2.第二章控制系统的数学模型

合集下载

自动控制原理(第三版)第2章控制系统的数学模型(2)

自动控制原理(第三版)第2章控制系统的数学模型(2)
大连民族学院机电信息工程学院
自动控制原理
第二章 控制系统的数学模型
求取该电路在单位阶跃输入时的响应。 U c ( s) 1 G( s ) T RC U r ( s ) Ts 1
ur 1( t )
方法1
U c ( s ) G( s )U r ( s )
1
U r (s)
1 s
方法2
1 (Ts 1) s
1 t 1 g (t ) 1[G ( s)] e T T t uc (t ) g (t )ur ( )d
0 1 1 ( t ) t t 1 T 1 T e d e e T d 0T 0 T t
1 uc (t ) L [ ] (Ts 1) s T 1 1 1 L ( )L ( ) s Ts 1 1 e
大连民族学院机电信息工程学院
自动控制原理
第二章 控制系统的数学模型
传递函数的求法
例2-1 方法一 R-L-C串联电路
d 2 uc ( t ) R duc ( t ) 1 1 uc ( t ) ur ( t ) 2 dt L dt LC LC传递Fra bibliotek数: G( s)
U c ( s) 1 U r ( s) LCs 2 RCs 1
大连民族学院机电信息工程学院
自动控制原理
第二章 控制系统的数学模型
零、极点分布图
传递函数的零、极点分 布图: 将传递函数的零、 极点表示在复平面上的 图形。
零点用“o”表示 极点用“×”表示
j
1 -3 -2

-1
s2 G( s) = ( s 3)( s 2 2s 2)
大连民族学院机电信息工程学院

西工大、西交大自动控制原理 第二章 控制系统的数学模型_2

西工大、西交大自动控制原理 第二章  控制系统的数学模型_2

5 比较点的移动 比较点的前移:
Rs
Cs
Rs
Cs
Gs
Gs
Qs
1 Qs
Gs
若要将比较点由方框后移至方框的前面,为保持信号 的等效,要在移动后的信号线上加入一个比较点所越 过的方框的倒数。
5 比较点的移动 比较点的后移:
Rs
Cs Gs
Rs Gs
Cs
Qs
Qs
G(s)
若要将比较点由方框前移至方框的后面,为保持信号的 等效,要在移动后的信号线上加入一个比较点所越过的 方框。
2-3 控制系统的结构图与信号流图
控制系统的结构图概述
控制系统的结构图(block diagram)是描述系统各元部 件之间信号传递关系的数学图形,表示了系统中各变量 间的因果关系以及对各变量所进行的运算。通过对系统 结构图进行等效变换(equivalent transform)后,可 求出系统的传递函数。
G1(s)
-1 H(s)
R(s)=0
f
(s)
C(s) F(s)
G2 ( s) 1 G2 (s)H (s)(1)G1(s)
G2 ( s) 1 G2 (s)G1(s)H (s)
G2(s) G2(s) 1 G(s)H(s) 1 Gk (s)
单位反馈系统H(s)=1,有
f
(s)
C(s) F(s)
若令:G(s) G1(s)G2(s) 为前向通路传递函数,
则:
B(s)
Gk (s) (s) G(s)H(s)
可见:系统开环传递函数Gk(s)等于前向通路传递函 数G(s)=G1(s)G2(s)与反馈通道传递函数H(s)的乘积。
R(S) ε(s) G1(s)
F(s)

机械控制工程基础第二章 控制系统的数学基础和数学模型

机械控制工程基础第二章 控制系统的数学基础和数学模型

动态模型反映系统在迅变载荷或在系统不平衡状态下的特性,现时输出还
由受其以前输入的历史的影响,一般以微分方程或差分方程描述。在控制
理论或控制工程中,一般关心的是系统的动态特性,因此,往往需要采用
动态数学模型。
例:
••

系统动态模型:m x(t) c x(t) kx(t) F (t)

••
当系统运动很慢时,其 x 0, x 0,上式可简
5.初值定理
若L[f(t)]=F(s),则
f (0 ) lim f (t) lim s F(s)
t 0
s
6.终值定理
若L[f(t)]=F(s),则有
f () lim f (t) lim s F(s)
t
s0
7.延迟定理
若L[f(t)]=F(s),对任一正实数a,则有
L f (t a) f (t a)estdt eas F (s) 0
ic
1 C
dui dt
R C uo(t)
例5 写出下图电气系统的微分方程
R1 L1
L2

u(t)
i1( t ) C
i2 ( t ) uc( t )
R2
解:
u(t)
i1 R1
L1
di1 (t) dt
uc
(t)
(1)
uc (t)
L2
di2 (t) dt
i2 R2
(2)
uc
(t)
1 C
(i1 - i2 )dt
j0
i0
若系数ai,bi是常数,则方程是线性定常的,相应 的系统也称为线性定常系统,若系数是时间的函数, 则该方程为线性时变的,相应的系统也称为线性时变 系统。(m≥n)

02 自动控制原理—第二章

02 自动控制原理—第二章
Tm J
Tm
d dt
K u u a K m (Ta
dM c dt
Mc)
电感La较小,故电磁时间常数Ta可以忽略 ,则
Tm
d dt
K uua K m M c
如果取电动机的转角 (rad)作为输出,电枢电压ua (V),考 虑到 d ,可将上式改写成
2.举例 ①一个自变量:励磁电流成正 比,但if增加到某个范围后,磁路饱和,发电机的电势与励磁电流呈 现一种连续变化的非线性函数关系。 设:x—励磁电流, y—发电机的输出电势。 y=f(x)
设原运行于某平衡点(静态工作点) A点:x=x0 , y=y0 ,且y0=f(x0) B点:当x变化△ x, y=y0+△ y 函数在(x0 , y0 )点连续可微,在A 点展开成泰勒级数,即
y k x
df ( x ) k dx x x0
②两个自变量: y=f(x1, x2) 静态工作点: y0=f(x10, x20) 在y0=f(x10, x20) 附近展开成泰勒级数,即
f 1 2 f f 2 f 2 f y f ( x10 , x 20 ) ( x1 x10 ) ( x 2 x 20 ) ( x1 x10 ) 2 ( x1 x10 )( x 2 x 20 ) ( x 2 x 20 ) 2 2 2 x 2! x x 2 x1x 2 x 2 1 1
例2-2
解 设回路电流i1和i2为中间变量。根据基尔霍夫电压定律对前一回 路,有
u i R1i1
对后一回路,有
1 C1
(i
1
i 2 ) dt
1 C2

基本要求-控制系统数学模型

基本要求-控制系统数学模型
航空工程学院航空工程实验中心
自动控制原理
第二章控制系统的数学模型
线性连续系统微分方程的一般形式
d c (t ) d c (t ) dc (t ) an an 1 ... a1 a0 c ( t ) n n 1 dt dt dt d m r (t ) d m 1r (t ) dr (t ) bm bm 1 ... b1 b0 r (t ) m m 1 dt dt dt
航空工程学院航空工程实验中心
自动控制原理
第二章控制系统的数学模型
• 3.表示形式 a.时域:微分﹑差分﹑状态方程 b.复域:传递函数﹑结构图 c.频域:频率特性
三种数学模型之间的关系 线性系统
拉氏 傅氏 传递函数 微分方程 频率特性 变换 变换
航空工程学院航空工程实验中心
自动控制原理
第二章控制系统的数学模型
自动控制原理
第二章控制系统的数学模型
题目变种3,寻求新解法
1 R1 cs I ( s) U ( s) U r ( s) c 1 R1 cs
Uc( s ) I (s) R2
联立,可解得: 微分方程为:
U c ( s) R2 (1 R1Cs) U r (s) R1 R2 R1 R2 Cs
微分方程的标准形式: 1、与输入量有关的项写在方程的右端; 2、与输出量有关的项写在方程的左端; 3、方成两端变量的导数项均按降幂排列
mx(t ) fx(t ) kx(t ) F (t )
航空
第二章控制系统的数学模型
电气系统三元件(知识补充)
电阻
航空工程学院航空工程实验中心
自动控制原理
第二章控制系统的数学模型

2.为什么要建立数学模型: 只是定性地了解系统的工作原理和大致的 运动过程是不够的,还要从理论上对系统 性能进行定量的分析和计算。 另一个原因:许多表面上看毫无共同之处 的控制系统,其运动规律具有相似性,可 以用相同形式的数学模型表示。

控制工程基础 清华大学 董景新 第二章 控制系统的动态数学模型

控制工程基础 清华大学 董景新 第二章 控制系统的动态数学模型

2.1 基本环节数学模型
数学模型是描述物理系统的运动规律、特性 和输入输出关系的一个或一组方程式。 系统的数学模型可分为静态和动态数学模型。 静态数学模型:反映系统处于平衡点(稳态) 时,系统状态有关属性变量之间关系的数学模型。 即只考虑同一时刻实际系统各物理量之间的数学 关系,不管各变量随时间的演化,输出信号与过 去的工作状态(历史)无关。因此静态模型都是 代数式,数学表达式中不含有时间变量。
控制工程基础
(第二章)
清华大学
第二章
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9
控制系统的动态数学模型
基本环节数学模型 数学模型的线性化 拉氏变换及反变换 传递函数以及典型环节的传递函数 系统函数方块图及其简化 系统信号流图及梅逊公式 受控机械对象数学模型 绘制实际机电系统的函数方块图 状态空间方程
式中, a1 , a2 是常值,可由以下步骤求得 将上式两边乘 s j s j , 两边同 时令s j(或同时令s j ), 得
a1s a2 s j X s s j s j s j
s3 例 试求 X s 2 s 3s 2
的拉氏反变换。
s 3 解: X s 2 s 3s 2 s3 s 1s 2 a1 a2 s 1 s 2
s3 a1 s 1 2 s 1s 2 s 1 s3 a2 s 2 1 s 1s 2 s 2 2 1 X s s 1 s 2 t 2t xt 2e e 1t
T st
2T T

xt e
st
n 1T dt

第2章_控制系统的动态数学模型_2.4传递函数以及典型环节的传递函数

《控制工程基础》 控制工程基础》
第2章 控制系统的动态数学模型 2.4 传递函数以及典型环节的传递函数
2.4.1 传递函数的基本概念 (1)传递函数的定义 )
线性定常系统在零初始条件下,输出量的 拉氏变换与输入量的拉氏变换之比,称为该系统 的传递函数。
X o (s ) G (s ) = X i (s )
m n bm * K = =K ∏(-Zi ) / ∏(− pj ) an i=1 j =1
∏(s − zj ) j=1
m
∏(s − pi ) i=1
n
为传递函数的增益
b0 K = a0
*
为根轨迹增益
T和τi 为时间常数 i
零、极点分布图:
b0(s − z1)(s − z2 )… (s − zm) M(s) … G(s) = = a0 (s − p1)(s − p2)… (s − pn ) D(s) …
描述该线性定常系统的传递函数为
…+bm−1s + bm Xo (s) b0sm + bsm−1 +… 1 G(s) = = Xi (s) a0sn + a1sn−1 +… …+ an−1s + an M(s) = D(s)
式 : (s) = b0sm + bsm−1 +… 中 M …+ bm−1s + bm 1 D(s) = a0sn + a1sn−1 +… …+ an−1s + an
LCs U c ( s ) + RCsU c ( s ) + U c ( s ) = U r ( s )
2
按照定义,系统的传递函数为:
U c (s) 1 = G (s) = U i ( s ) LCs 2 + RCs + 1

控制系统的数学模型

第二章控制系统的数学模型第章控制系统的数学模2-1 1 数学模型数学模型本书中主要介绍的几种系统模型图型:信号流程图数学模型描述系统行为特性的数学表达式模方块图信号程图数学模型:微分方程传递函数频率特性一、数学模型:描述系统行为特性的数学表达式。

是对实际物理系统的一种数学抽象。

模型各有特点,使用时可灵活掌握。

若分析研究系统的动态特性,取其数学模型比较方便;若分析研究系统的内部结构情况,取其物理模型比较直观;若两者皆有,则取其图模型比较合理。

11——1.1. 控制系统的时域数学模型控制系统的时域数学模型微分方程r(t)——输入量c(t)c(t)a dc(t)a c(t)d a d a ++++L L dr(t)r(t)d r(t)db 其中,(i =0,1,2,…….n; j =0,1,2…….m) 均为实数,b a r(t)b b ++++=L L b (,,,;j ,,)实,j i2——定定常条输的变2.2.控制系统的复域数学模型控制系统的复域数学模型传递函数A. 定义:线性定常系统在初始条件为零时,输出量的拉氏变设:输入----r(t),输出----c(t),则传递函数:L[c(t)]G()式中C()L[(t)])s (C G(s)==式中:C(s)=L[c(t)]——输出量的拉氏变换式那么:C(s)=R(s)G(s)[R()G()][C()]()11[R(s)G(s)]L [C(s)]c(t)-1-1==推广到一般情况,系统时域数学模型——推广到般情况,系统时域数学模型微分方程:L L c(t)a a a a 011-n 1-n n n ++++r(t)b d b d d b -++++=L L b ()dt dtdt 011-m 1m m m L L R(s)b sR(s)b R(s)sb R(s)s b 01-1m m +++=a. 控制系统传递函数的一般表达形式:s −L L 传式011n n a s a s a a R(s)+++−b.b.表示成典型环节表达形式:111+++−s T s T s T s s R L )))()(21n υ∏∏i C )(s ωω;==11j l pnpnωωm 系统的稳态增益K =——系统的稳态增益;2m m m+=2n n nν++=c 零极点表达形式K C +++++L c. 表示成零、极点表达形式:)())(()(21m r z s z s z s s =−——νjp 系统的极点,个零极点。

自动控制原理(胡寿松)第六版-第二章-控制系统的数学模型--2


if=常数
dia La Ra ia Ea ua dt
ua
ia
Ra Ea La
M

电动机轴上机械运动方程:
d J MD ML dt
J — 负载折合到电动机轴上的转动惯量; MD — 电枢电流产生的电磁转矩; ML — 合到电动机轴上的总负载转矩。 (4)列写辅助方程 Ea = ke
Ra J Tm 令机电时间常数Tm : ke k m 二阶系统 La 令电磁时间常数Ta : Ta Ra 2 Tm TaTm dML d d 1 TaTm 2 Tm ua ML dt dt ke J J dt
1)当电枢电感较小时,可忽略,可简化上式如下:
Ta 0
第二章 控制系统的数学模型
前言 数学模型基础
2.1 控制系统的时域数学模型
2.2 控制系统的复数域数学模型 2.3 控制系统的结构图与信号流图
2.4 控制系统建模实例
End
前言 数学模型基础
2.2 2.3 2.4 2.5
1.定义:数学模型是指出系统内部物理量(或变量)之间动态 关系的表达式。 2.建立数学模型的目的
d nc d n1c dc d mr d m 1r dr a0 n a1 n1 an1 an c b0 m b1 m 1 bm 1 bm r dt dt dt dt dt dt
式中,c(t)是系统的输出变量,r(t)是系统的输入变量。 从工程可实现的角度来看,上述微分方程满足以下约束:
统 2) 简化性和准确性:忽略次要因素,简化之,但不能太简单,结果合 理
3) 动态模型:变量各阶导数之间关系的微分方程。性能分析
4) 静态模型:静态条件下,各变量之间的代数方程。放大倍数

自动控制原理:第二章 控制系统数学模型


TaTLma KJe K
dMdML m dtdt
L
Tm
Ra J K eKm
——机电时间常数(秒);
Ta
La Ra
—电动机电枢回路时间常数 (秒)
若输出为电动机的转角q ,则有
TaTm
d 3q
dt 3
Tm
d 2q
dt 2
dq
dt
1 Ke
ua
Tm J
ML
TaTm J
dM L dt
—— 三阶线性定常微分方程 9
扰动输入为负载转矩ML。 (1)列各元件方程式。电动机方程式为:
TaTm
d 2w
dt 2
测输T速Km出发td为d电wt电测压机速w 反 K馈1e系ua数
Tm J
M反L馈 电TaJT压m
dM L dt
ua Kae ut Ktw e ur ut 12
(2)消去中间变量。从以上各式中消去中间变
量ua,e,ut,最后得到系统的微分方程式
y = Kx
式中, K f 'x0 是比例系数,它是函数f(x)在A点
的切线斜率。
18
对于有两个自变量x1,x2的非线性函数f(x1,x2),同样 可以工作在某工作点(x10,x20)附近进行线性化。
这种小偏差线性化对控制系统大多数工作状态是可 行的。事实上,自动控制系统在正常情况下都处于 一个稳定的工作状态,即平衡状态,这时被控量与 期望值保持一直,控制系统也不进行控制动作。一 旦被控量偏离期望值产生偏差时,控制系统便开始 控制动作,以便减小这个偏差。因此控制系统中被 控量的偏差一般不会很大,只是“小偏差”。
RC传网0 递络函的数阶G跃(响s)确应立曲了线t 电路输入
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档