26.1.1二次函数 导学案
26.1.1二次函数教学案

主备人 张 伟 年级主任签字 使用人修 改 补 充【尝试应用】例1.下列函数表达式中,哪些是二次函数?哪些不是?若是二次函数,请指出各项对应项的系数.(1)y =1-3x 2 (2)y =3x 2+2x (3)y =x (x -5)+2(4)y =3x 3+2x 2(5)y =x +1x例2. 关于x 的函数mm xm y -+=2)1(是二次函数, 求m 的值.注意:二次函数的二次项系数必须是 的数。
3.函数y =(m -2)x 2+mx -3(m 为常数).(1)当m__________时,该函数为二次函数; (2)当m__________时,该函数为一次函数. 4.课堂训练:P3-- 练习 【畅谈收获】你认为今天这节课最需要掌握的是 __________________________。
【达标检测】(带*为选做) (一)必做题 :举一反三1.下列函数中是二次函数的是( ) A .y =x +12B .y =3 (x -1)2C .y =(x +1)2-x 2D .y =1x2 -x2.若函数y =(a -1)x 2+2x +a 2-1是二次函数,则( ) A .a =1 B .a =±1 C .a ≠1 D .a ≠-1 3.y =(m +1)xmm -2-3x +1是二次函数,则m 的值为_________________.4.在一定条件下,若物体运动的路段s (米)与时间t (秒)之间的关系为 s =5t 2+2t ,则当t =4秒时,该物体所经过的路程为( ) A .28米 B .48米 C .68米 D .88米5.一个长方形的长是宽的2倍,写出这个长方形的面积y 与宽x 之间的函数关系式. _________________ (二)选做题:劝君未解不要走,解得好题快乐人1.已知二次函数y =-x 2+bx +3.当x =2时,y =3,求 这个二次函数解析式。
2.已知y 与x 2成正比例,并且当x =-1时,y =-3.求: (1)函数y 与x 的函数关系式;(2)当x =4时,y 的值; (3)当y =-13时,x 的值.修 改 补 充课 题 《26.1.1二次函数》教学案学习目标1、经历对实际问题情境分析确定二次函数表达式的过程,理解并掌握二次例函数的概念;2、能判断一个给定的函数是否为二次例函数;3、能根据实际问题中的条件确定二次例函数的解析式。
九年级数学下册第26章二次函数26.1二次函数导学案(无答案)华东师大版(2021年整理)

山西省泽州县晋庙铺镇九年级数学下册第26章二次函数26.1 二次函数导学案(无答案)(新版)华东师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(山西省泽州县晋庙铺镇九年级数学下册第26章二次函数26.1 二次函数导学案(无答案)(新版)华东师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为山西省泽州县晋庙铺镇九年级数学下册第26章二次函数26.1 二次函数导学案(无答案)(新版)华东师大版的全部内容。
二次函数年级九学科数学课型新授授课人学习内容二次函数学习目标1、理解并掌握二次函数的概念;能判定给出的函数是否是二次函数;2、能根据实际问题中的条件确定二次函数的解析式,并能确定自变量的取值范围;3、经历探索和表示二次函数关系的过程,获得用二次函数来描述实际生活中两个变量之间关系的体验,感受数学与生活的联系。
学习重点理解二次函数的概念.学习难点能根据实际问题中的条件确定二次函数的解析式,并能确定自变量的取值范围。
导学方案复备栏【温故互查】1、用实例说明什么叫做函数?它有哪几种表达方式?2、什么是一次函数?什么是反比例函数?它们的一般形式是什么?简要叙述它们的图象和性质.3、有一盘蚊香长32cm,点燃后每小时燃烧掉8 cm,设点燃t(h)后,蚊香的长度为l(cm)。
则l与t的函数关系式为 ,当点燃2 h后,蚊香长 cm.【设问导读】阅读教材P1-3内容,完成下列各题:1、完成问题1中的“试一试”,这个函数的关系式为 ,可化为一般形式 ,自变量x 的取值范围如何确定?2、在问题2中,利润= 。
设每件商品降价x 元,该商品每天的利润为y 原,则该商品降价后的售价可表示为 ,销售量可表示为 ,Y 与x 的函数关系式为 ,可化为 ,自变量x 的取值范围如何确定?3、一个正方形桌面的面积为S ,边长为a,则S 与a 的函数关系式为 。
九年级上册数学导学案-二次函数

九年级上册数学导学案——二次函数第1课时 26.1 二次函数一、阅读教科书 二、学习目标:1.知道二次函数的一般表达式; 2.会利用二次函数的概念分析解题; 3.列二次函数表达式解实际问题. 三、知识点:一般地,形如____________________________的函数,叫做二次函数。
其中x 是________,a 是__________,b 是___________,c 是_____________. 四、基本知识练习1.观察:①y =6x 2;②y =-32 x 2+30x ;③y =200x 2+400x +200.这三个式子中,虽然函数有一项的,两项的或三项的,但自变量的最高次项的次数都是______次.一般地,如果y =ax 2+bx +c (a 、b 、c 是常数,a ≠0),那么y 叫做x 的_____________. 2.函数y =(m -2)x 2+mx -3(m 为常数). (1)当m__________时,该函数为二次函数;(2)当m__________时,该函数为一次函数. 3.下列函数表达式中,哪些是二次函数?哪些不是?若是二次函数,请指出各项对应项的系数. (1)y =1-3x 2 (2)y =3x 2+2x (3)y =x (x -5)+2 (4)y =3x 3+2x 2(5)y =x +1x五、课堂训练 1.y =(m +1)xmm 2-3x +1是二次函数,则m 的值为_________________.2.下列函数中是二次函数的是( ) A .y =x +12B . y =3 (x -1)2C .y =(x +1)2-x 2D .y =1x2 -x3.在一定条件下,若物体运动的路段s (米)与时间t (秒)之间的关系为 s =5t 2+2t ,则当t =4秒时,该物体所经过的路程为( ) A .28米 B .48米 C .68米 D .88米4.n 支球队参加比赛,每两队之间进行一场比赛.写出比赛的场次数m 与球队数n 之间的关系式_______________________.5.已知y 与x 2成正比例,并且当x =-1时,y =-3. 求:(1)函数y 与x 的函数关系式;(2)当x =4时,y 的值; (3)当y =-13时,x 的值.6.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m )的空地上修建一 个矩形绿化带ABCD ,绿化带一边靠墙,另三边用总长为40m 的栅栏围住(如图). 若设绿化带的BC 边长为x m ,绿化带的面积为y m 2.求y 与x 之间的函数关系式,并写出自变量x的取值范围.六、目标检测1.若函数y=(a-1)x2+2x+a2-1是二次函数,则()A.a=1 B.a=±1 C.a≠1 D.a≠-1 2.下列函数中,是二次函数的是()A.y=x2-1 B.y=x-1 C.y=8x D.y=8x23.一个长方形的长是宽的2倍,写出这个长方形的面积与宽之间的函数关系式.4.已知二次函数y=-x2+bx+3.当x=2时,y=3,求这个二次函数解析式.第2课时二次函数y=ax2的图象与性质一、阅读课本:二、学习目标:1.知道二次函数的图象是一条抛物线;2.会画二次函数y=ax2的图象;3.掌握二次函数y=ax2的性质,并会灵活应用.三、探索新知:画二次函数y=x2的图象.【提示:画图象的一般步骤:①列表(取几组x、y的对应值;②描点(表中x、y的数值在坐标平面中描点(x,y);③连线(用平滑曲线).】…由图象可得二次函数y=x2的性质:1.二次函数y=x2是一条曲线,把这条曲线叫做______________.2.二次函数y=x2中,二次函数a=_______,抛物线y=x2的图象开口__________.3.自变量x的取值范围是____________.4.观察图象,当两点的横坐标互为相反数时,函数y值相等,所描出的各对应点关于________对称,从而图象关于___________对称.5.抛物线y=x2与它的对称轴的交点(,)叫做抛物线y=x2的_________.因此,抛物线与对称轴的交点叫做抛物线的_____________.6.抛物线y=x2有____________点(填“最高”或“最低”).四、例题分析例1 在同一直角坐标系中,画出函数y =12 x 2,y =x 2,y =2x 2的图象.y =x 2的图象刚画过,再把它画出来. …归纳:抛物线y =12 x 2,y =x 2,y =2x 2的二次项系数a_______0;顶点都是__________;对称轴是_________;顶点是抛物线的最_________点(填“高”或“低”) . 例2 请在例1的直角坐标系中画出函数y =-x 2,y =-12 x 2, y =-2x 2的图象.归纳:抛物线y =-x 2,y =-12 x 2, y =-2x 2的二次项系数a______0,顶点都是________, 对称轴是___________,顶点是抛物线的最________点(填“高”或“低”) . 五、归纳总结22.抛物线y =x 2与y =-x 2关于________对称,因此,抛物线y =ax 2与y =-ax 2关于_______ 对称,开口大小_______________.3.当a >0时,a 越大,抛物线的开口越___________;当a <0时,|a | 越大,抛物线的开口越_________;因此,|a | 越大,抛物线的开口越________,反之,|a | 越小,抛物线的开口越________. 六、课堂训练2.若二次函数y =ax 2的图象过点(1,-2),则a 的值是___________. 3.二次函数y =(m -1)x 2的图象开口向下,则m____________. 4.如图, ① y =ax 2② y =bx 2 ③ y =cx 2 ④ y =dx 2比较a 、b 、c 、d 的大小,用“>”连接. ___________________________________七、目标检测1.函数y =37 x 2的图象开口向_______,顶点是__________,对称轴是________,当x =___________时,有最_________值是_________. 2.二次函数y =mx22 m 有最低点,则m =___________.3.二次函数y =(k +1)x 2的图象如图所示,则k 的取值范围为___________.4.写出一个过点(1,2)的函数表达式_________________.第3课时二次函数y=ax2+k的图象与性质一、阅读课本:二、学习目标:1.会画二次函数y=ax2+k的图象;2.掌握二次函数y=ax2+k的性质,并会应用;3.知道二次函数y=ax2与y=的ax2+k的联系.三、探索新知:在同一直角坐标系中,画出二次函数y=x2+1,y=x2-1的图象.观察图象得:2.可以发现,把抛物线y=x2向______平移______个单位,就得到抛物线y=x2+1;把抛物线y=x2向_______平移______个单位,就得到抛物线y=x2-1.3.抛物线y=x2,y=x2-1与y=x2+1的形状_____________.四、理一理知识点1.2.抛物线y=2x2向上平移3个单位,就得到抛物线__________________;抛物线y=2x2向下平移4个单位,就得到抛物线__________________.因此,把抛物线y=ax2向上平移k(k>0)个单位,就得到抛物线_______________;把抛物线y=ax2向下平移m(m>0)个单位,就得到抛物线_______________.3.抛物线y=-3x2与y=-3x2+1是通过平移得到的,从而它们的形状__________,由此可得二次函数y=ax2与y=ax2+k的形状__________________.五、课堂巩固训练2.将二次函数y=5x2-3向上平移7个单位后所得到的抛物线解析式为_________________.3.写出一个顶点坐标为(0,-3),开口方向与抛物线y=-x2的方向相反,形状相同的抛物线解析式____________________________.4.抛物线y=4x2+1关于x轴对称的抛物线解析式为______________________.六、目标检测2.抛物线y =-13 x 2-2可由抛物线y =-13 x 2+3向___________平移_________个单位得到的.3.抛物线y =-x 2+h 的顶点坐标为(0,2),则h =_______________.4.抛物线y =4x 2-1与y 轴的交点坐标为_____________,与x 轴的交点坐标为_________.第4课时 二次函数y =a(x-h)2的图象与性质一、阅读课本: 二、学习目标:1.会画二次函数y =a (x -h )2的图象;2.掌握二次函数y =a (x -h )2的性质,并要会灵活应用; 三、探索新知:画出二次函数y =-12 (x +1)2,y -12 (x -1)2的图象,并考虑它们的开口方向、对称轴、顶点以及最值、增减性.12.请在图上把抛物线y =-12x 2也画上去(草图).①抛物线y =-12 (x +1)2 ,y =-12 x 2,y =-12 (x -1)2的形状大小____________.②把抛物线y =-12 x 2向左平移_______个单位,就得到抛物线y =-12 (x +1)2 ;把抛物线y =-12 x 2向右平移_______个单位,就得到抛物线y =-12 (x +1)2 .四、整理知识点2.对于二次函数的图象,只要|a |相等,则它们的形状_________,只是_________不同. 五、课堂训练2.抛物线y =4 (x -2)2与y 轴的交点坐标是___________,与x 轴的交点坐标为________. 3.把抛物线y =3x 2向右平移4个单位后,得到的抛物线的表达式为____________________. 把抛物线y =3x 2向左平移6个单位后,得到的抛物线的表达式为____________________. 4.将抛物线y =-13 (x -1)x 2向右平移2个单位后,得到的抛物线解析式为____________.5.写出一个顶点是(5,0),形状、开口方向与抛物线y =-2x2都相同的二次函数解析式 ___________________________. 六、目标检测1.抛物线y =2 (x +3)2的开口______________;顶点坐标为__________________;对称轴是_________;当x >-3时,y______________;当x =-3时,y 有_______值是_________. 2.抛物线y =m (x +n)2向左平移2个单位后,得到的函数关系式是y =-4 (x -4)2,则 m =__________,n =___________.3.若将抛物线y =2x 2+1向下平移2个单位后,得到的抛物线解析式为_______________. 4.若抛物线y =m (x +1)2过点(1,-4),则m =_______________.第5课时 二次函数y =a(x -h)2+k 的图象与性质一、阅读课本: 二、学习目标:1.会画二次函数的顶点式y =a (x -h)2+k 的图象; 2.掌握二次函数y =a (x -h)2+k 的性质;3.会应用二次函数y =a (x -h)2+k 的性质解题. 三、探索新知:画出函数y =-12 (x +1)2-1的图象,指出它的开口方向、对称轴及顶点、最值、增减性.列表:2.把抛物线y =-12x 2向_______平移______个单位,再向______平移______个单位,就得到抛物线y=-12(x+1)2-1.五、课堂练习2.y=6x2+3与y=6 (x-1)2+10_____________相同,而____________不同.3.顶点坐标为(-2,3),开口方向和大小与抛物线y=12x2相同的解析式为()A.y=12(x-2)2+3 B.y=12(x+2)2-3C.y=12(x+2)2+3 D.y=-12(x+2)2+34.二次函数y=(x-1)2+2的最小值为__________________.5.将抛物线y=5(x-1)2+3先向左平移2个单位,再向下平移4个单位后,得到抛物线的解析式为_______________________.6.若抛物线y=ax2+k的顶点在直线y=-2上,且x=1时,y=-3,求a、k的值.7.若抛物线y=a (x-1)2+k上有一点A(3,5),则点A关于对称轴对称点A’的坐标为__________________.六、目标检测1.2.抛物线y=-3 (x+4)2+1中,当x=_______时,y有最________值是________.3.足球守门员大脚开出去的球的高度随时间的变化而变化,这一过程可近似地用下列哪幅图表示()A B C D4.将抛物线y=2 (x+1)2-3向右平移1个单位,再向上平移3个单位,则所得抛物线的表达式为________________________.5.一条抛物线的对称轴是x=1,且与x轴有唯一的公共点,并且开口方向向下,则这条抛物线的解析式为____________________________.(任写一个)第6课时二次函数y=ax2+bx+c的图象与性质一、阅读课本:二、学习目标:1.配方法求二次函数一般式y=ax2+bx+c的顶点坐标、对称轴;2.熟记二次函数y=ax2+bx+c的顶点坐标公式;3.会画二次函数一般式y=ax2+bx+c的图象.三、探索新知:1.求二次函数y=12x2-6x+21的顶点坐标与对称轴.解:将函数等号右边配方:y=12x2-6x+212.画二次函数y=12x2-6x+21的图象.解:y=12x2-6x+21配成顶点式为_______________________.3.用配方法求抛物线y=ax2+bx+c(a≠0)的顶点与对称轴.五、课堂练习1.用配方法求二次函数y=-2x2-4x+1的顶点坐标.2.用两种方法求二次函数y=3x2+2x的顶点坐标.3.二次函数y=2x2+bx+c的顶点坐标是(1,-2),则b=________,c=_________.4.已知二次函数y=-2x2-8x-6,当___________时,y随x的增大而增大;当x=________时,y 有_________值是___________.六、目标检测1.用顶点坐标公式和配方法求二次函数y=12x2-2-1的顶点坐标.2.二次函数y=-x2+mx中,当x=3时,函数值最大,求其最大值.第7课时二次函数y=ax2+bx+c解析式求法一、学习目标:1.会用待定系数法求二次函数的解析式;2.实际问题中求二次函数解析式.二、课前基本练习1.已知二次函数y=x2+x+m的图象过点(1,2),则m的值为________________.2.已知点A(2,5),B(4,5)是抛物线y=4x2+bx+c上的两点,则这条抛物线的对称轴为_____________________.3.将抛物线y=-(x-1)2+3先向右平移1个单位,再向下平移3个单位,则所得抛物线的解析式为____________________.4.抛物线的形状、开口方向都与抛物线y=-12x2相同,顶点在(1,-2),则抛物线的解析式为________________________________.三、例题分析例1 已知抛物线经过点A(-1,0),B(4,5),C(0,-3),求抛物线的解析式.例2 已知抛物线顶点为(1,-4),且又过点(2,-3).求抛物线的解析式.例3 已知抛物线与x轴的两交点为(-1,0)和(3,0),且过点(2,-3).求抛物线的解析式.四、归纳用待定系数法求二次函数的解析式用三种方法:1.已知抛物线过三点,设一般式为y=ax2+bx+c.2.已知抛物线顶点坐标及一点,设顶点式y=a(x-h)2+k.3.已知抛物线与x轴有两个交点(或已知抛物线与x轴交点的横坐标),设两根式:y=a(x-x1)(x-x2) .(其中x1、x2是抛物线与x轴交点的横坐标)五、实际问题中求二次函数解析式例4 要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管应多长?六、课堂训练1.已知二次函数的图象过(0,1)、(2,4)、(3,10)三点,求这个二次函数的关系式.2.已知二次函数的图象的顶点坐标为(-2,-3),且图像过点(-3,-2),求这个二次函数的解析式.3.已知二次函数y=ax2+bx+c的图像与x轴交于A(1,0),B(3,0)两点,与y轴交于点C(0,3),求二次函数的顶点坐标.4.如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB向B以2mm/s的速度移动,动点Q从点B开始沿边BC向C以4mm/s的速度移动,如果P、Q分别从A、B同时出发,那么△PBQ的面积S随出发时间t如何变化?写出函数关系式及t的取值范围.AP七、目标检测1.已知二次函数的图像过点A(-1,0),B(3,0),C(0,3)三点,求这个二次函数解析式.第8课时 26.2用函数观点看一元二次方程一、阅读课本:二、学习目标:1.知道二次函数与一元二次方程的关系.2.会用一元二次方程ax2+bx+c=0根的判别式△=b2-4ac判断二次函数y=ax2+bx+c与x轴的公共点的个数.三、探索新知1.问题:如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线.如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系h=20t-5t2.考虑以下问题:(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?(3)球的飞行高度能否达到20.5m?为什么?(4)球从飞出到落地要用多少时间?2.观察图象:(1)二次函数y=x2+x-2的图象与x轴有____个交点,则一元二次方程x2+x-2=0的根的判别式△=_______0;(2)二次函数y=x2-6x+9的图像与x轴有___________个交点,则一元二次方程x2-6x+9=0的根的判别式△=_______0;(3)二次函数y=x2-x+1的图象与x轴________公共点,则一元二次方程x2-x+1=0的根的判别式△_______0.四、理一理知识1.已知二次函数y=-x2+4x的函数值为3,求自变量x的值,可以看作解一元二次方程__________________.反之,解一元二次方程-x2+4x=3又可以看作已知二次函数__________________的函数值为3的自变量x的值.一般地:已知二次函数y=ax2+bx+c的函数值为m,求自变量x的值,可以看作解一元二次方程ax2+bx+c=m.反之,解一元二次方程ax2+bx+c=m又可以看作已知二次函数y=ax2+bx+c 的值为m的自变量x的值.2.二次函数y=ax2+bx+c与x轴的位置关系:一元二次方程ax2+bx+c=0的根的判别式△=b2-4ac.(1)当△=b2-4ac>0时抛物线y=ax2+bx+c与x轴有两个交点;(2)当△=b2-4ac=0时抛物线y=ax2+bx+c与x轴只有一个交点;(3)当△=b2-4ac<0时抛物线y=ax2+bx+c与x轴没有公共点.五、基本知识练习1.二次函数y=x2-3x+2,当x=1时,y=________;当y=0时,x=_______.2.二次函数y=x2-4x+6,当x=________时,y=3.3.如图,一元二次方程ax2+bx+c=0的解为________________4.如图一元二次方程ax2+bx+c=3的解为_________________5.如图填空:(1)a________0(2)b________0(3)c________0(4)b2-4ac________0六、课堂训练1.特殊代数式求值:①如图看图填空:(1)a+b+c_______0(2)a-b+c_______0(3)2a-b_______0②如图2a+b_______04a+2b+c_______02.利用抛物线图象求解一元二次方程及二次不等式(1)方程ax2+bx+c=0的根为___________;(2)方程ax2+bx+c=-3的根为__________;(3)方程ax2+bx+c=-4的根为__________;(4)不等式ax2+bx+c>0的解集为________;(5)不等式ax2+bx+c<0的解集为________;(6)不等式-4<ax2+bx+c<0的解集为________.七、目标检测根据图象填空:(1)a_____0;(2)b_____0;(3)c______0;(4)△=b2-4ac_____0;(5)a+b+c_____0;(6)a-b+c_____0;(7)2a+b_____0;(8)方程ax2+bx+c=0的根为__________;(9)当y>0时,x的范围为___________;(10)当y<0时,x的范围为___________;八、课后训练1.已知抛物线y=x2-2kx+9的顶点在x轴上,则k=____________.2.已知抛物线y=kx2+2x-1与坐标轴有三个交点,则k的取值范围___________.3.已知函数y=ax2+bx+c(a,b,c为常数,且a≠0)的图象如图所示,则关于x的方程ax2+bx+c-4=0的根的情况是()A.有两个不相等的正实数根B.有两个异号实数根C.有两个相等实数根D.无实数根4.如图为二次函数y=ax2+bx+c的图象,在下列说法中:①ac<0;②方程ax2+bx+c=0的根是x1=-1,x2=3;③a+b+c>0;④当x>1时,y随x的增大而增大.正第12课时 实际问题与二次函数一、阅读课本: 二、学习目标:1.会建立直角坐标系解决实际问题; 2.会解决桥洞水面宽度问题. 三、基本知识练习1.以抛物线的顶点为原点,以抛物线的对称轴为y 轴建立直角坐标系时,可设这条抛物线的关系式为___________________________________.2.拱桥呈抛物线形,其函数关系式为y =-14x 2,当拱桥下水位线在AB 位置时,水面宽为12m ,这时水面离桥拱顶端的高度h 是( )A .3mB .2 6 mC .4 3 mD .9m3.有一抛物线拱桥,已知水位线在AB 位置时,水面的宽为4 6 米,水位上升4米,就达到警戒线CD ,这时水面宽为4 3 米.若洪水到来时,水位以每小时0.5米的速度上升,则水过警戒线后几小时淹没到拱桥顶端M 处?四、课堂练习1.一座拱桥的轮廓是抛物线(如图①所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m . (1)将抛物线放在所给的直角坐标系中(如图②所示),其关系式y =ax 2+c 的形式,请根据所给的数据求出a 、c 的值;(2)求支柱MN 的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m ,高3m 的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.2.如图,有一座抛物线形拱桥,在正常水位时水面AB 的宽为20m ,如果水位上升3m 时,水面CD 的宽是10m .(1)建立如图所示的直角坐标系,求此抛物线的解析式.(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km (桥长忽略不计).货车正以每小时40km 的速度开往乙地,当行驶1h时,忽然接到紧急通知:前方连降暴雨,造成水位图①以每小0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行).试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由.若不能,要使货车安全通过此桥,速度应超过每小时多少千米?第13课时二次函数综合应用一、复习二次函数的基本性质二、学习目标:灵活运用二次函数的性质解决综合性的问题.三、课前训练1.二次函数y=kx2+2x+1(k<0)的图象可能是()2.如图:(1)当x为何范围时,y1>y2?(2)当x为何范围时,y1=y2?(3)当x为何范围时,y1<y2?3.如图,是二次函数y=ax2-x+a2-1的图象,则a=____________.4.若A (-134 ,y 1),B (-1,y 2),C (53 ,y 3)为二次函数y =-x 2-4x +5图象上的三点,则y 1、y 2、y 3的大小关系是( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 35.抛物线y =(x -2) (x +5)与坐标轴的交点分别为A 、B 、C ,则△ABC 的面积为__________.6.如图,已知在平面直角坐标系中,矩形ABCD 的边AD 在x 轴上,点A 在原点,AB =3,AD =5.若矩形以每秒2个单位长度沿x 轴正方向做匀速运动,同时点P 从A 点出发以每秒1个单位长度沿A →B →C →D 的路线做匀速运动.当点P 运动到点D 时停止运动,矩形ABCD 也随之停止运动. (1)求点P 从点A 运动到点D 所需的时间.(2)设点P 运动时间为t (秒)①当t =5时,求出点P 的坐标. ②若△OAP 的面积为S ,试求出S 与t 之间的函数关系式(并写出相应 的自变量t 的取值范围).五、目标检测如图,二次函数y =ax 2+bx +c 的图像经过A (-1,0),B (3,0)两交点,且交y 轴于 点C .(1)求b 、c 的值;(2)过点C 作CD ∥x 轴交抛物线于点D ,点M 为此抛物线的顶点,试确定△MCD 的形状.。
《26_1二次函数》教案 (1)

课题:§26.1 二次函数(第1课时)【教学目标】1.理解二次函数的概念;2.会根据简单实际问题列出二次函数解析式;3.初步会用待定系数法求二次函数的解析式.【教学重点】理解二次函数的概念.【教学难点】求二次函数的解析式.【活动过程】创设情境,引入新课1.展示精美的抛物线图片,激发学生学习的兴趣2.设正方体的棱长为a ,棱长和为l ,表面积为S .(1)a ,l 之间有什么关系?(2)a ,S 之间有什 么关系?由一次函数引出本节课要学习的二次函数.活动一 理解二次函数的概念(一)学生独立完成:1.自学课本第4至6页,思考下列问题.(1)问题1中的n (n -3)为什么要除以2?你能想到类似的数学问题吗?(单循环问题,如:单循环比赛、握手等).(2)你怎样理解问题2中的“每年都比上一年的产量增加x 倍”?(增长率问题).(3)问题1和问题2中所列函数解析式有什么共同点?(函数都是用自变量的二次式表示的).(4)你知道了二次函数的哪些知识,请在课本上做上记号,并举出一个二次函数的例子加以说明.2.练习(1)判断下列函数是否为二次函数,如果是,指出它的二次项系数、一次项系数和常数项.①y =3x -1;②y =3x 2+2;③ y =3x 3+2x 2;④ y =2x 2-2x +1;⑤ y =x 2;⑥ y =x 2-x (1+x ).(2)函数y =ax 2+bx +c (a 、b 、c 是常数),当a 、b 、c 满足什么条件时,①它是二次函数? ②它是一次函数? ③它是正比例函数?(二)组内交流:通过自学和交流,你知道了什么解题经验或解题注意点?(三)全班展示、教师点拨:教师注意引导:1.什么是二次函数?什么是二次函数的二次项系数、一次项系数、常数项。
2.注意⑴a ≠0,但b 、c 能够为0;⑵判断是否为二次函数时,要化成一般形式。
活动二 求二次函数的解析式(一)学生独立完成,三人板演:1.关于x 的函数y =(m +1)m m 2x 是二次函数, 求m 的值.2. 已知关于x 的二次函数y =x 2+bx +c ,当x =-2时,函数值为-3;当x =2时,函数值为5,求3. 某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且 经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,若设每件降价x 元, 每星期售出商品的利润为y 元,请求出y 与x 的函数关系式.(二)组内交流:通过刚才的交流和展示,你知道了什么解题经验或解题注意点?(三)全班展示、教师点拨:教师注意引导:1.由二次函数的概念去求二次函数的解析式.2.用待定系数法去求二次函数的解析式,步骤:设、代、解、答、验3.根据实际问题去求二次函数的解析式,注意弄清数量关系.课堂练习1.下列函数中,是二次函数的是( ).A.y =8x 2+1B.y =8x +1C.y =x 8 D.y =28x 2.若函数y =(m 2+m )122x --m m 是二次函数,那么m 的值是 .3.n 支球队参加比赛,每两队之间实行一场比赛.写出比赛的场次数m 与球队数n 之间的关系式 .4.某种商品的价格是2元,准备实行两次降价.如果每次降价的百分率都是x ,经过两次降价后的价格y (单位:元)随每次降价的百分率x 的变化而变化,写出y 与x 之间的关系式 .5.已知关于x 的二次函数y =ax 2+bx ,当x =-1时,函数值为10;当x =1时,函数值为4,求这个 二次函数的解析式.6.某公司试销一种成本单价为500元/件的新产品,规定试销时的销售单价不低于成本单价,又不 高于800元/件,经调查,发现销售量y (件)与销售单价x (元/件)可近似于一次函数y =kx +b 的关系,如图.(1)根据图象,求一次函数y =kx +b 的表达式;(2)设公司获得毛利润(毛利润 =销售总额-成本总价)为S (元).试用销售单价x 表示毛利润S ,并写出自变量x 的取值范围.小结这节课你的收获是什么?你学会了哪几种求二次函数解析式的题型?作业见课后练习教学反思。
人教版九年级数学下册第26章二次函数导学案

人教版九年级数学下册第26章二次函数导学案26.1.1二次函数(第一课时)教学目标:(1)理解和掌握二次样条函数的概念;(2)可以判断给定函数是否为二次示例函数(3)能根据实际问题中的条件确定二次例函数的解析式。
重点:理解二次样条函数的概念,能根据已知条件写出函数的解析式;难点:理解二次示例函数的概念。
教学过程:一、预习测试用例一般地,形如____________________________的函数,叫做二次函数。
其中x是________,a是__________,b是___________,c是_____________.二.合作探究案:三、合规性评估案例:1.下列函数中,哪些是二次函数?(1) y=3x-1;(2) y=3x2+2;(3) y=3x3+2x2;(4) y=2x2-2x+1;(5)y=x2-x(1+x);(6) y=x-2+x.2。
如果函数y=(A-1)x+2x+A-1是二次函数,那么()A.A=1b A=±1c。
A.≠1d。
A.≠-1.3.一定条件下,若物体运动的路段s(米)与时间t(秒)之间的关系为s=5t+2t,则当t =4秒时,该物体所经过的路程为a.28米b、 48mc.68米d、 88米2二24.矩形的长度是宽度的两倍。
写出矩形面积和宽度之间的函数关系问题1:正方体的六个面是全等的正方形,如果正方形的棱长为x,表面积为y,写出y与x的关系。
5.圆柱体的高度等于底部的半径。
写出表面积s和半径R之间的关系。
问题2:n边形的对角线数d与边数n之间有怎样的关系?问题3:工厂目前的年产量是20件。
计划在未来两年增加产量。
如果每年的产量比前一年高出x倍,两年内该产品的数量y将取决于计划中设定的x值。
如何表达Y和X之间的关系?问题4:通过观察上述三个问题写出的三个函数关系的特点是什么?小组交流、讨论得出结论:经化简后都具有的形式。
问题5:什么是二次函数?比如形状。
问题6:函数y=AX2+BX+C,当a、B和C满足什么条件时,(1)它是二次函数吗?(2)它是程度的函数吗?(3)这是一个正比例函数吗?例1:关于x的函数m2?M6队和N队参加比赛,两队各进行一场比赛。
二次函数教案 (第一课时)

二次函数教案 (第一课时)二次函数的教学设计一、教学内容二次函数(新人教版九年级下册第26.1.1节)二、教学目标1.知识技能通过对多个实际问题的分析,让学生感受二次函数作为刻画现实世界有效模型的意义;通过观察和分析,学生归纳出二次函数的概念并能够根据函数特征识别二次函数。
2.教学思考学生能对具体情境中的数学息做出合理的解释,能用二次函数来描述和刻画现实事物间的函数关系。
3.解决问题体验数学与日常生活密切相关,让学生认识到许多问题可以用数学方法解决,体验实际问题“数学化”的过程。
4.情感态度通过观察、归纳、猜想、验证等教学活动,给学生创造成功机会,使他们爱学、乐学、学会,同时培养学生勇于探索,积极合作精神以及公平竞争的意识。
三、教学重点与难点1.教学重点认识二次函数,经历探索函数关系、归纳二次函数概念的过程。
2.教学困难根据函数解析式的结构特征,归纳出二次函数的概念。
第四,教学过程的安排教学活动流程活动1:温故知新,揭示课题活动内容和目的由回顾所学过的函数入手,引入函数大家庭中还会认识哪函数呢?然后从打篮球的例子引入二次函数。
学生能独立运用函数知识解决变量之间的关系。
2.活动:合作探究,获取新知识,制作探究环节,与学生互动,自主探索新知识,从而通过观察和归纳。
得到二次函数的解析式,获取新知。
本组题目是新知识的直接应用,目的是让学生能够区分。
活动3:小试身手,循序渐进认二次函数,循序渐进这一环节主要帮助学生处理解决问题,加深对二次函数的理解。
总结内容、应用、数学思维方法、获取知识的途径等。
活动四:回顾课堂,总结巩固方面,既总结知识,又提炼方法,让研究研究知识和运用知识都有很大的提升,方法就是学生讲收获。
活动5:课堂检测,测评反馈以测试的形式检测本节课的内容,检查学生的掌握程度,同时加深学生对知识的理解。
第五,教学过程的设计问题与情景【活动1】1.知识回顾:以问答式引起学生对知识的回忆。
2.揭示课题:以篮球为例。
26.1二次函数导学案(1)
26.1 二次函数 (1)教学目标:(1)能够根据实际问题,熟练地列出二次函数关系式。
(2)联系实际,丰富学生的感性认识。
(3)让学生充分参与,在合作中探讨,在交流中互相促进,逐步形成良好的学习习惯重点难点:能够根据实际问题,熟练地列出二次函数关系式。
教学过程:一、知识回顾我们都学过那些函数?它们的一般式分别是什么?二、引入新知如图:正方体的六个面全是全等的正方形,设正方体的棱长为x ,表面积为y .则y=(显然对于x 的每一个值,y 都有一个对应值,即y 是x 的函数。
)三、想一想问题1: 多边形的对角线数d 与边数n 有什么关系?思考:(1)由图中可以想出,如果多边形有n 条边,那么它有__ __ 个顶点. 从一个顶点出发,连接与这点不相邻的各顶点,可以作 条对角线.(2)因为像线段MN 与NM 那样,连接相同两顶点的对角线是同一条对角线,所以多边形的对角线总数d 与边数n 的关系可以表示为:(上式表示了多边形的对角线数d 与边数n 之间的关系,对于n 的每一个值,d 都有一个对应值,即d 是n 的函数.)问题2:某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x 倍,那么两年后这种产品的产量y 将随计划所定的x 的值而确定,y 与x 之间的关系应怎样表示?M N思考:(1)这种产品的原产量是20件,一年后的产量是 件,再经过一年后的产量是 件。
(2)所以两年后的产量y 与计划增产的倍数x 之间的关系可表示为:(上式表示了两年后的产量y 与计划增产的倍数x 之间的关系,对于x 的每一个值,y 都有一个对应值,即y 是x 的函数.)四、观察概括1、观察以上几个函数关系式,思考以下问题;(1)函数关系式(1)、(2)、(3)的自变量各有几个?(2)函数式的右边分别是几次多项式?(3)这几个函数关系式有什么共同特点?2.二次函数定义:形如 的函数叫做二次函数,其中 是函数, 是自变量,a 叫做 ,b 叫做 ,c 叫做 .五、课堂练习1、下列函数中,哪些是二次函数?(1)y=5x +1 (2)y =x 2 (3)y=4x 2-1(4)y=2x 3-3x 2 +6 (5)y=21x+2x -52、将下列二次函数化为一般形式,并指出二次项系数、一次项系数及常数项。
九年级数学下册 26.1.1 二次函数(快乐预习+轻松尝试)导学案 新人教版
九年级数学下册 26.1.1 二次函数(快乐预习+轻松尝试)导学案 新人教版学前温故1.函数的基本概念:在一个变化过程中,有______变量x 和y ,并且对于x 每一个确定的值,y 都有__________的值与其对应,那么我们就说y 是x 的______,也可以说x 是________,y 是________.2.一般地,形如y =kx +b (k ≠0,k ,b 均为常数)的函数,叫做__________,当b =0时称y 为x 的________函数,正比例函数是一次函数中的______情况,可表示为________.新课早知1.二次函数的概念:一般地,形如y =ax 2+bx +c (其中a ,b ,c 是常数,a ≠0)的函数叫做二次函数,其中ax 2是二次项,______是一次项,c 是常数项,______是二次项系数,______是一次项系数.2.圆面积公式S =πR 2,S 与R 之间的关系是( ).A .正比例函数B .一次函数C .二次函数D .以上答案都不对3.二次函数的三个特征:(1)函数关系式必须是______;(2)化简后二次函数的最高次数必须是______次;(3)二次项系数必须不为______.4.函数y =(n -3)xn 2-7+2x -1是二次函数,则n =__________.答案:学前温故1.两个 唯一确定 函数 自变量 因变量2.一次函数 正比例 特殊 y =kx新课早知1.bx a b2.C 因为系数是π≠0,次数是2次,所以为二次函数,故选C.3.(1)整式 (2)2 (3)04.-3 函数是二次函数应满足⎩⎪⎨⎪⎧n -3≠0,n 2-7=2,解得n =-3,故填-3.1.二次函数的概念【例1】已知函数y =(m +2)xm 2+m -4+2x +6是关于x 的二次函数,求满足条件的m的值.分析:由二次函数的概念,可以得到m 2+m -4=2,且m +2≠0,解得m =-3,或m =2.解:根据题意可得,m 2+m -4=2,且m +2≠0,解得m =-3,或m =2.即满足条件的m 的值为m =-3,或m =2.点拨:判断一个函数是否为二次函数,应根据二次函数的三个特征作出判断,缺一不可.2.列二次函数关系式【例2】某果园有100棵橙子树,每一棵平均结600个橙子,现准备多种一些橙子树以提高产量.但是如果多种树,树之间的距离和每一棵树所接受的阳光就会减少,根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.(1)若设增种x 棵橙子树,果园橙子的总产量为y 个,那么请你写出y 与x 之间的关系式.(2)y 与x 的函数关系式是几次函数,自变量x 的取值范围有何限制?分析:根据题意得,增种x 棵橙子树,果园共有(100+x )棵橙子树,平均每棵树结(600-5x )个橙子.解:(1)果园增种x 棵橙子树后,那么果园共有(100+x )棵橙子树,这时平均每棵树结(600-5x )个橙子,所以y =(600-5x )(100+x ).(2)由(1)y =(600-5x )(100+x )=-5x 2+100x +60 000可知,y 是x 的二次函数,自变量x 的取值范围是0≤x <120,且x 为自然数.点拨:列与实际问题有关的二次函数,应认真理解题意,明确各个量之间的关系,同时要注意自变量的取值范围,即便题目中没有注明写出取值范围,也要根据题意写出,注意函数关系式最后要化成一般形式.1.下列函数是二次函数的是( ).A. y =8x 2B. y =8x +1C. y =8xD. y =8x2+1 2.国家为了解决农民就医难,就医贵的问题,决定对某药品价格分两次降价,若设平均每次降价的百分率为x ,该药品原价为18元,降价后的价格为y 元,则y 与x 的函数关系式为( ).A .y =18(1-x )B .y =18(1+x )C .y =18(1-x )2D .y =18(1+x )23.对于任意实数m ,下列函数一定是二次函数的是( ).A .y =(m -1)2x 2B .y =(m +1)2x 2C .y =(m 2+1)x 2D .y =(m 2-1)x 24.二次函数y =3x 2-5的二次项系数是__________,一次项系数是__________,常数项是__________.5.已知正三角形的边长为x cm ,面积为y cm 2,则y 与x 之间的函数关系式为__________,y __________x 的二次函数(填“是”或“不是”).6.小明的爸爸拟建一个温室大棚,小明帮助爸爸画出了它的平面图形,如果温室外围是一个矩形,周长为120 m ,室内通道的尺寸如图所示,设一条边长为x (m),种植面积为y (m 2),为了能较容易计算出种植面积,请你帮助小明建立一个能反映种植面积y 与x 的函数关系式,当x =10时,种植面积是多少?答案:1.A 在判断是否是二次函数的问题中,应紧紧抓住三个要素:(1)含两个变量,符合函数的对应关系;(2)是整式;(3)某个变量次数最高为2.D 项的右边代数式8x2是关于自变量x 的分式,不是二次函数;B 为一次函数;C 为反比例函数,故选A.2.C3.C 二次函数的二次项系数不能为0,选项A 中当m =1时,m -1=0;选项B 中当m=-1时,m +1=0;选项D 中当m =±1时,m 2-1=0,所以都不能满足对于任意实数m 使二次项系数不为0;只有选项C 中当m 为任意数时,保证m 2+1≠0,故选C.4.3 0 -5 二次函数y =ax 2+bx +c (a ≠0),其中a 叫做二次项系数,b 叫做一次项系数,c 叫做常数项.5.y =34x 2 是 根据勾股定理得正三角形一边上的高为32x cm ,所以正三角形的面积为y=34x2,y是x的二次函数.6.分析:根据图形标出的尺寸得,种植面积的一边为(60-x-4) m,另一边为(x-2) m,根据矩形面积公式求出y与x的函数关系式.解:y=(60-x-4)(x-2)=-x2+58x-112,把x=10代入得y=368(m2).。
初中数学二次函数全章导学案(史上最全)
二次函数导学案26.1.1二次函数(第一课时)一.预习检测案一般地,形如____________________________的函数,叫做二次函数。
其中x是________,a是__________,b是___________,c是_____________.二.合作探究案:问题1: 正方体的六个面是全等的正方形,如果正方形的棱长为x,表面积为y,写出y与x的关系。
问题2: n边形的对角线数d与边数n之间有怎样的关系?提示:多边形有n条边,则有几个顶点?从一个顶点出发,可以连几条对角线?问题3: 某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的数量y将随计划所定的x的值而定,y与x之间的关系怎样表示?问题4:观察以上三个问题所写出来的三个函数关系式有什么特点?小组交流、讨论得出结论:经化简后都具有的形式。
问题5:什么是二次函数?形如。
问题6:函数y=ax²+bx+c,当a、b、c满足什么条件时,(1)它是二次函数?(2)它是一次函数?(3)它是正比例函数?例1: 关于x的函数mmxmy-+=2)1(是二次函数, 求m的值.注意:二次函数的二次项系数必须是的数。
三.达标测评案:1.下列函数中,哪些是二次函数?(1)y=3x-1; (2)y=3x2+2; (3)y=3x3+2x2; (4)y=2x2-2x+1; (5)y=x2-x(1+x); (6)y =x-2+x.2.若函数y=(a-1)x2+2x+a2-1是二次函数,则( )A.a=1B.a=±1C.a≠1D.a≠-13.一定条件下,若物体运动的路段s(米)与时间t(秒)之间的关系为s=5t2+2t,则当t=4秒时,该物体所经过的路程为A.28米B.48米C.68米D.88米4.一个长方形的长是宽的2倍,写出这个长方形的面积与宽之间的函数关系式.5.一个圆柱的高等于底面半径,写出它的表面积S与半径R之间的关系式。
人教版九年级数学下册二次函数全章精品导学案
人教版九年级数学下册二次函数全章精品导学案【师生共用】第1课时 26.1 二次函数一、阅读教科书第4—6页上方 二、学习目标:1.知道二次函数的一般表达式; 2.会利用二次函数的概念分析解题; 3.列二次函数表达式解实际问题. 三、知识点:一般地,形如____________________________的函数,叫做二次函数。
其中x 是________,a 是__________,b 是___________,c 是_____________. 四、基本知识练习1.观察:①y =6x 2;②y =-32x 2+30x ;③y =200x 2+400x +200.这三个式子中,虽然函数有一项的,两项的或三项的,但自变量的最高次项的次数都是______次.一般地,如果y =ax 2+bx +c (a 、b 、c 是常数,a ≠0),那么y 叫做x 的_____________. 2.函数y =(m -2)x 2+mx -3(m 为常数).(1)当m__________时,该函数为二次函数; (2)当m__________时,该函数为一次函数.3.下列函数表达式中,哪些是二次函数?哪些不是?若是二次函数,请指出各项对应项的系数. (1)y =1-3x 2 (2)y =3x 2+2x (3)y =x (x -5)+2(4)y =3x 3+2x 2(5)y =x +1x五、课堂训练 1.y =(m +1)xmm 2-3x +1是二次函数,则m 的值为_________________.2.下列函数中是二次函数的是( ) A .y =x +12B . y =3 (x -1)2C .y =(x +1)2-x 2D .y =1x2-x3.在一定条件下,若物体运动的路段s (米)与时间t (秒)之间的关系为 s =5t 2+2t ,则当t =4秒时,该物体所经过的路程为( ) A .28米 B .48米 C .68米 D .88米4.n 支球队参加比赛,每两队之间进行一场比赛.写出比赛的场次数m 与球队数n 之间的关系式_______________________.5.已知y 与x 2成正比例,并且当x =-1时,y =-3. 求:(1)函数y 与x 的函数关系式;(2)当x =4时,y 的值;(3)当y =-13时,x 的值.6.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m )的空地上修建一个矩形绿化带ABCD ,绿化带一边靠墙,另三边用总长为40m 的栅栏围住(如图).若设绿化带的BC 边长为x m ,绿化带的面积为y m 2.求y 与x 之间的函数关系式,并写出自变量x 的取值范围.六、目标检测1.若函数y =(a -1)x 2+2x +a 2-1是二次函数,则( ) A .a =1 B .a =±1 C .a ≠1 D .a ≠-12.下列函数中,是二次函数的是( ) A .y =x 2-1B .y =x -1C .y =8xD .y =8x23.一个长方形的长是宽的2倍,写出这个长方形的面积与宽之间的函数关系式.4.已知二次函数y =-x 2+bx +3.当x =2时,y =3,求 这个二次函数解析式.第2课时 二次函数y =ax 2的图象与性质一、阅读课本:P6—8 二、学习目标:1.知道二次函数的图象是一条抛物线; 2.会画二次函数y =ax 2的图象;3.掌握二次函数y =ax 2的性质,并会灵活应用. 三、探索新知:画二次函数y =x 2的图象.【提示:画图象的一般步骤:①列表(取几组x 、y 的对应值;②描点(表中x 、y 的数值在坐标平面中描点(x ,y );③连线(用平滑曲线).】 列表:描点,并连线由图象可得二次函数y=x2的性质:1.二次函数y=x2是一条曲线,把这条曲线叫做______________.2.二次函数y=x2中,二次函数a=_______,抛物线y=x2的图象开口__________.3.自变量x的取值范围是____________.4.观察图象,当两点的横坐标互为相反数时,函数y值相等,所描出的各对应点关于________对称,从而图象关于___________对称.5.抛物线y=x2与它的对称轴的交点(,)叫做抛物线y=x2的_________.因此,抛物线与对称轴的交点叫做抛物线的_____________.6.抛物线y=x2有____________点(填“最高”或“最低”).四、例题分析例1 在同一直角坐标系中,画出函数y=12x2,y=x2,y=2x2的图象.y=x2的图象刚画过,再把它画出来.归纳:抛物线y=12x2,y=x2,y=2x2的二次项系数a_______0;顶点都是__________;对称轴是_________;顶点是抛物线的最_________点(填“高”或“低”).例2 请在例1的直角坐标系中画出函数y=-x2,y=-12x2,y=-2x2的图象.归纳:抛物线y=-x2,y=-12x2,y=-2x2的二次项系数a______0,顶点都是________,对称轴是___________,顶点是抛物线的最________点(填“高”或“低”).五、理一理12的性质2.抛物线y =x 2与y =-x 2关于________对称,因此,抛物线y =ax 2与y =-ax 2关于_______对称,开口大小_______________.3.当a >0时,a 越大,抛物线的开口越___________; 当a <0时,|a | 越大,抛物线的开口越_________;因此,|a | 越大,抛物线的开口越________,反之,|a | 越小,抛物线的开口越________.六、课堂训练 12.若二次函数y =ax 2的图象过点(1,-2),则a 的值是___________. 3.二次函数y =(m -1)x 2的图象开口向下,则m____________. 4.如图,① y =ax 2 ② y =bx 2 ③ y =cx 2 ④ y =dx 2比较a 、b 、c 、d 的大小,用“>”连接. ___________________________________七、目标检测1.函数y =37x 2的图象开口向_______,顶点是__________,对称轴是________,当x =___________时,有最_________值是_________. 2.二次函数y =mx22 m 有最低点,则m =___________.3.二次函数y =(k +1)x 2的图象如图所示,则k 的取值 范围为___________.4.写出一个过点(1,2)的函数表达式_________________.第3课时二次函数y=ax2+k的图象与性质一、阅读课本:P9—10二、学习目标:1.会画二次函数y=ax2+k的图象;2.掌握二次函数y=ax2+k的性质,并会应用;3.知道二次函数y=ax2与y=的ax2+k的联系.三、探索新知:在同一直角坐标系中,画出二次函数y=x2+1,y=x2-1的图象.描点并画图观察图象得:2.可以发现,把抛物线y =x 2向______平移______个单位,就得到抛物线y =x 2+1;把抛物线y =x 2向_______平移______个单位,就得到抛物线y =x 2-1. 3.抛物线y =x 2,y =x 2-1与y =x 2+1的形状_____________.四、理一理知识点 1.2.抛物线y =2x 2向上平移3个单位,就得到抛物线__________________; 抛物线y =2x 2向下平移4个单位,就得到抛物线__________________.因此,把抛物线y =ax 2向上平移k (k >0)个单位,就得到抛物线_______________; 把抛物线y =ax 2向下平移m (m >0)个单位,就得到抛物线_______________. 3.抛物线y =-3x 2与y =-3x 2+1是通过平移得到的,从而它们的形状__________,由此可得二次函数y =ax 2与y =ax 2+k 的形状__________________.五、课堂巩固训练2.将二次函数y =5x 2-3向上平移7个单位后所得到的抛物线解析式为_________________.3.写出一个顶点坐标为(0,-3),开口方向与抛物线y =-x 2的方向相反,形状相同的抛物线解析式____________________________.4.抛物线y =4x 2+1关于x 轴对称的抛物线解析式为______________________.六、目标检测2.抛物线y =-13x 2-2可由抛物线y =-13x 2+3向___________平移_________个单位得到的.3.抛物线y =-x 2+h 的顶点坐标为(0,2),则h =_______________.4.抛物线y =4x 2-1与y 轴的交点坐标为_____________,与x 轴的交点坐标为_________.第4课时 二次函数y =a(x-h)2的图象与性质一、阅读课本:P10—11二、学习目标:1.会画二次函数y =a (x -h )2的图象;2.掌握二次函数y =a (x -h )2的性质,并要会灵活应用; 三、探索新知:画出二次函数y =-12(x +1)2,y -12(x -1)2的图象,并考虑它们的开口方向、对称轴、顶点以及最值、增减性.描点并画图.12.请在图上把抛物线y =-12x 2也画上去(草图).①抛物线y =-12(x +1)2,y =-12x 2,y =-12(x -1)2的形状大小____________.②把抛物线y =-12x 2向左平移_______个单位,就得到抛物线y =-12(x +1)2;把抛物线y =-12x 2向右平移_______个单位,就得到抛物线y =-12(x +1)2.四、整理知识点2.对于二次函数的图象,只要|a |相等,则它们的形状_________,只是_________不同.五、课堂训练2.抛物线y=4 (x-2)2与y轴的交点坐标是___________,与x轴的交点坐标为________.3.把抛物线y=3x2向右平移4个单位后,得到的抛物线的表达式为____________________.把抛物线y=3x2向左平移6个单位后,得到的抛物线的表达式为____________________.4.将抛物线y=-13(x-1)x2向右平移2个单位后,得到的抛物线解析式为____________.5.写出一个顶点是(5,0),形状、开口方向与抛物线y=-2x2都相同的二次函数解析式___________________________.六、目标检测1.抛物线y=2 (x+3)2的开口______________;顶点坐标为__________________;对称轴是_________;当x>-3时,y______________;当x=-3时,y有_______值是_________.2.抛物线y=m (x+n)2向左平移2个单位后,得到的函数关系式是y=-4 (x-4)2,则m=__________,n=___________.3.若将抛物线y=2x2+1向下平移2个单位后,得到的抛物线解析式为_______________.4.若抛物线y=m (x+1)2过点(1,-4),则m=_______________.第5课时二次函数y=a(x-h)2+k的图象与性质一、阅读课本:第12页~第13页上方.二、学习目标:1.会画二次函数的顶点式y=a (x-h)2+k的图象;2.掌握二次函数y =a (x -h)2+k 的性质;3.会应用二次函数y =a (x -h)2+k 的性质解题. 三、探索新知:画出函数y =-12(x +1)2-1的图象,指出它的开口方向、对称轴及顶点、最值、增减性.列表:由图象归纳:2.把抛物线y =-12x 2向_______平移______个单位,再向_______平移_______个单位,就得到抛物线y =-12(x +1)2-1.2.抛物线y=a (x-h)2+k与y=ax2形状___________,位置________________.五、课堂练习2.y=6x2+3与y=6 (x-1)2+10_____________相同,而____________不同.3.顶点坐标为(-2,3),开口方向和大小与抛物线y=12x2相同的解析式为()A.y=12(x-2)2+3 B.y=12(x+2)2-3C.y=12(x+2)2+3 D.y=-12(x+2)2+34.二次函数y=(x-1)2+2的最小值为__________________.5.将抛物线y=5(x-1)2+3先向左平移2个单位,再向下平移4个单位后,得到抛物线的解析式为_______________________.6.若抛物线y=ax2+k的顶点在直线y=-2上,且x=1时,y=-3,求a、k的值.7.若抛物线y=a (x-1)2+k上有一点A(3,5),则点A关于对称轴对称点A’的坐标为__________________.六、目标检测2.抛物线y=-3 (x+4)2+1中,当x=_______时,y有最________值是________.3.足球守门员大脚开出去的球的高度随时间的变化而变化,这一过程可近似地用下列哪幅图表示()A B C D4.将抛物线y=2 (x+1)2-3向右平移1个单位,再向上平移3个单位,则所得抛物线的表达式为________________________.5.一条抛物线的对称轴是x=1,且与x轴有唯一的公共点,并且开口方向向下,则这条抛物线的解析式为____________________________.(任写一个)第6课时二次函数y=ax2+bx+c的图象与性质一、阅读课本:第14页~第15页上方.二、学习目标:1.配方法求二次函数一般式y=ax2+bx+c的顶点坐标、对称轴;2.熟记二次函数y=ax2+bx+c的顶点坐标公式;3.会画二次函数一般式y=ax2+bx+c的图象.三、探索新知:1.求二次函数y=12x2-6x+21的顶点坐标与对称轴.解:将函数等号右边配方:y=12x2-6x+212.画二次函数y=12x2-6x+21的图象.解:y=12x2-6x+21配成顶点式为_______________________.3.用配方法求抛物线y=ax2+bx+c(a≠0)的顶点与对称轴.五、课堂练习1.用配方法求二次函数y=-2x2-4x+1的顶点坐标.2.用两种方法求二次函数y=3x2+2x的顶点坐标.3.二次函数y=2x2+bx+c的顶点坐标是(1,-2),则b=________,c=_________.4.已知二次函数y=-2x2-8x-6,当___________时,y随x的增大而增大;当x=________时,y有_________值是___________.六、目标检测1.用顶点坐标公式和配方法求二次函数y=12x2-2-1的顶点坐标.2.二次函数y=-x2+mx中,当x=3时,函数值最大,求其最大值.第7课时二次函数y=ax2+bx+c的性质一、复习知识点:第6课中“理一理知识点”的内容.二、学习目标:1.懂得求二次函数y=ax2+bx+c与x轴、y轴的交点的方法;2.知道二次函数中a,b,c以及△=b2-4ac对图象的影响.三、基本知识练习1.求二次函数y=x2+3x-4与y轴的交点坐标为_______________,与x轴的交点坐标____________.2.二次函数y=x2+3x-4的顶点坐标为______________,对称轴为______________.3.一元二次方程x2+3x-4=0的根的判别式△=______________.4.二次函数y=x2+bx过点(1,4),则b=________________.5.一元二次方程y=ax2+bx+c(a≠0),△>0时,一元二次方程有_______________,△=0时,一元二次方程有___________,△<0时,一元二次方程_______________.四、知识点应用1.求二次函数y =ax 2+bx +c 与x 轴交点(含y =0时,则在函数值y =0时,x 的值是抛物线与x 轴交点的横坐标).例1 求y =x 2-2x -3与x 轴交点坐标.2.求二次函数y =ax 2+bx +c 与y 轴交点(含x =0时,则y 的值是抛物线与y 轴交点的纵坐标).例2 求抛物线y =x 2-2x -3与y 轴交点坐标.3.a 、b 、c 以及△=b 2-4ac 对图象的影响. (1)a 决定:开口方向、形状(2)c 决定与y 轴的交点为(0,c )(3)b 与-b2a共同决定b 的正负性(4)△=b 2-4ac ⎪⎩⎪⎨⎧<=>轴没有交点与轴有一个交点与轴有两个交点与x x x 000例3 如图, 由图可得: a_______0 b_______0 c_______0 △______0例4 已知二次函数y =x 2+kx +9. ①当k 为何值时,对称轴为y 轴;②当k 为何值时,抛物线与x 轴有两个交点; ③当k 为何值时,抛物线与x 轴只有一个交点. 五、课后练习1.求抛物线y =2x 2-7x -15与x 轴交点坐标__________,与y 轴的交点坐标为_______.2.抛物线y =4x 2-2x +m 的顶点在x 轴上,则m =__________. 3.如图: 由图可得: a_______0 b_______0 c_______0 △=b 2-4ac______0六、目标检测1.求抛物线y =x 2-2x +1与y 轴的交点坐标为_______________.2.若抛物线y =mx 2-x +1与x 轴有两个交点,求m 的范围.3.如图:由图可得:a _________0b_________0c_________0△=b2-4ac_________0第8课时二次函数y=ax2+bx+c解析式求法一、学习目标:1.会用待定系数法求二次函数的解析式;2.实际问题中求二次函数解析式.二、课前基本练习1.已知二次函数y=x2+x+m的图象过点(1,2),则m的值为________________.2.已知点A(2,5),B(4,5)是抛物线y=4x2+bx+c上的两点,则这条抛物线的对称轴为_____________________.3.将抛物线y=-(x-1)2+3先向右平移1个单位,再向下平移3个单位,则所得抛物线的解析式为____________________.4.抛物线的形状、开口方向都与抛物线y=-12x2相同,顶点在(1,-2),则抛物线的解析式为________________________________.三、例题分析例1 已知抛物线经过点A(-1,0),B(4,5),C(0,-3),求抛物线的解析式.例2 已知抛物线顶点为(1,-4),且又过点(2,-3).求抛物线的解析式.例3 已知抛物线与x轴的两交点为(-1,0)和(3,0),且过点(2,-3).求抛物线的解析式.四、归纳用待定系数法求二次函数的解析式用三种方法:1.已知抛物线过三点,设一般式为y=ax2+bx+c.2.已知抛物线顶点坐标及一点,设顶点式y=a(x-h)2+k.3.已知抛物线与x轴有两个交点(或已知抛物线与x轴交点的横坐标),设两根式:y=a(x-x1)(x-x2).(其中x1、x2是抛物线与x轴交点的横坐标)五、实际问题中求二次函数解析式例4 要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m 处达到最高,高度为3m ,水柱落地处离池中心3m ,水管应多长?六、课堂训练1.已知二次函数的图象过(0,1)、(2,4)、(3,10)三点,求这个二次函数的关系式.2.已知二次函数的图象的顶点坐标为(-2,-3),且图像过点(-3,-2),求这个二次函数的解析式.3.已知二次函数y =ax 2+bx +c 的图像与x 轴交于A (1,0),B (3,0)两点,与 y 轴交于点C (0,3),求二次函数的顶点坐标.4.如图,在△ABC 中,∠B =90°,AB =12mm ,BC =24mm ,动点P 从点A 开始沿边AB 向B 以2mm/s 的速度移动,动点Q 从点B 开始沿边BC 向C 以4mm/s 的速度移动,如果P 、Q 分别从A 、B 同时出发,那么△PBQ 的面积S 随出发时间t 如何变化?写出函数关系式及t 的取值范围.七、目标检测1.已知二次函数的图像过点A (-1,0),B (3,0),C (0,3)三点,求这个二次函数解析式.第9课时 二次函数y =ax 2+bx +c 的性质一、阅读教科书:P15的探究 二、学习目标:几何问题中应用二次函数的最值. 三、课前基本练习1.抛物线y =-(x +1)2+2中,当x =___________时,y 有_______值是__________.2.抛物线y =12x 2-x +1中,当x =___________时,y 有_______值是__________.3.抛物线y =a x 2+b x +c (a ≠0)中,当x =___________时,y 有_______值是__________. 四、例题分析:(P15的探究)用总长为60m 的篱笆围成矩形场地,矩形面积S 随矩形一边长l 的变化而变化,当l 是多少时,场地的面积S 最大?五、课后练习Q PC B A1.已知直角三角形两条直角边的和等于8,两条直角边各为多少时,这个直角三角形的面积最大,最大值是多少?2.从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球运动时间t (单位:s )之间的关系式是h =30t -5t 2.小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少?3.如图,四边形的两条对角线AC 、BD 互相垂直,AC +BD =10,当AC 、BD 的长是多少时,四边形ABCD 的面积最大?4.一块三角形废料如图所示,∠A =30°,∠C =90°,AB =12.用这块废料剪出一个长方形CDEF ,其中,点D 、E 、F 分别在AC 、AB 、BC 上.要使剪出的长方形CDEF 面积最大,点E 应造在何处?六、目标检测如图,点E 、F 、G 、H 分别位于正方形ABCD 的四条边上,四边形EFGH 也是正方形.当 点E 位于何处时,正方形EFGH 的面积最小?第10课时 用函数观点看一元二次方程DC B AF E D C B A HG FE D C B A一、阅读课本:第20~22页二、学习目标:1.知道二次函数与一元二次方程的关系.2.会用一元二次方程ax2+bx+c=0根的判别式△=b2-4ac判断二次函数y=ax2+bx +c与x轴的公共点的个数.三、探索新知1.问题:如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线.如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系h=20t-5t2.考虑以下问题:(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?(3)球的飞行高度能否达到20.5m?为什么?(4)球从飞出到落地要用多少时间?2.观察图象:(1)二次函数y=x2+x-2的图象与x轴有____个交点,则一元二次方程x2+x-2=0的根的判别式△=_______0;(2)二次函数y=x2-6x+9的图像与x轴有___________个交点,则一元二次方程x2-6x+9=0的根的判别式△=_______0;(3)二次函数y=x2-x+1的图象与x轴________公共点,则一元二次方程x2-x +1=0的根的判别式△_______0.四、理一理知识1.已知二次函数y=-x2+4x的函数值为3,求自变量x的值,可以看作解一元二次方程__________________.反之,解一元二次方程-x2+4x=3又可以看作已知二次函数__________________的函数值为3的自变量x的值.一般地:已知二次函数y=ax2+bx+c的函数值为m,求自变量x的值,可以看作解一元二次方程ax2+bx+c=m.反之,解一元二次方程ax2+bx+c=m又可以看作已知二次函数y=ax2+bx+c的值为m的自变量x的值.2.二次函数y=ax2+bx+c与x轴的位置关系:一元二次方程ax2+bx+c=0的根的判别式△=b2-4ac.(1)当△=b2-4ac>0时抛物线y=ax2+bx+c与x轴有两个交点;(2)当△=b2-4ac=0时抛物线y=ax2+bx+c与x轴只有一个交点;(3)当△=b2-4ac<0时抛物线y=ax2+bx+c与x轴没有公共点.五、基本知识练习1.二次函数y=x2-3x+2,当x=1时,y=________;当y=0时,x=_______.2.二次函数y=x2-4x+6,当x=________时,y=3.3.如图,一元二次方程ax2+bx+c=0的解为________________ 4.如图一元二次方程ax2+bx+c=3的解为_________________5.如图填空:(1)a________0(2)b________0(3)c________0(4)b2-4ac________0六、课堂训练1.特殊代数式求值:①如图看图填空:(1)a+b+c_______0(2)a-b+c_______0(3)2a-b_______0②如图2a+b_______04a+2b+c_______02.利用抛物线图象求解一元二次方程及二次不等式(1)方程ax2+bx+c=0的根为___________;(2)方程ax2+bx+c=-3的根为__________;(3)方程ax2+bx+c=-4的根为__________;(4)不等式ax2+bx+c>0的解集为________;(5)不等式ax2+bx+c<0的解集为________;(6)不等式-4<ax2+bx+c<0的解集为________.七、目标检测根据图象填空:(1)a_____0;(2)b_____0;(3)c______0;(4)△=b2-4ac_____0;(5)a+b+c_____0;(6)a-b+c_____0;(7)2a+b_____0;(8)方程ax2+bx+c=0的根为__________;(9)当y>0时,x的范围为___________;(10)当y<0时,x的范围为___________;八、课后训练1.已知抛物线y=x2-2kx+9的顶点在x轴上,则k=____________.2.已知抛物线y=kx2+2x-1与坐标轴有三个交点,则k的取值范围___________.3.已知函数y=ax2+bx+c(a,b,c为常数,且a≠0)的图象如图所示,则关于x的方程ax2+bx+c-4=0的根的情况是()A.有两个不相等的正实数根B.有两个异号实数根C.有两个相等实数根D.无实数根4.如图为二次函数y=ax2+bx+c的图象,在下列说法中:①ac<0;②方程ax2+bx+c=0的根是x1=-1,x2=3;③a+b+c>0;④当x>1时,y随x的增大而增大.正确的说法有__________________(把正确的序号都填在横线上).第11课时实际问题与二次函数商品价格调整问题一、阅读课本:第25~26页上方(探究1)二、学习目标:1.懂得商品经济等问题中的相等关系的寻找方法;2.会应用二次函数的性质解决问题.三、探索新知某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?分析:调整价格包括涨价和降价两种情况,用怎样的等量关系呢?解:(1)设每件涨价x元,则每星期少卖_________件,实际卖出_________件,设商品的利润为y元.(2)设每件降价x元,则每星期多卖_________件,实际卖出__________件.四、课堂训练1.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100-x)件,应如何定价才能使利润最大?2.蔬菜基地种植某种蔬菜,由市场行情分析知,1月份至6月份这种蔬菜的上市时间x(月这种蔬菜每千克的种植成本y(元/千克)与上市时间x(月份)满足一个函数关系,这个函数的图象是抛物线的一段(如图).(1)写出上表中表示的市场售价P(元/千克)关于上市时间x(月份)的函数关系式;(2)若图中抛物线过A、B、C三点,写出抛物线对应的函数关系式;(3)由以上信息分析,哪个月上市出售这种蔬菜每千克的收益最大?最大值为多少?(收益=市场售价-种植成本)五、目标检测某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空间.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定介增加x 元,求:(1)房间每天入住量y (间)关于x (元)的函数关系式;(2)该宾馆每天的房间收费z (元)关于x (元)的函数关系式;(3)该宾馆客房部每天的利润w (元)关于x (元)的函数关系式,当每个房间的定价为多少元时,w 有最大值?最大值是多少?第12课时 实际问题与二次函数一、阅读课本:第27页探究3 二、学习目标:1.会建立直角坐标系解决实际问题; 2.会解决桥洞水面宽度问题. 三、基本知识练习1.以抛物线的顶点为原点,以抛物线的对称轴为y 轴建立直角坐标系时,可设这条抛物线的关系式为___________________________________.2.拱桥呈抛物线形,其函数关系式为y =-14x 2,当拱桥下水位线在AB 位置时,水面宽为12m ,这时水面离桥拱顶端的高度h 是( )A .3mB .26mC .43mD .9m3.有一抛物线拱桥,已知水位线在AB 位置时,水面的宽为46米,水位上升4米,就达到警戒线CD ,这时水面宽为43米.若洪水到来时,水位以每小时0.5米的速度上升,则水过警戒线后几小时淹没到拱桥顶端M 处?四、课堂练习1.一座拱桥的轮廓是抛物线(如图①所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m .(1)将抛物线放在所给的直角坐标系中(如图②所示),其关系式y =ax 2+c 的形式,请根据所给的数据求出a 、c 的值;(2)求支柱MN 的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m ,高3m 的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.2.如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20m ,如果水位上升3m 时,水面CD 的宽是10m .(1)建立如图所示的直角坐标系,求此抛物线的解析式.(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km (桥长忽略不计).货车正以每小时40km 的速度开往乙地,当行驶1h 时,忽然接到紧急通知:前方连降暴雨,造成水位以每小0.25m 的速度持续上涨(货车接到通知时水位在CD 处,当水位达到桥拱最高点O 时,禁止车辆通行).试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由.若不能,要使货车安全通过此桥,速度应超过每小时多少千米?第13课时 二次函数综合应用一、复习二次函数的基本性质 二、学习目标:灵活运用二次函数的性质解决综合性的问题. 三、课前训练1.二次函数y =kx 2+2x +1(k <0)的图象可能是( )图①2.如图:(1)当x 为何范围时,y 1>y 2?(2)当x 为何范围时,y 1=y 2?(3)当x 为何范围时,y 1<y 2?3.如图,是二次函数y =ax 2-x +a 2-1的图象,则a =____________.4.若A (-134,y 1),B (-1,y 2),C (53,y 3)为二次函数y =-x 2-4x +5图象上的三点,则y 1、y 2、y 3的大小关系是( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 3 5.抛物线y =(x -2) (x +5)与坐标轴的交点分别为A 、B 、C ,则△ABC 的面积为__________. 6.如图,已知在平面直角坐标系中,矩形ABCD 的边AD 在x 轴上,点A 在原点,AB =3,AD =5.若矩形以每秒2个单位长度沿x 轴正方向做匀速运动,同时点P 从A 点出发以每秒1个单位长度沿A →B →C →D 的路线做匀速运动.当点P 运动到点D 时停止运动,矩形ABCD 也随之停止运动.(1)求点P 从点A 运动到点D 所需的时间. (2)设点P 运动时间为t (秒) ①当t =5时,求出点P 的坐标. ②若△OAP 的面积为S ,试求出S 与t 之间的函数关系式(并写出相应 的自变量t 的取值范围).五、目标检测如图,二次函数y=ax2+bx+c的图像经过A(-1,0),B(3,0)两交点,且交y 轴于点C.(1)求b、c的值;(2)过点C作CD∥x轴交抛物线于点D,点M为此抛物线的顶点,试确定△MCD的形状.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
26.1.1二次函数 导学案
一、学习目标导航
1、经历对实际问题情境分析确定二次函数表达式的过程,理解并掌握二次函数的概念。
2、能判断一个给定的函数是否为二次函数。
3、能根据实际问题中的条件确定二次函数的解析式。
二、自主学习方案-----预习与交流
★温故(独立完成)
回忆一下什么是正比例函数、一次函数、反比例函数?它们的一般形式是怎样的?
1.设在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值, y 都有唯一的值与它对应,那么就说y 是x 的 ,x 叫做 。
2.我们已经学过的函数有:一次函数、反比例函数,其中 的图像是直线, 的图像是双曲线。
我们得到它们图像的方法和步骤是:① 、 ② 、③ 。
3. 形如___________y =,( )的函数是一次函数,当______0=时,它是 函数,图像是经过 的直线;形如k y x
=,( )的函数是 函数,它的表达式还可以写成:① 、② 。
★知新(自主探索、合作交流)
自主学习教材P2-P3的内容,完成下列各题。
问题1: 正方体的六个面是全等的正方形,如果正方形的棱长为x ,表面积为y ,写出y 与x 的关系。
问题2: n 边形的对角线数d 与边数n 之间有怎样的关系?
问题3: 某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x 倍,那么两年后这种产品的数量y 将随计划所定的x 的值而定,y 与x 之间的关系怎样表示?
问题4:观察以上三个问题所写出来的三个关系式有什么特点?
小组交流、讨论得出结论:经化简后都具有 的形式。
导学点1 二次函数的概念
问题5:什么是二次函数?
一般地,形如____________________________的函数,叫做二次函数。
其中x 是________,a 是__________,b 是____ _______,c 是_____________.
问题6:二次函数解析式有何特点? (小组交流、讨论)
问题7:相信你们一定可以写出几个二次函数的解析式,并能指出二次项系数,一次项系数,常数项。
★运用(独立完成)
1、下列函数中,哪些是二次函数?若是,分别指出二次项系数,一次项系数,常数项.
2(1)y=1-3x (5)y x x =-(2)
22(3)(2)y x x =-- 42(4)3y x x =+-
21(5)y x x
=+ 2(6)1036v r r π=-+ 2(7)y ax bx c =++(a,b,c 为常数)
★质疑(合作交流)
问题8:函数y=ax ²+bx+c ,当a 、b 、c 满足什么条件时,
(1)它是二次函数?
(2)它是一次函数?
(3)它是正比例函数?
★运用(独立完成)
1.若2(1)3y b x =-+是二次函数,则b___________
2.关于x 的函数2(1)m
m y m x -=+是二次函数,则m 的值为_______ 3.已知232(1)(1)m m y m x m x --=++-是x 的函数,
(1)m 为何值时,它是二次函数?
(2)m 为何值时,它是一次函数?
导学点2 列二次函数关系式
某商店将每件进价为8元的某种商品按每件10元出售,一天可以出售100件,该店想
通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品的单价每降低
0.1元,其销量可以增加10件。
若每件商品降价x 元,该商品每天的利润y 元,求y 与x
的函数关系式。
★运用(独立完成)
本节练习1,2
三、跟踪训练(独立完成后展示学习成果)
1.若函数22(2)k y k x -=+是y 关于x 的二次函数,则k 的值为______
2.设12y y y =-,若1y 与2x 成正比,2y 与1x
成反比,则y 与x 的函数关系是( )函数 。
A.正比例 B.一次 C.二次 D.反比例
3.有一个人患流感,经过两轮传染后共有y 人患流感,每轮传染中,平均1个人传染了x 人,
则y 与x 之间的函数关系式为__________________
4.用一段长为30m 的篱笆围成一个靠墙的矩形菜园,则菜园的面积y(㎡)与x (m)的函数关系
式为_____________(不要求写出自变量的取值范围)
5.已知22212()(1)1m m y m m x m x m --=++++-函数
(1)m 为何值时,它是二次函数?
(2)m 为何值时,它是一次函数?
(3)它可能是正比例函数吗?
四、百舸争流
1.你今天学到了哪些知识?
2.哪些知识点让你印象深刻?
3.你感受到了什么?
4.你还存在疑惑吗?
五、达标检测
必做题
1.下列函数中是二次函数的是( ) A 21(1)(12)2
y x x x =++- B 2y x π= C 3221y x x =++ D 233y x x =-+ 2.若函数22(9)(3)y a x a x a =-+-+是二次函数,则( )
A .a ≠3且a ≠-3
B .a =±3
C .a ≠3
D .a =3
3.若y =(m +1)x m m -2-3x +1是二次函数,则m 的值为____________.
4.在一定条件下,若物体运动的路段s (米)与时间t (秒)之间的关系为 s =5t 2+2t ,
则当t =4秒时,求物体所经过的路程。
5.一个长方形的长是宽的2倍,写出这个长方形的面积y 与宽x 之间的函数关系式. 选做题
1.已知二次函数y =-x 2+bx +3.当x =2时,y =3,求 这个二次函数解析式。
2.已知y 与x 2成正比例,并且当x =-1时,y =-3.求:
(1)函数y 与x 的函数关系式;
(2)当x =4时,y 的值;
(3)当y =-13
时,x 的值.。