:B2.“在△ABC中,若∠C=90°,则∠A,∠B都是锐角”的否命题为:________________.解析:原命题的条件:在△ABC中,∠C=90°,结论:∠A,∠B都是锐角.否命题是否定条件和结论.即“在△ABC中,若∠C≠90°,则∠A,∠B不都是锐角”.答案:在△ABC中,若∠C≠90°,则∠A,∠B不都是锐角考点一四种命题及其相互关系(基础送分型考点——自主练透)[题组练透]1.命题“若a2>b2,则a>b”的否命题是()A.若a2>b2,则a≤b B.若a2≤b2,则a≤bC.若a≤b,则a2>b2D.若a≤b,则a2≤b2解析:选B根据命题的四种形式可知,命题“若p,则q”的否命题是“若綈p,则綈q”.该题中,p为a2>b2,q为a>b,故綈p为a2≤b2,綈q为a≤b.所以原命题的否命题为:若a2≤b2,则a≤b.2.命题“若x2-3x-4=0,则x=4”的逆否命题及其真假性为()A.“若x=4,则x2-3x-4=0”为真命题B.“若x≠4,则x2-3x-4≠0”为真命题C.“若x≠4,则x2-3x-4≠0”为假命题D.“若x=4,则x2-3x-4=0”为假命题解析:选C根据逆否命题的定义可以排除A,D,因为x2-3x-4=0,所以x=4或-1,故原命题为假命题,即逆否命题为假命题.3.给出以下四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②(易错题)“全等三角形的面积相等”的否命题;③“若q≤-1,则x2+x+q=0有实根”的逆否命题;④若ab是正整数,则a,b都是正整数.其中真命题是________.(写出所有真命题的序号)解析:①命题“若x+y=0,则x,y互为相反数”的逆命题为“若x,y互为相反数,则x+y=0”,显然①为真命题;②不全等的三角形的面积也可能相等,故②为假命题;③原命题正确,所以它的逆否命题也正确,故③为真命题;④若ab是正整数,但a,b不一定都是正整数,例如a=-1,b=-3,故④为假命题.答案:①③[谨记通法]1.写一个命题的其他三种命题时的2个注意点(1)对于不是“若p,则q”形式的命题,需先改写;(2)若命题有大前提,写其他三种命题时需保留大前提.2.命题真假的2种判断方法(1)联系已有的数学公式、定理、结论进行正面直接判断.(2)利用原命题与逆否命题,逆命题与否命题的等价关系进行判断.考点二充分必要条件的判定(重点保分型考点——师生共研)[典例引领]1.(2019·杭州高三四校联考)“a>-1”是“x2+ax+14>0(x∈R)”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析:选A若x2+ax+14>0(x∈R),则a2-1<0,即-1<a<1,所以“a>-1”是“x2+ax+14>0(x∈R)”的必要不充分条件.故选A.2.(2019·杭州高三质检)设数列{a n}的通项公式为a n=kn+2(n∈N*),则“k>2”是“数列{a n}为单调递增数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A法一:因为a n=kn+2(n∈N*),所以当k>2时,a n+1-a n=k>2,则数列{a n}为单调递增数列.若数列{a n}为单调递增数列,则a n+1-a n=k>0即可,所以“k>2”是“数列{a n}为单调递增数列”的充分不必要条件,故选A.法二:根据一次函数y=kx+b的单调性知,“数列{a n}为单调递增数列”的充要条件是“k>0”,所以“k>2”是“数列{a n}为单调递增数列”的充分不必要条件,故选A.[由题悟法]充要条件的3种判断方法(1)定义法:根据p⇒q,q⇒p进行判断;(2)集合法:根据p,q成立的对象的集合之间的包含关系进行判断;(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy ≠1”是“x ≠1或y ≠1”的某种条件,即可转化为判断“x =1且y =1”是“xy =1”的某种条件.[即时应用]1.设a >0,b >0,则“a 2+b 2≥1”是“a +b ≥ab +1”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 因为a >0,b >0,所以a +b >0,ab +1>0,故不等式a +b ≥ab +1成立的充要条件是(ab +1)2≤(a +b )2,即a 2+b 2≥a 2b 2+1.显然,若a 2+b 2≥a 2b 2+1,则必有a 2+b 2≥1,反之则不成立,所以a 2+b 2≥1是a 2+b 2≥a 2b 2+1成立的必要不充分条件,即a 2+b 2≥1是a +b ≥ab +1成立的必要不充分条件.2.(2019·浙江期初联考)若a ,b ∈R ,使|a |+|b |>4成立的一个充分不必要条件是( ) A .|a +b |≥4 B .|a |≥4 C .|a |≥2且|b |≥2D .b <-4解析:选D 对选项A ,若a =b =2,则|a |+|b |=2+2≥4,不能推出|a |+|b |>4;对选项B ,若a =4≥4,b =0,此时不能推出|a |+|b |>4;对选项C ,若a =2≥2,b =2≥2,此时不能推出|a |+|b |>4;对选项D ,由b <-4可得|a |+|b |>4,但由|a |+|b |>4得不到b <-4.故选D.3.(2019·宁波模拟)已知四边形ABCD 为梯形,AB ∥CD ,l 为空间一直线,则“l 垂直于两腰AD ,BC ”是“l 垂直于两底AB ,DC ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 因为四边形ABCD 是梯形,且AB ∥CD ,所以腰AD ,BC 是交线,由直线与平面垂直的判定定理可知,当l 垂直于两腰AD ,BC 时,l 垂直于ABCD 所在平面,所以l 垂直于两底AB ,CD ,所以是充分条件;当l 垂直于两底AB ,CD ,由于AB ∥CD ,所以l 不一定垂直于ABCD 所在平面,所以l 不一定垂直于两腰AD ,BC ,所以不是必要条件.所以是充分不必要条件.考点三 充分必要条件的应用(重点保分型考点——师生共研)[典例引领]若不等式x -m +1x -2m<0成立的一个充分不必要条件是13<x <12,则实数m 的取值范围是______________.解析:令A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -m +1x -2m <0,B =⎩⎨⎧⎭⎬⎫x ⎪⎪13<x <12. 因为不等式x -m +1x -2m <0成立的充分不必要条件是13<x <12,所以B ⊆A .①当m -1<2m ,即m >-1时,A ={x |m -1<x <2m }.由B ⊆A 得⎩⎪⎨⎪⎧ m -1≤13,2m ≥12,m >-1,解得14≤m ≤43;②当m -1=2m ,即m =-1时,A =∅,不满足B ⊆A ; ③当m -1>2m ,即m <-1时,A ={x |2m <x <m -1}. 由B ⊆A 得⎩⎪⎨⎪⎧2m ≤13,m -1≥12,m <-1,此时m 无解.综上,m 的取值范围为⎣⎡⎦⎤14,43. 答案:⎣⎡⎦⎤14,43[由题悟法]根据充要条件求参数的值或取值范围的关键点(1)先合理转化条件,常通过有关性质、定理、图象将恒成立问题和有解问题转化为最值问题等,得到关于参数的方程或不等式(组),再通过解方程或不等式(组)求出参数的值或取值范围.(2)求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.[即时应用]1.(2019·杭州名校大联考)已知条件p :|x +1|>2,条件q :x >a ,且綈p 是綈q 的充分不必要条件,则实数a 的取值范围是( )A .[1,+∞)B .(-∞,1]C .[-3,+∞)D .(-∞,-3]解析:选A 由|x +1|>2,可得x >1或x <-3,所以綈p :-3≤x ≤1;又綈q :x ≤a .因为綈p 是綈q 的充分不必要条件,所以a ≥1.2.已知“命题p :(x -m )2>3(x -m )”是“命题q :x 2+3x -4<0”成立的必要不充分条件,则实数m 的取值范围为________________.解析:命题p :x >m +3或x <m , 命题q :-4<x <1.因为p 是q 成立的必要不充分条件, 所以m +3≤-4或m ≥1, 故m ≤-7或m ≥1.答案:(-∞,-7]∪[1,+∞)一抓基础,多练小题做到眼疾手快 1.“(2x -1)x =0”是“x =0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 若(2x -1)x =0,则x =12或x =0,即不一定是x =0;若x =0,则一定能推出(2x -1)x =0.故“(2x -1)x =0”是“x =0”的必要不充分条件.2.设a ,b ∈R ,则“a 3>b 3且ab <0”是“1a >1b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 由a 3>b 3,知a >b ,由ab <0,知a >0>b ,所以此时有1a >1b ,故充分性成立;当1a >1b 时,若a ,b 同号,则a <b ,若a ,b 异号,则a >b ,所以必要性不成立.故选A. 3.设φ∈R ,则“φ=0”是“f (x )=cos(x +φ)(x ∈R )为偶函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 若φ=0,则f (x )=cos x 为偶函数;若f (x )=cos(x +φ)(x ∈R )为偶函数,则φ=k π(k ∈Z ).故“φ=0”是“f (x )=cos(x +φ)(x ∈R )为偶函数”的充分不必要条件.4.命题p :“若x 2<1,则x <1”的逆命题为q ,则p 与q 的真假性为( ) A .p 真q 真 B .p 真q 假 C .p 假q 真D .p 假q 假解析:选B q :若x <1,则x 2<1. ∵p :x 2<1,则-1<x <1.∴p 真,当x <1时,x 2<1不一定成立,∴q 假,故选B.5.若x >5是x >a 的充分条件,则实数a 的取值范围为( ) A .(5,+∞) B .[5,+∞) C .(-∞,5)D .(-∞,5] 解析:选D 由x >5是x >a 的充分条件知,{x |x >5}⊆{x |x >a },∴a ≤5,故选D. 二保高考,全练题型做到高考达标1.命题“若一个数是负数,则它的平方是正数”的逆命题是( ) A .“若一个数是负数,则它的平方不是正数” B .“若一个数的平方是正数,则它是负数” C .“若一个数不是负数,则它的平方不是正数” D .“若一个数的平方不是正数,则它不是负数”解析:选B 依题意得,原命题的逆命题是“若一个数的平方是正数,则它是负数”.2.命题“对任意实数x ∈[1,2],关于x 的不等式x 2-a ≤0恒成立”为真命题的一个必要不充分条件是( )A .a ≥4B .a ≤4C .a ≥3D .a ≤3解析:选C 即由“对任意实数x ∈[1,2],关于x 的不等式x 2-a ≤0恒成立”可推出选项,但由选项推不出“对任意实数x ∈[1,2],关于x 的不等式x 2-a ≤0恒成立”.因为x ∈[1,2],所以x 2∈[1,4],x 2-a ≤0恒成立,即x 2≤a ,因此a ≥4;反之亦然.故选C.3.有下列命题:①“若x +y >0,则x >0且y >0”的否命题; ②“矩形的对角线相等”的否命题;③“若m ≥1,则mx 2-2(m +1)x +m +3>0的解集是R ”的逆命题; ④“若a +7是无理数,则a 是无理数”的逆否命题. 其中正确的是( ) A .①②③ B .②③④ C .①③④D .①④解析:选C ①的逆命题为“若x >0且y >0,则x +y >0”为真,故否命题为真; ②的否命题为“不是矩形的图形对角线不相等”,为假命题; ③的逆命题为,若mx 2-2(m +1)x +m +3>0的解集为R ,则m ≥1. ∵当m =0时,解集不是R ,∴应有⎩⎪⎨⎪⎧m >0,Δ<0, 即m >1.∴③是真命题;④原命题为真,逆否命题也为真.4.(2019·浙江名校联考信息卷)已知直线l 的斜率为k ,倾斜角为θ,则“0<θ≤π4”是“k ≤1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 当0<θ≤π4时,0<k ≤1;反之,当k ≤1时,0≤θ≤π4或π2<θ<π.故“0<θ≤π4”是“k ≤1”的充分不必要条件,故选A.5.命题“对任意x ∈[1,2),x 2-a ≤0”为真命题的一个充分不必要条件可以是( ) A .a ≥4 B .a >4 C .a ≥1D .a >1解析:选B 要使“对任意x ∈[1,2),x 2-a ≤0”为真命题,只需要a ≥4,∴a >4是命题为真的充分不必要条件.6.命题“若a >b ,则ac 2>bc 2(a ,b ∈R )”,否命题的真假性为________.解析:命题的否命题为“若a ≤b ,则ac 2≤bc 2”. 若c =0,结论成立.若c ≠0,不等式ac 2≤bc 2也成立. 故否命题为真命题. 答案:真 7.下列命题:①“a >b ”是“a 2>b 2”的必要条件;②“|a |>|b |”是“a 2>b 2”的充要条件;③“a >b ”是“a +c >b +c ”的充要条件.其中是真命题的是________(填序号).解析:①a >b ⇒/ a 2>b 2,且a 2>b 2⇒/ a >b ,故①不正确; ②a 2>b 2⇔|a |>|b |,故②正确;③a >b ⇒a +c >b +c ,且a +c >b +c ⇒a >b ,故③正确. 答案:②③8.已知α,β∈(0,π),则“sin α+sin β<13”是“sin(α+β)<13”的________条件.解析:因为sin(α+β)=sin αcos β+cos αsin β<sin α+sin β,所以若sin α+sin β<13,则有sin(α+β)<13,故充分性成立;当α=β=π2时,有sin(α+β)=sin π=0<13,而sin α+sin β=1+1=2,不满足sin α+sin β<13,故必要性不成立.所以“sin α+sin β<13”是“sin(α+β)<13”的充分不必要条件.答案:充分不必要 9.已知p :实数m 满足m 2+12a 2<7am (a >0),q :方程x 2m -1+y 22-m=1表示焦点在y 轴上的椭圆.若p 是q 的充分不必要条件,则a 的取值范围是________.解析:由a >0,m 2-7am +12a 2<0,得3a <m <4a ,即p :3a <m <4a ,a >0.由方程x 2m -1+y 22-m=1表示焦点在y 轴上的椭圆,可得2-m >m -1>0,解得1<m <32,即q :1<m <32.因为p 是q 的充分不必要条件,所以⎩⎪⎨⎪⎧ 3a >1,4a ≤32或⎩⎪⎨⎪⎧3a ≥1,4a <32,解得13≤a ≤38,所以实数a 的取值范围是⎣⎡⎦⎤13,38. 答案:⎣⎡⎦⎤13,3810.已知集合A =⎩⎨⎧⎭⎬⎫y ⎪⎪y =x 2-32x +1,x ∈⎣⎡⎦⎤34,2,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解:y =x 2-32x +1=⎝⎛⎭⎫x -342+716,∵x ∈⎣⎡⎦⎤34,2, ∴716≤y ≤2, ∴A =⎩⎨⎧⎭⎬⎫y ⎪⎪716≤y ≤2. 由x +m 2≥1,得x ≥1-m 2, ∴B ={x |x ≥1-m 2}.∵“x ∈A ”是“x ∈B ”的充分条件, ∴A ⊆B ,∴1-m 2≤716, 解得m ≥34或m ≤-34,故实数m 的取值范围是⎝⎛⎦⎤-∞,-34∪⎣⎡⎭⎫34,+∞. 三上台阶,自主选做志在冲刺名校 1.已知p :x ≥k ,q :3x +1<1,如果p 是q 的充分不必要条件,则实数k 的取值范围是( ) A .[2,+∞) B .(2,+∞) C .[1,+∞)D .(-∞,-1]解析:选B 由3x +1<1得,3x +1-1=2-x x +1<0,即(x -2)(x +1)>0,解得x <-1或x >2,由p 是q的充分不必要条件知,k >2,故选B.2.在整数集Z 中,被4除所得余数为k 的所有整数组成一个“类”,记为[k ]={4n +k |n ∈Z },k =0,1,2,3,则下列结论正确的为________(填序号).①2 018∈[2];②-1∈[3];③Z =[0]∪[1]∪[2]∪[3];④命题“整数a ,b 满足a ∈[1],b ∈[2],则a +b ∈[3]”的原命题与逆命题都正确;⑤“整数a ,b 属于同一类”的充要条件是“a -b ∈[0]”.解析:由“类”的定义[k ]={4n +k |n ∈Z },k =0,1,2,3,可知,只要整数m =4n +k ,n ∈Z ,k =0,1,2,3,则m ∈[k ],对于①中,2 018=4×504+2,所以2 018∈[2],所以符合题意;对于②中,-1=4×(-1)+3,所以符合题意;对于③中,所有的整数按被4除所得的余数分为四类,即余数分别为0,1,2,3的整数,即四“类”[0],[1],[2],[3],所以Z =[0]∪[1]∪[2]∪[3],所以符合题意;对于④中,原命题成立,但逆命题不成立,因为若a +b ∈[3],不妨设a =0,b =3,则此时a ∉[1]且b ∉[2],所以逆命题不成立,所以不符合题意;对于⑤中,因为“整数a ,b 属于同一类”,不妨设a =4m +k ,b =4n +k ,m ,n ∈Z ,且k =0,1,2,3,则a -b =4(m -n )+0,所以a -b ∈[0];反之,不妨设a =4m +k 1,b =4n +k 2,m ,n ∈Z ,k 1=0,1,2,3,k 2=0,1,2,3,则a -b =4(m -n )+(k 1-k 2),若a -b ∈[0],则k 1-k 2=0,即k 1=k 2,所以整数a ,b 属于同一类,故“整数a ,b 属于同一类”的充要条件是“a -b ∈[0]”,所以符合题意.答案:①②③⑤3.已知全集U =R ,非空集合A =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x -2x -(3a +1)<0,B ={x |(x -a )(x -a 2-2)<0,命题p :x ∈A ,命题q :x ∈B .(1)当a =12时,若p 真q 假,求x 的取值范围; (2)若q 是p 的必要条件,求实数a 的取值范围.解:(1)当a =12时,A ={x |2<x <37},B ={x |12<x <146},因为p 真q 假. 所以(∁U B )∩A ={x |2<x ≤12}, 所以x 的取值范围为(2,12].(2)若q 是p 的必要条件,即p ⇒q ,可知A ⊆B . 因为a 2+2>a ,所以B ={x |a <x <a 2+2}. 当3a +1>2,即a >13时,A ={x |2<x <3a +1},应满足条件⎩⎪⎨⎪⎧a ≤2,a 2+2≥3a +1,解得13<a ≤3-52;当3a +1=2,即a =13时,A =∅,不符合题意;当3a +1<2,即a <13时,A ={x |3a +1<x <2},应满足条件⎩⎪⎨⎪⎧a ≤3a +1,a 2+2≥2解得-12≤a <13;综上所述,实数a 的取值范围为⎣⎡⎭⎫-12,13∪⎝ ⎛⎦⎥⎤13,3-52.命题点一 集合及其运算1.(2018·浙江高考)已知全集U ={1,2,3,4,5},A ={1,3},则∁U A =( ) A .∅ B .{1,3} C .{2,4,5}D .{1,2,3,4,5}解析:选C ∵U ={1,2,3,4,5},A ={1,3}, ∴∁U A ={2,4,5}.2.(2018·天津高考)设全集为R ,集合A ={x |0<x <2},B ={x |x ≥1},则A ∩(∁R B )=( ) A .{x |0<x ≤1} B .{x |0<x <1} C .{x |1≤x <2}D .{x |0<x <2}解析:选B ∵全集为R ,B ={x |x ≥1}, ∴∁R B ={x |x <1}. ∵集合A ={x |0<x <2}, ∴A ∩(∁R B )={x |0<x <1}.3.(2017·浙江高考)已知集合P ={x |-1<x <1},Q ={x |0<x <2},那么P ∪Q =( ) A .(-1,2) B .(0,1) C .(-1,0)D .(1,2)解析:选A 根据集合的并集的定义,得P ∪Q =(-1,2).4.(2018·全国卷Ⅲ)已知集合A ={x |x -1≥0},B ={0,1,2},则A ∩B =( ) A .{0} B .{1} C .{1,2}D .{0,1,2}解析:选C ∵A ={x |x -1≥0}={x |x ≥1},B ={0,1,2},∴A ∩B ={1,2}.5.(2018·全国卷Ⅱ)已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( ) A .9 B .8 C .5D .4解析:选A 将满足x 2+y 2≤3的整数x ,y 全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个.故选A.6.(2017·江苏高考)已知集合A ={1,2},B ={a ,a 2+3}.若A ∩B ={1},则实数a 的值为________. 解析:因为a 2+3≥3,所以由A ∩B ={1}得a =1,即实数a 的值为1. 答案:1命题点二 充要条件1.(2016·浙江高考)已知函数f (x )=x 2+bx ,则“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 解析:选A∵f (x )=x 2+bx =⎝⎛⎭⎫x +b 22-b 24,当x =-b 2时,f (x )min =-b 24,又f (f (x ))=(f (x ))2+bf (x )=⎝⎛⎭⎫f (x )+b 22-b 24,当f (x )=-b 2时,f (f (x ))min =-b 24,当-b 2≥-b 24时,f (f (x ))可以取到最小值-b 24,即b 2-2b ≥0,解得b ≤0或b ≥2,故“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的充分不必要条件.选A.2.(2017·浙江高考)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4+S 6>2S 5”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选C 因为{a n }为等差数列,所以S 4+S 6=4a 1+6d +6a 1+15d =10a 1+21d,2S 5=10a 1+20d ,S 4+S 6-2S 5=d ,所以d >0⇔S 4+S 6>2S 5.3.(2015·浙江高考)设a ,b 是实数,则“a +b >0”是“ab >0”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选D 特值法:当a =10,b =-1时,a +b >0,ab <0,故a +b >0⇒/ ab >0; 当a =-2,b =-1时,ab >0,但a +b <0, 所以ab >0⇒/ a +b >0.故“a +b >0”是“ab >0”的既不充分也不必要条件.4.(2018·天津高考)设x ∈R ,则“⎪⎪⎪⎪x -12<12”是“x 3<1”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 由⎪⎪⎪⎪x -12<12,得0<x <1, 则0<x 3<1,即“⎪⎪⎪⎪x -12<12”⇒“x 3<1”; 由x 3<1,得x <1,当x ≤0时,⎪⎪⎪⎪x -12≥12, 即“x 3<1”⇒ / “⎪⎪⎪⎪x -12<12”. 所以“⎪⎪⎪⎪x -12<12”是“x 3<1”的充分而不必要条件. 5.(2017·天津高考)设θ∈R ,则“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 法一:由⎪⎪⎪⎪θ-π12<π12,得0<θ<π6, 故sin θ<12.由sin θ<12,得-7π6+2k π<θ<π6+2k π,k ∈Z ,推不出“⎪⎪⎪⎪θ-π12<π12”. 故“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件. 法二:⎪⎪⎪⎪θ-π12<π12⇒0<θ<π6⇒sin θ<12,而当sin θ<12时,取θ=-π6,⎪⎪⎪⎪-π6-π12=π4>π12. 故“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件. 6.(2018·北京高考)设a ,b 均为单位向量,则“|a -3b |=|3a +b |”是“a ⊥b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选C 由|a -3b |=|3a +b |,得(a -3b )2=(3a +b )2, 即a 2+9b 2-6a ·b =9a 2+b 2+6a ·b . 又a ,b 均为单位向量,所以a 2=b 2=1,所以a ·b =0,能推出a ⊥b .由a ⊥b ,得|a -3b |=10,|3a +b |=10, 能推出|a -3b |=|3a +b |,所以“|a -3b |=|3a +b |”是“a ⊥b ”的充分必要条件. 命题点三 四种命题及其关系1.(2015·山东高考)设m ∈R ,命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是( ) A .若方程x 2+x -m =0有实根,则m >0 B .若方程x 2+x -m =0有实根,则m ≤0 C .若方程x 2+x -m =0没有实根,则m >0 D .若方程x 2+x -m =0没有实根,则m ≤0解析:选D 根据逆否命题的定义,命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是“若方程x 2+x -m =0没有实根,则m ≤0”.2.(2018·北京高考)能说明“若a >b ,则1a <1b ”为假命题的一组a ,b 的值依次为________. 解析:只要保证a 为正b 为负即可满足要求. 当a >0>b 时,1a >0>1b .答案:1,-1(答案不唯一)3.(2017·北京高考)能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a +b >c ”是假命题的一组整数a ,b ,c 的值依次为________.解析:因为“设a ,b ,c 是任意实数.若a >b >c ,则a +b >c ”是假命题, 则它的否定“设存在实数a ,b ,c .若a >b >c ,则a +b ≤c ”是真命题. 由于a >b >c ,所以a +b >2c ,又a +b ≤c ,所以c <0. 因此a ,b ,c 依次可取整数-1,-2,-3,满足a +b ≤c . 答案:-1,-2,-3(答案不唯一)。
高中数学《第一章常用逻辑用语小结》200PPT课件

复
习
2
常用逻辑用语 基础知识
特级教师 王新敞
1.命题
(1)用语言、符号或式子表达的,可以判断真假
的陈述句叫做命题.判断为真的为真命题,判断为 高
假的为假命题.
考 数
(2)把一个命题表达为“若p、则q”的形式,则p 学
叫做命题的条件,q叫做命题的结论.
一 轮
复
习
3
常用逻辑用语 基础知识
特级教师 王新敞
立,且f(1)=0.
(1)求f(0)的值;
(2)当f(x)+2<logax,x∈(0, )恒成立时,求a的取值范围
高 考
数
学
一
轮
复
习
16
常用逻辑用语
特级教师 王新敞
函数f(x)对一切实数x、y均有f(x+y)-f(y)=(x+2y+1)x成 立,且f(1)=0.
(2)当f(x)+2<logax,x∈(0, )恒成立时,求a的取值范围
特级教师 王新敞
[例5] 命题“平行四边形的对角线相等且互相平分”
是( C)
A.简单命题
高
B.“p∨q”形式的复合命题
考
C.“p∧q”形式的复合命题
数 学
D.“┐ p”形式的复合命题
一
解析:因“相等且平分”包含两个同时成立的结论,轮
所以是“p∧q”形式的命题,
复 习
其中p:平行四边形的对角线相等,
q:平行四边形的对角线互相平分.
高 考 数
①定义法;②逆否法;③集合法.
学
逆否法:
一 轮
若┐ A⇒ ┐ B,则A是B的必要条件,B是A的充分条 复
高中数学第一章常用逻辑用语本章高效整合课件

第一章 常用逻辑用语
知能整合提升
热点考点例析
阶段质量评估
4.充分条件与必要条件的判断与应用 (1)数学命题“若p⇒q”蕴涵多层含义:它表示 “若p则q”为真;表示“由p经过推理可以得出 q”;表示“如果p成立,那么q一定成立”;表 示“如果q不成立,那么p一定不成立”;表示 “p是q的充分条件,q是p的必要条件”.对于 条件和结论之间的因果关系可作出以下概括:
数学 选修2-1
第一章 常用逻辑用语
知能整合提升
热点考点例析
阶段质量评估
(3)全称命题p:∀x∈M,p(x),它的否定¬p: ∃x0∈M,¬p(x0),即全称命题的否定是特称命 题;特称命题p:∃x0∈M,p(x0),它的否定¬p: ∀x∈M,¬p(x0),即特称命题的否定是全称命 题.
数学 选修2-1
数学 选修2-1
第一章 常用逻辑用语
知能整合提升
热点考点例析
阶段质量评估
(2)复合命题的真假
p q 非p 真真 假 真假 假 假真 真 假假 真
p且q 真 假 假 假
p或q 真 真 真 假
对于复合命题真假的判断,首先要分清复合命题 的结构形式,分离出构成它的简单命题p,q,并 对简单命题p,q的真假作出判断,然后再根据以 上真值表对复合命题的真假作出判断.
数学
第一章 常用逻辑用语
选修2-1
知能整合提升
热点考点例析
阶段质量评估
(2)利用条件的充分性或必要性求参数的值(或范
围)
充分条件、必要条件和充要条件揭示了命题的条
件和结论之间的从属关系.从集合与集合之间的
包含关系出发,可作出以下概括:
①若 A⊆B,则 A 是 B 的充分条件;
高中数学《第一章常用逻辑用语小结》339PPT课件 一等奖名师

(1)含有“任意”的命 题
恒成立问题
(2)含有“存在”的命 题
有解问题
归纳整理,整体认识
本节课你收获了什么?
类型1、命题的否定
类型2、求参数范围
类型2、求参数范围
例2、已知p:∃x0∈R,mx02+2≤0. q:∀x∈R,x2-2mx+1>0,若p∨q为假命题, 则求实数m的取值范围。
选修1-1第一章常用逻辑用词 成都市树德协进中学数学组 刘运
1、命题的性质:(1)四种命题:
命题
表述形式
原命题
若p,则q
逆命题 否命题
若q,则p 若﹁p,则﹁ q
逆否命题
若﹁q,则﹁ p
(2)四种命题的真假关系 :
两个命题互为逆否命题,它们有相同的 真假性。
(3)全称量词与存在量词 :
全称量词任意 用符号“ ∀ ”表示, 存在量词存在 用符号“ ∃ ”表示.
类型2、求参数范围
探究练习2、 1、∃x0∈R,x02+2x0-m-1=0是假命题,则实 数m的取值范围
2、∃x0∈R,ax02+ax0+1<0则实数a的取值范围
类型2、求参数范围
探究练习2、 1、∃x0∈R,x02+2x0-m-1=0是假命题,则实 数m的取值范围
解、∀ x∈R,x2+2x-m-1≠0是真命题
类型2、求参数范围
探究练习1、 1、∀x∈[1,2],都有ex-a≥0,则实数a的范围为:
2、∀x∈R,ax2+2x+3>0,那么a的范围为:
类型2、求参数范围
探究练习1、 1、∀x∈[1,2],都有ex-a≥0,则实数a的范围为:
类型2、求参数范围
探究练习1、 2、∀x∈R,ax2+2x+3>0,那么a的范围为:
高中数学 第1章 常用逻辑用语 1

§1.3简单的逻辑联结词知识点一由简单命题写出复合命题分别写出由下列各组命题构成的“p或q”、“p且q”、“非p”形式的复合命题:(1)p:2是无理数,q:2大于1;(2)p:N⊆Z,q:0∈N;(3)p:x2+1>x-4,q:x2+1<x-4.解(1)p∨q:2是无理数或大于1;p∧q:2是无理数且大于1;綈p:2不是无理数.(2)p∨q:N⊆Z或0∈N;p∧q:N⊆Z且0∈N;綈p:N⃘Z.(3)p∨q:x2+1≠x-4;p∧q:x2+1>x-4且x2+1<x-4;綈p:x2+1≤x-4.知识点二从复合命题中找出简单命题指出下列复合命题的形式及构成它的简单命题.(1)96是48与16的倍数;(2)方程x2-3=0没有有理数解;(3)不等式x2-x-2>0的解集是{x|x<-1或x>2};(4)他是运动员兼教练员.解(1)“p且q”形式,其中p:96是48的倍数,q:96是16的倍数.(2)“非p”形式,其中p:方程x2-3=0有有理数解.(3)“p或q”形式,其中p:不等式x2-x-2>0的解集是{x|x<-1},q:不等式x2-x-2>0的解集是{x|x>2}.(4)“p且q”形式,其中p:他是运动员,q:他是教练员.知识点三判断含有逻辑联结词的命题的真假分别指出由下列各组命题构成的“p或q”“p且q”“非p”形式的命题的真假.(1)p:3>3,q:3=3;(2)p:∅{0},q:0∈∅;(3)p:A⊆A,q:A∩A=A;(4)p:函数y=x2+3x+4的图象与x轴有交点,q:方程x2+3x-4=0没有实根.解(1)因为p假q真,所以“p∨q”为真,“p∧q”为假,“綈p”为真.(2)因为p真q假,所以“p∨q”为真,“p∧q”为假,“綈p”为假.(3)因为p真q真,所以“p∨q”为真,“p∧q”为真,“綈p”为假.(4)因为p假q假,所以“p∨q”为假,“p∧q”为假,“綈p”为真.知识点四非命题与否命题写出下列命题的否定及命题的否命题:(1)菱形的对角线互相垂直;(2)面积相等的三角形是全等三角形.解(1)命题的否定:存在一个菱形,其对角线不互相垂直.否命题:不是菱形的四边形,其对角线不互相垂直.(2)命题的否定:存在面积相等的三角形不是全等三角形.否命题:面积不相等的三角形不是全等三角形.考题赏析1.(广东高考)已知命题p:所有有理数都是实数;命题q:正数的对数都是负数,则下列命题中为真命题的是()A.(綈p)∨q B.p∧qC.(綈p)∧(綈q) D.(綈p)∨(綈q)解析不难判断命题p为真命题,命题q为假命题,从而上述叙述中只有(綈p)∨(綈q)为真命题.答案 D2.(如皋联考)已知命题:p:若实数x,y满足x2+y2=0,则x,y全为0;命题q:若a>b,则1a<1b.给出下列四个复合命题:①p且q;②p或q;③綈p;④綈q.上述命题中为真命题的是________.解析p为真,q为假,故p或q,綈q为真命题.答案②④1.如果命题“非p或非q”是假命题,则在下列各结论中,正确的为()①命题“p且q”是真命题;②命题“p且q”是假命题;③命题“p或q”是真命题;④命题“p或q”是假命题.A.②③B.②④C.①③D.①④答案 C解析因“p且q”的否定为“綈p或綈q”,即綈(p且q)等价于綈p或綈q,所以“綈p或綈q”是假命题等价于“綈(p且q)”是假命题,即p且q为真命题.故选C.2.条件p:x∈A∪B,则綈p是()A.x∉A或x∉B B.x∉A且x∉BC .x ∈A ∩BD .x ∉A 或x ∈B 答案 B解析 因x ∈A ∪B ⇔x ∈A 或x ∈B ,所以綈p 为x ∉A 且x ∉B ,故选B.3.对于命题p 和q ,若p 且q 为真命题,则下列四个命题: ①p 或綈q 是真命题; ②p 或綈q 是假命题; ③綈p 且綈q 是假命题; ④綈p 或q 是假命题, 其中真命题是( )A .①②B .③④C .①③D .②④ 答案 C解析 因为p 且q 为真,所以p 与q 都为真,所以綈p 且綈q 为假.所以只有①③是真命题,所以选C. 4.若命题“p ∧q ”为假,且“綈p ”为假,则( ) A .p ∨q 为假 B .q 假C .q 真D .不能判断q 的真假 答案 B解析 綈p 为假,则p 为真,又p ∧q 为假,所以q 为假.所以选B. 5.“a ≥5且b ≥2”的否定是________. 答案 a <5或b <2解析 本题考查命题的否定,“p 或q ”的否定是“綈p 且綈q ”,“p 且q ”的否定是“綈p 或綈q ”. 6.命题p :{2}∈{2,3},q :{2}⊆{2,3},则下列对复合命题的判断,正确的是________.(填上所有正确的序号)①p 或q 为真;②p 或q 为假;③p 且q 为真;④p 且q 为假;⑤非p 为真;⑥非q 为假. 答案 ①④⑤⑥解析 由题可知p 为假,q 为真,所以p 或q 为真,p 且q 为假,非p 为真,非q 为假.答案为①④⑤⑥.7.已知p :3-x ≤0或3-x >4,q :5x +2<1,求p ∧q .解 由3-x ≤0或3-x >4,解得p :x ≥3或x <-1; 由5x +2-1<0,即3-x x +2<0, 解得q :x <-2或x >3.所以p ∧q :x <-2或x >3.8.已知a >0,a ≠1,设p :函数y =log a (x +1)在x ∈(0,+∞)内单调递减;q :曲线y =x 2+(2a -3)x +1与x 轴交于不同的两点.如果p 与q 有且只有一个正确,求a 的取值范围.解 当0<a <1时,函数y =log a (x +1)在(0,+∞)内单调递减;当a >1时,y =log a (x +1)在(0,+∞)内不是单调递减,曲线y =x 2+(2a -3)x +1与x 轴交于不同的两点等价于(2a -3)2-4>0,即a <12或a >52.若p真q 假,则a ∈(0,1)∩⎩⎨⎧⎭⎬⎫⎣⎡⎭⎫12,1∪⎝⎛⎦⎤1,52=⎣⎡⎭⎫12,1. 若p 假q 真,注意到已知a >0,a ≠1,所以有 a ∈(1,+∞)∩⎩⎨⎧⎭⎬⎫⎝⎛⎭⎫0,12∪⎝⎛⎭⎫52,+∞=⎝⎛⎭⎫52,+∞. 综上可知,a 的取值范围为⎣⎡⎭⎫12,1∪⎝⎛⎭⎫52,+∞.讲练学案部分知识点一 含逻辑联结词的命题的构成将下列命题写成“p ∧q ”“p ∨q ”和“綈p ”的形式: (1)p :菱形的对角线互相垂直,q :菱形的对角线互相平分;(2)p :能被5整除的整数的个位数一定为5,q :能被5整除的整数的个位数一定为0. 解 (1)p ∧q :菱形的对角线互相垂直且平分. p ∨q :菱形的对角线互相垂直或平分. 綈p :菱形的对角线不互相垂直.(2)p ∧q :能被5整除的整数的个位数一定为5且一定为0; p ∨q :能被5整除的整数的个位数一定为5或一定为0;綈p :能被5整除的整数的个位数一定不为5.【反思感悟】 简单命题用联结词“或”、“且”、“非”联结得到的新命题是复合命题,联结后可以综合起来叙述,但综合叙述不能叙述成条件复合的简单命题或叙述成结论复合的简单命题.如(2)中的p ∨q 不能叙述成:能被5整除的整数的个位数一定为5或0,因为p 、q 都是假命题,则p ∨q 也为假命题.判断下列命题是否是复合命题并说明理由.(1)2是4和6的约数;(2)不等式x 2-5x +6>0的解为x >3或x <2.解 (1)是“p 且q ”形式的复合命题,其中p :2是4的约数;q :2是6的约数.(2)是简单命题,而不是用“或”联结的复合命题,因不等式x 2-5x +6>0的解为x >3是假命题,不等式x 2-5x +6>0的解为x <2也是假命题,而命题(2)是真命题,这与p 、q 都假,则p ∨q 一定假矛盾.命题“不等式x 2-5x +6>0的解为x >3或解为x <2”是p ∨q 的形式.知识点二 含逻辑联结词的命题的真假判断分别指出下列命题的形式及构成它的命题,并判断真假:(1)相似三角形周长相等或对应角相等; (2)9的算术平方根不是-3;(3)垂直于弦的直径平分这条弦,并且平分弦所对的两段弧.解 (1)这个命题是p ∨q 的形式,其中p :相似三角形周长相等,q :相似三角形对应角相等,因为p 假q 真,所以p ∨q 为真.(2)这个命题是綈p 的形式,其中p :9的算术平方根是-3,因为p 假,所以綈p 为真.(3)这个命题是p ∧q 的形式,其中p :垂直于弦的直径平分这条弦,q :垂直于弦的直径平分这条弦所对的两段弧,因为p 真q 真,所以p ∧q 为真.【反思感悟】 判断含逻辑联结词的命题的真假,关键是对应p 、q 的真假及“p ∧q ”“p ∨q ”为真时的判定依据,至于“綈p ”的真假,可就p 的真假判断,也可就“綈p ”直接判断.判断下列命题的真假:(1)-1是偶数或奇数;(2)2属于集合Q ,也属于集合R ; (3)A ⃘(A ∪B ).解 (1)此命题为“p ∨q ”的形式,其中p :-1是偶数,q :-1是奇数,因为p 为假命题,q 为真命题,所以“p ∨q ”为真命题,故原命题为真命题.(2)此命题为“p ∧q ”的形式,其中p :2属于Q ,q :2属于R ,因为p 为假命题,q 为真命题,所以“p ∧q ”为假命题,故原命题为假命题.(3)此命题为“綈p ”的形式,其中p :A ⊆(A ∪B ).因为p 为真命题,所以“綈p ”为假命题,故原命题为假命题.知识点三 简单的逻辑联结词的综合应用已知p :函数y =x 2+mx +1在(-1,+∞)上单调递增,q :函数y =4x 2+4(m -2)x +1大于零恒成立.若p 或q 为真,p 且q 为假,求m 的取值范围.解 若函数y =x 2+mx +1在(-1,+∞)上单调递增,则-m2≤-1,∴m ≥2,即p :m ≥2;若函数y =4x 2+4(m -2)x +1恒大于零, 则Δ=16(m -2)2-16<0, 解得1<m <3,即q :1<m <3.因为p 或q 为真,p 且q 为假,所以p 、q 一真一假,当p 真q 假时,由⎩⎨⎧m ≥2m ≥3或m ≤1,得m ≥3,当p 假q 真时,由⎩⎨⎧m <21<m <3,得1<m <2.综上,m 的取值范围是{m |m ≥3或1<m <2}.【反思感悟】 由p 、q 的真假,可以判断“p ∨q ”“p ∧q ”“綈p ”的真假.反之,由“p ∧q ”“p ∨q ”“綈p ”的真假,也能推断p 、q 的真假,如“p ∧q ”为假,则包括“p 真q 假”“p 假q 真”“p 假q 假”三种情况.已知p :方程x 2+mx +1=0有两个不等负根.q :方程4x 2+4(m -2)x +1=0无实根.(1)当m 为何值时,p 或q 为真? (2)当m 为何值时,p 且q 为真?解 由已知可知:p 真时m >2,q 真时1<m <3, (1)若p 或q 为真,只需m ∈{m |m >2}∪{m |1<m <3} ={m |m >1}.(2)若p 且q 为真,只需m ∈{m |m >2}∩{m |1<m <3} ={m |2<m <3}.课堂小结:1. 从集合的角度理解“且”“或”“非”. 设命题p :x ∈A.命题q :x ∈B. 则p ∧qx ∈A 且x ∈Bx ∈A ∩B ;p ∨q x ∈A 或x ∈B x ∈A ∪B ;2.对有逻辑联结词的命题真假性的判断 当p 、q 都为真,p ∧q 才为真;⌝p 与p 的真假性相反且一定有一个为真.当p 、q 有一个为真,p ∨q 即为真; 3.含有逻辑联结词的命题否定(1)“x=0或x=1”的否定是“x ≠0且x ≠1”而不是“x ≠0或x ≠1”; (2)“x 、y 全为0”的否定是“x 、y 不全为0”,而不是“x 、y 全不为0”;(3)“全等三角形一定是相似三角形”的否定是“全等三角形一定不是相似三角形”而不是“全等三角形不一定是相似三角形”.一、选择题1.p :点P 在直线y =2x -3上,q :点P 在抛物线y =-x 2上,则使“p ∧q ”为真命题的一个点P (x ,y )是( )A .(0,-3)B .(1,2)C .(1,-1)D .(-1,1) 答案 C解析 点P (x ,y )满足⎩⎪⎨⎪⎧y =2x -3,y =-x 2.可验证各选项中,只有C 正确.2.如果原命题的结论是“p 且q ”的形式,那么否命题的结论形式为( ) A .綈p 且綈q B .綈p 或綈q C .綈p 或q D .綈q 或p 答案 B解析 注意逻辑联结词的否定,“或”的否定是“且”,“且”的否定为“或”,所以p 且q 的否定为綈p 或綈q .所以选B.3.命题p :函数y =log a (ax +2a )(a >0且a ≠1)的图象必过定点(-1,1);命题q :如果函数y =f (x )的图象关于(3,0)对称,那么函数y =f (x -3)的图象关于原点对称,则有( )A .“p 且q ”为真B .“p 或q ”为假C .p 真q 假D .p 假q 真 答案 C解析 由于将点(-1,1)代入y =log a (ax +2a )成立,故p 真;由y =f (x )的图象关于(3,0)对称,知y =f (x -3)的图象关于(6,0)对称,故q 假.4.若p 、q 是两个简单命题,p 或q 的否定是真命题,则必有( ) A .p 真q 真 B .p 假q 假 C .p 真q 假 D .p 假q 真答案 B解析 因为p 或q 的否定綈p 且綈q 为真命题,所以綈p 与綈q 都是真命题,所以p 与q 都为假命题.所以选B.5.下列命题中既是p ∧q 形式的命题,又是真命题的是( ) A .10或15是5的倍数B .方程x 2-3x -4=0的两根是-4和1C .方程x 2+1=0没有实数根D .有两个角为45°的三角形是等腰直角三角形 答案 D解析 A 中的命题是条件复合的简单命题,B 中的命题是结论复合的简单命题,C 中的命题是綈p 的形式,D 中的命题为p ∧q 型. 二、填空题6.由命题p :6是12的约数,命题q :6是24的约数.构成的“p ∨q ”形式的命题是______________________________,“p ∧q ”形式的命题是______________________________,“綈p ”形式的命题是________________________________.答案 6是12或24的约数 6是12和24的约数 6不是12的约数7.若“x ∈[2,5]或x ∈{x |x <1或x >4}”是假命题,则x 的范围是________. 答案 [1,2)解析 x ∈[2,5]或x ∈(-∞,1)∪(4,+∞), 即x ∈(-∞,1)∪[2,+∞),由于命题是假命题,所以1≤x <2,即x ∈[1,2).8.已知a 、b ∈R ,设p :|a |+|b |>|a +b |,q :函数y =x 2-x +1在(0,+∞)上是增函数,那么命题:p ∨q 、p ∧q 、綈p 中的真命题是________.答案 綈p 解析 对于p 当a >0,b >0时,|a |+|b |=|a +b |,故p 假,綈p 为真;对于q ,抛物线y =x 2-x +1的对称轴为x =12,故q 假,所以p ∨q 假,p ∧q 假.这里綈p 应理解成|a |+|b |>|a +b |不恒成立,而不是|a |+|b |≤|a +b |.三、解答题9.判断下列复合命题的真假:(1)等腰三角形顶角的平分线平分底边并且垂直于底边; (2)x =±1是方程x 2+3x +2=0的根; (3)A ⃘(A ∪B ).解 (1)这个命题是“p 且q ”的形式,其中p :等腰三角形顶角的平分线平分底边,q :等腰三角形顶角的平分线垂直于底边,因为p 真q 真,则“p 且q ”真,所以该命题是真命题.(2)这个命题是“p 或q ”的形式,其中p :1是方程x 2+3x +2=0的根,q :-1是方程x 2+3x +2=0的根,因为p 假q 真,则“p 或q ”真,所以该命题是真命题.(3)这个命题是“非p ”的形式,其中p :A ⊆(A ∪B ),因为p 真,则“非p ”假,所以该命题是假命题. 10.已知p :x 2+4mx +1=0有两个不等的负数根,q :函数f (x )=-(m 2-m +1)x 在(-∞,+∞)上是增函数.若p 或q 为真,p 且q 为假,求实数m 的取值范围.解 p :x 2+4mx +1=0有两个不等的负根⇔⎩⎪⎨⎪⎧Δ=16m 2-4>0-4m <0⇔m >12.q :函数f (x )=-(m 2-m +1)x 在(-∞,+∞)上是增函数 ⇔0<m 2-m +1<1⇔0<m <1.(1)若p 真,q 假,则⎩⎪⎨⎪⎧m >12,m ≤0或m ≥1.⇒m ≥1.(2)若p 假,q 真,则⎩⎪⎨⎪⎧m ≤120<m <1⇒0<m ≤12综上,得m ≥1或0<m ≤12.。
高中数学课件-第一章 常用逻辑用语 章末归纳总结

知识结构
专题探究
1.判断命题的真假 2.四种命题的关系 3.利用真值表判断命题的真假(且,或,非 里面来判断真假) 4.根据复合命题的真假,求参数的值或范围 (难点)
5.充分不必要条件、必要不充分条件, 充要条件,既不充分也不必要条件(重 点)
6.
•判断命题的真假
在空间,下列命题正确的是( ) A.平行直线的平行投影重合 B.平行于同一直线的两个平面平行 C.垂直于同一平面的两个平面平行 D.垂直于同一平面的两条直线平行
判断下列命题的真假,并写出它的逆命题、否命题和逆否
命题,同时也判断这些命题的真假.
①若 a>b,则 ac2>bc2;②若 a>b,则1a<1b.
• [解析] ①该命题为假命题,这是因为当c=0 时,ac2=bc2;
• 逆命题:若ac2>bc2,则a>b,为真命题;否 命题:若a≤b,则ac2≤bc2,为真命题;
命题,p(2)是真命题,则实数m的取值范围是 ________. • [答[解案析]] ∵3≤pm(1)<是8假命题,p(2)是真命题,∴38- -mm≤ >00 ,
解得 3≤m<8.
• 4.若数列{an}满足(an+1-an)2=p(p为正常数, n∈N*),则称{an}为“等差方数列”.甲:数 列{an}是等差方数列;乙:数列{an}是等差数 列,则甲是乙的________条件.
• [点评] 已知原命题,写出它的其他三种命题, 首先把原命题改写成“若p,则q”的形式, 然后找出其条件p和结论q,再根据四种命题 的定义写出其他命题.
• 逆命题:“若q,则p”;否命题:“若非p, 则非q”;
• 逆否命题:“若非q,则非p”,对写出的命 题也可简洁表述;对于含有大前提的命题, 在改写命题形式时,大前提不要动.
高中数学《第一章常用逻辑用语小结》332PPT课件 一等奖名师
第37页 共 71 页
第38页 共 71 页
第39页 共 71 页
第40页 共 71 页
第41页 共 71 页
CONTENTS
01
单击此处添节标题
02
单击此处添节标题
CONTENTS
01
单击此处添节标题
02
单击此处添节标题
03
单击此处添节标题
CONTENTS
01
单击此处添节标题
02
3.含有存在量词的命题,叫做特称命题.“存在 M 中元素 x0, 使 p(x0)成立”用符号简记为: ∃x0∈M,p(x0).
二、回顾与思考
• (四)全称量词 存在量词
4.含有一个量词的命题的否定
思考
4.命题“∀x∈[1,2],x2-3x+2≤0”的否定为( ) A.∀x∈[1,2],x2-3x+2>0 B.∀x∉[1,2],x2-3x+2>0 C.∃x0∈[1,2],x20-3x0+2>0 D.∃x0∉[1,2],x20-3x0+2>0
思考
3.若命题“p 或 q”与命题“ 非 p”都是真命题,则( ) A.命题 p 与命题 q 都是真命题 B.命题 p 与命题 q 都是假命题 C.命题 p 是真命题,命题 q 是假命题 D.命题 p 是假命题,命题 q 是真命题
[解析] 由“非p”是真命题可知p为假命题,由“p或q”是真 命题可知p与q中至少有一个是真命题,结合p为假命题可知q为真 命题.
2.[2017·全国卷Ⅰ]设有下面四个命题
p1:若复数 z 满足1z∈R,则 z∈R; p2:若复数 z 满足 z2∈R,则 z∈R;
p3:若复数 z1,z2 满足 z1z2∈R,则 z1= z 2;
第一章 常用逻辑用复习小结
【名师点评】 对含有逻辑联结词的命题而言,其 真假的判断主要根据逻辑联结词的含义和真值表进 行,但首先应搞清楚每一个简单命题的真假.
例4.(安徽理7)命题“所有能被2整除的整数都 是偶数”的否定是( D ) (A)所有不能被2整除的数都是偶数 (B)所有能被2整除的整数都不是偶数 (C)存在一个不能被2整除的数都是偶数 (D)存在一个能被2整除的数不是偶数
练习
例1 命题“若C=90°,则△ABC是直角三角形”与
它的逆命题、否命题、逆否命题这4个命题中,真 命题的个数是________.
【解析】 对于原命题来说,是真命题.其 逆命题为“若△ABC是直角三角形,则C= 90°”,这是一个假命题,因为当△ABC为 直角三角形时,A、B也可能为直角.这样 ,否命题是假命题,逆否命题是真命题.因 此真命题的个数是2.
第一章
常用逻辑用语
复习小结
知识体系网络
本章知识结构:
重要考点
命题及 其关系
常用逻辑用语
知道命题的特征 . 能准确写出命题 的否定.
充分条件 必要条件 充要条件
简单的逻辑联结 词:且、或、非
全称量词 存在量词
四种命题:原命题、逆命题、 否命题、逆否命题.
1. p q 说 p 是 q 的充分 条件, q 是 p 的必要条件.
三个概念
1、互逆命题:如果第一个命题的条件(或题设)是第二个 命题的结论,且第一个命题的结论是第二个命题的条件,那 么这两个命题叫互逆命题。如果把其中一个命题叫做原命题, 那么另一个叫做原命题的逆命题。 2、互否命题:如果第一个命题的条件和结论是第二个命题 的条件和结论的否定,那么这两个命题叫做互否命题。如果 把其中一个命题叫做原命题,那么另一个叫做原命题的否命 题。(否命题要区别于命题的否定) 3、互为逆否命题:如果第一个命题的条件和结论分别是第 二个命题的结论的否定和条件的否定,那么这两个命题叫做 互为逆否命题。
高二数学选修第一章常用逻辑用语 知识点+习题+答案
第一章常用逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题. 若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题. 若原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题.若原命题为“若p ,则q ”,则它的否命题为“若q ⌝,则p ⌝”. 6、四种命题的真假性:四种命题的真假性之间的关系: ()1两个命题互为逆否命题,它们有相同的真假性;()2两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).8、用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧.当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题.用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨.当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p 、q 两个命题都是假命题时,p q ∨是假命题.对一个命题p 全盘否定,得到一个新命题,记作p ⌝.若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题.9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“∀”表示. 含有全称量词的命题称为全称命题.全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“∃”表示. 含有存在量词的命题称为特称命题.特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”.10、全称命题p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝.全称命题的否定是特称命题.第一章常用逻辑用语测试题原命题 逆命题 否命题 逆否命题真 真 真 真真 假 假 真假 真 真 真假 假 假 假一、 选择题(每道题只有一个答案,每道题5分,共60分) 1、一个命题与他们的逆命题、否命题、逆否命题这4个命题中() A 、真命题与假命题的个数相同B 真命题的个数一定是奇数C 真命题的个数一定是偶数D 真命题的个数可能是奇数,也可能是偶数 2、下列命题中正确的是()①“若x 2+y 2≠0,则x ,y 不全为零”的否命题②“正多边形都相似”的逆命题 ③“若m>0,则x 2+x -m=0有实根”的逆否命题 ④“若x -123是有理数,则x 是无理数”的逆否命题 A 、①②③④B 、①③④C 、②③④D 、①④3、“用反证法证明命题“如果x<y ,那么51x <51y ”时,假设的内容应该是() A 、51x =51y B 、51x <51y C 、51x =51y 且51x <51y D 、51x =51y 或51x >51y4、“a ≠1或b ≠2”是“a +b ≠3”的() A 、充分不必要条件B 、必要不充分条件 C 、充要条件D 、既不充分也不必要5、设甲是乙的充分不必要条件,乙是丙的充要条件,丁是丙的必要非充分条件,则甲是丁的()A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要6、函数f (x )=x|x+a|+b 是奇函数的充要条件是() A 、ab =0B 、a +b=0 C 、a =bD 、a 2+b 2=07、“若x ≠a 且x ≠b ,则x 2-(a +b )x +ab ≠0”的否命题()A 、 若x =a 且x =b ,则x 2-(a +b )x +ab =0 B 、 B 、若x =a 或x =b ,则x 2-(a +b )x +ab ≠0 C 、 若x =a 且x =b ,则x 2-(a +b )x +ab ≠0 D 、 D 、若x =a 或x =b ,则x 2-(a +b )x +ab =08、“12m =”是“直线(m+2)x+3my+1=0与直线(m+2)x+(m-2)y-3=0相互垂直”的()A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要9、命题p :存在实数m ,使方程x 2+mx +1=0有实数根,则“非p ”形式的命题是() A 、 存在实数m ,使得方程x 2+mx +1=0无实根 B 、不存在实数m ,使得方程x 2+mx +1=0有实根 C 、对任意的实数m ,使得方程x 2+mx +1=0有实根 D 、至多有一个实数m ,使得方程x 2+mx +1=0有实根10.若"a b c d ≥⇒>"和"a b e f <⇒≤"都是真命题,其逆命题都是假命题,则"c d ≤"是"e f ≤"的()A.必要非充分条件B.充分非必要条件C.充分必要条件D.既非充分也非必要条件 11.在下列结论中,正确的是()①""q p ∧为真是""q p ∨为真的充分不必要条件 ②""q p ∧为假是""q p ∨为真的充分不必要条件③""q p ∨为真是""p ⌝为假的必要不充分条件 ④""p ⌝为真是""q p ∧为假的必要不充分条件 A.①②B.①③C.②④D.③④12.设集合(){}(){}(){}0,,02,,,,≤-+=>+-=∈∈=n y x y x B m y x y x A R y R x y x u ,那么点P (2,3)()B C A u ⋂∈的充要条件是()A .m>-1,n<5B .m<-1,n<5C .m>-1,n>5D .m<-1,n>5 二、填空题(每道题4分,共16分)13、判断下列命题的真假性:①、若m>0,则方程x 2-x +m =0有实根 ②、若x>1,y>1,则x+y>2的逆命题③、对任意的x ∈{x|-2<x<4},|x-2|<3的否定形式④、△>0是一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件 14、“末位数字是0或5的整数能被5整除”的 否定形式是 否命题是15、若把命题“A ⊆B ”看成一个复合命题,那么这个复合命题的形式是__________,构成它的两个简单命题分别是_____________________________________。
高中数学新教材必修一第一章 《集合与常用逻辑用语》全套课件PPT
素. 如:应把集合{1,2,2}改写成 {1,2}
(3)无序性:集合中的元素是平等的,没有先后顺序,因
此判定两个集合是否一样,仅需比较它们的元素是否一 样,不需考查排列顺序是否一样.
如:集合{1,2,3}和{1,3,2}表示同一集合。
注:集合的相等:构成两个集合的元素完全一样
新课引入
问题:
温故而知新
3.在初中我们学过哪些集合?
代数:整数的集合、实数的集合、有理数的集合、 不等式(如x-7>3)的解集等;
几何:点的集合等。 4.在初中,我们用集合描述过什么? 在初中几何中, 如线段AB的中垂线是……
圆是……。
学习新知
1、集合的含义:
(1)1~20以内的所有质数;
(2)我国从2000~2019年所发射的所有人造卫星;
集合的分类:(1)有限集 (2)无限集
当堂达标
练习巩固 提高能力
1. 用符号“∈”或“ ”填空
(1) 3.14 Q (2) Q
(3) 0 N+ (5) 2 3 Q
(4) (-2)0 N+ (6) 2 3 R
练习:课本P5第2题.
学习新知
5、集合的常用表示方法:
5、集合的常用表示方法:
记作:
规定:空集是任何集合的子集;
空集是任何非空集合的真子集。
例题示范
运用知识,注重规范
例1、写出集合{a, b}的所有子集,并指出哪些是它
的真子集. ,{a},{b},{a, b}
练习:课本第8页第1题
推广:设一个有限集A中的元素个数为n个,则集 合A的子集的个数为2n个。 其中真子集的个数为 2n-1 个, 非空子集的个数为 2n-1 个, 非空真子集的个数为 2n-2 个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 共 5 页 第一章 常用逻辑用语 1、命题的概念:可以判断真假的语句叫命题。 2、判断一个语句是不是命题的方法: (1)一般要求是陈述句或反问句;(2)疑问句、祈使句和感叹句都不是命题; (3)模棱两可的语句不是命题; (4)开语句经过限制或赋值后可能是命题.
3、 四种命题的关系:
①原命题逆否命题.它们具有相同的真假性,是命题转化的依据和途径之一. ②逆命题否命题,它们之间互为逆否关系,具有相同的真假性,是命题转化的另一依据和途径. 除①、②之外,四种命题中其它两个命题的真伪无必然联系.、 一些常见的词的否定: 正面词 等于 大于 小于 是 都是 一定是 至少一个 至多一个 否定词 不等于 不大于 不小于 不是 不都是 一定不是 一个也没有 至少两个 对命题的否定只是否定命题的结论; 否命题,既否定条件,又否定结论。 命题m:“若p,则q”,m为“若p,则q”。 4、充分条件与必要条件:
(1)p是q的充分条件:qp; (2)p是q的必要条件:pq;
(3)p是q的充要条件:qp且pq; (4)p是q的充分不必要条件:qp且pq; (5)p是q的必要不充分条件:pq且qp。 5、、逻辑联结词:“或”、“且”、“非”这些词叫做逻辑联结词. (1)不含逻辑联结词的命题叫简单命题,由简单命题与逻辑联结词构成的命题为复合命题. (2)复合命题的构成形式:①p或q;②p且q;③非p(即命题p的否定). (3)复合命题的真假判断(利用真值表): 非 真 真 假 真 真 真 假 假 真 假 假 真 真 真 假 假 假 真 假 假
5-1、“p且q”形式命题的真假规律:p、q都是真命题,“p且q”才是真命题,否则“p且q”是假命题。 5-2、“p或q”形式命题的真假规律:p、q都是假命题,“p或q”才是真命题,否则“p或q”是真命题。 5-3、p与p的真假规律:一真一假. 6、全称量词:表示所陈述事物的全体,表示符号,常用词语全部,都,任意,每一个,所有。 第 2 页 共 5 页
7、全称命题:含有全称量词的命题 ,一般格式)(,xqAx。 8、存在量词:表示所陈述事物的个体或部分,表示符号,常用词语 有,有一个,有一些,至少有一个 。 9、存在性命题:含有存在量词的命题,一般格式)(,xPAx。 10、命题m:“若p,则q”,m为“若p,则q”。 11、命题p:)(,xPAx,p为)(,xpAx。 10、命题q:)(,xqAx,q为)(,xqAx。 一、题型一:命题、真命题、假命题的判断 例1:下列语句是命题的是( ) A.梯形是四边形 B.作直线AB C.x是整数 D.今天会下雪吗 例2.下列说法正确的是( )
A.命题“直角相等”的条件和结论分别是“直角”和“相等” B.语句“最高气温30 ℃时我就开空调”不是命题 C.命题“对角线互相垂直的四边形是菱形”是真命题 D.语句“当a>4时,方程x2-4x+a=0有实根”是假命题 变式练习:下列命题是真命题的是( ) A.{∅}是空集 B.{}x∈N||x-1|<3是无限集 C.π是有理数 D.x2-5x=0的根是自然数 题型二:复合命题的结构 例3将下列命题改写成“若p,则q”的形式,并判断命题的真假: (1)6是12和18的公约数; (2)当a>-1时,方程ax2+2x-1=0有两个不等实根; (3)已知x、y为非零自然数,当y-x=2时,y=4,x=2. 变式练习:指出下列命题的条件p与结论q,并判断命题的真假: (1)若整数a是偶数,则a能被2整除; (2)对角线相等且互相平分的四边形是矩形; (3)相等的两个角的正切值相等. 题型三:命题真假判断中求参数范围 例4、已知p:x2+mx+1=0有两个不等的负根,q:方程4x2+4(m-2)x+1=0(m∈R)无实根,求使p为真命题且q也为真命题的m的取值范围.
变式练习:已知命题p:lg(x2-2x-2)≥0;命题q:0范围.
四、题型四:四种命题的等价关系及真假判断 例5.命题“若△ABC有一内角为π3,则△ABC的三内角成等差数列”的逆命题( ) A.与原命题同为假命题 B.与原命题的否命题同为假命题 C.与原命题的逆否命题同为假命题 D.与原命题同为真命题 例6.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是( )
A.若f(x)是偶函数,则f(-x)是偶函数 B.若f(x)不是奇函数,则f(-x)不是奇函数 C.若f(-x)是奇函数,则f(x)是奇函数 D.若f(-x)不是奇函数,则f(x)不是奇函数 第 3 页 共 5 页
例7.若“x>y,则x2>y2”的逆否命题是( ) A.若x≤y,则x2≤y2 B.若x>y,则x2例8..给出下列命题:①命题“若b2-4ac<0,则方程ax2+bx+c=0(a≠0)无实根”的否命题;
②命题“△ABC中,AB=BC=CA,那么△ABC为等边三角形”的逆命题;
③命题“若a>b>0,则3a>3b>0”的逆否命题;④“若m>1,则mx2-2(m+1)x+(m-3)>0的解集为R”的逆命题. 其中真命题的序号为________. 变式练习.若命题p的逆命题是q,命题q的否命题是r,则p是r的( ) A.逆命题 B.逆否命题 C.否命题 D.以上判断都不对 五、题型五:问题的逆否证法 例9.判断命题“若m>0,则方程x2+2x-3m=0有实数根”的逆否命题的真假.
六、题型六:判断条件关系及求参数范围 例10.“x=2kπ+π4(k∈Z)”是“tan x=1”成立的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 例11、设A是B的充分不必要条件,C是B的必要不充分条件,D是C的充要条件,则D是A的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 例12.已知条件p:-1≤x≤10,q:x2-4x+4-m2≤0(m>0)不变,若非p是非q的必要而不充分条件,如何求实数m的取值范围?
变式练习1:已知条件:p:y=lg(x2+2x-3)的定义域,条件q:5x-6>x2,则q是p的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
变式练习2 已知p:12≤x≤1,q:a≤x≤a+1,若p的必要不充分条件是q,求实数a的取值范围.
七、充要条件的论证 例13求证:0≤a<45是不等式ax2-ax+1-a>0对一切实数x都成立的充要条件. 第 4 页 共 5 页
八、命题真假值的判断 例14.如果命题“p∨q”与命题“非p”都是真命题,那么( ) A.命题p不一定是假命题 B.命题q一定为真命题 C.命题q不一定是真命题 D.命题p与命题q的真假相同 变式练习:判断由下列命题构成的p∨q,p∧q,非p形式的命题的真假: (1)p:负数的平方是正数,q:有理数是实数; (2)p:2≤3,q:3<2; (3)p:35是5的倍数,q:41是7的倍数. 九、命题的否定与否命题 例15.命题“若a变式练习1:“a≥5且b≥3”的否定是____________;
“a≥5或b≤3”的否定是____________. 解:a<5或b<3 a<5且b>3 变式练习2: (2010年高考安徽卷) 命题“对任何x∈R,|x-2|+|x-4|>3”的否定是________. 十、全称命题与特称命题相关小综合题 例17.若命题p:∀x∈R,ax2+4x+a≥-2x2+1是真命题,则实数a的取值范围是( )
A.a≤-3或a>2 B.a≥2 C.a>-2 D.-2
变式练习1: 已知命题p:∃x0∈R,tan x0=3;命题q:∀x∈R,x2-x+1>0,则“p且q”是________命题. 变式练习2: 已知命题p:∃x∈R,使tan x=1,命题q:x2-3x+2<0的解集是{x|1“p∧q”是真命题;②命题“p∧¬q”是假命题;③命题“¬p∨q”是真命题;④命题“¬p∨¬q”是假命题,其中正确的是( ) A.②③ B.①②④ C.①③④ D.①②③④ 十一、综合训练典型题
例18.设命题p:实数x满足x2-4ax+3a2<0,其中a>0,命题q:实数x满足 x2-x-6≤0,x2+2x-8>0. (1)若a=1,且p∧q为真,求实数x的取值范围; (2)非p是非q的充分不必要条件,求实数a的取值范围.
变式练习2:已知命题p:函数y=x2+2(a2-a)x+a4-2a3在[-2,+∞)上单调递增.q:关于x的不等式ax2-ax+1>0解集为R.若p∧q假,p∨q真,求实数a的取值范围. 第 5 页 共 5 页
课后作业: 例1、已知集合A={x|x2-3x+2=0},B={x|x2-mx+2=0},若A是B的必要不充分条件,求实数m范围。 解题思路分析: 化简条件得A={1,2},A是B的必要不充分条件,即A∩B=BBA 根据集合中元素个数集合B分类讨论,B=φ,B={1}或{2},B={1,2} 当B=φ时,△=m2-8<0 ∴ 22m22
当B={1}或{2}时,02m2402m10或,m无解
当B={1,2}时,221m21 ∴ m=3 综上所述,m=3或22m22 说明:分类讨论是中学数学的重要思想,全面地挖掘题中隐藏条件是解题素质的一个重要方面,如本题当B={1}或{2}时,不能遗漏△=0。 例2、用反证法证明:已知x、y∈R,x+y≥2,求 证x、y中至少有一个大于1。 解题思路分析: 假设x<1且y<1,由不等式同向相加的性质x+y<2与已知x+y≥2矛盾 ∴ 假设不成立 ∴ x、y中至少有一个大于1 说明;反证法的理论依据是:欲证“若p则q”为真,先证“若p则非q”为假,因在条件p下,q与非q是对立事件(不能同时成立,但必有一个成立),所以当“若p则非q”为假时,“若p则q”一定为真。 例3、若A是B的必要而不充分条件,C是B的充要条件,D是C的充分而不必要条件,判断D是A的什么条件。 解题思路分析: 利用“”、“”符号分析各命题之间的关系 DCBA ∴ DA,D是A的充分不必要条件 说明:符号“”、“”具有传递性,不过前者是单方向的,后者是双方向的
例2 已知p:012mxx有两个不等的负根,q:01)2(442xmx无实根.若p或q为真,p且q为假,求m的取值范围. 例7(2009天津卷理)命题“存在0xR,02x0”的否定是 A. 不存在0xR, 02x>0 B. 存在0xR, 02x0 C. 对任意的xR, 2x0 D. 对任意的xR, 2x>0 例8(07宁夏)已知命题p:1sin,xRx,则( ) A.1sin,:xRxp B. 1sin,:xRxp C.1sin,:xRxp D. 1sin,:xRxp