高中数学压轴题系列——导数专题——双变量问题(1)

高中数学压轴题系列——导数专题——双变量问题(1)
高中数学压轴题系列——导数专题——双变量问题(1)

高中数学压轴题系列——导数专题——双变量问题(1)

1.(2018?重庆模拟)已知函数f(x)=x2﹣2ax+2(a+1)ln x.

(1)若函数f(x)有两个极值点,求a的取值范围;

(2)证明:若﹣1<a<3,则对于任意的x1,x2∈(0,+∞),x1≠x2,有>2.

解:(1)由题意知,f′(x)=2?(x>0),因为函数f(x)有两个极值点,

所以=0有两个不等的正根,即x2﹣ax+a+1=0有两个不等的正根,

所以,解得a>2+2,所以a的取值范围是(2+2,+∞).(6分)

(2)证明:构造函数g(x)=f(x)﹣2x=x2﹣2ax+2(a+1)ln x﹣2x,

则g′(x)=2x﹣2(a+1)+2?≥4﹣2(a+1)=4﹣2(a+1)=2(2﹣).

由于﹣1<a<3,0<<2,故g′(x)>0,即g(x)在(0,+∞)上单调递增,

从而当0<x2<x1时,有g(x1)﹣g(x2)>0,即f(x1)﹣f(x2)﹣2x1+2x2>0,故;当0<x1<x2时,同理可证.

综上,对于任意的x1,x2∈(0,+∞),x1≠x2,有…(12分)

2.(2018?长安区二模)已知函数f(x)=ax+x2+lnx.

(Ⅰ)当a=﹣3时,求f(x)的单调区间;

(Ⅱ)如果对任意的x1>x2>0,总有≥2恒成立,求实数a的取值范围.

解:(Ⅰ)当a=﹣3时,f(x)=﹣3x+x2+lnx,x>0,f′(x)=﹣3+2x+=,

令f′(x)>0,解得:x>1或0<x<,令f′(x)<0,解得:<x<1,

故f(x)在(0,),(1,+∞)递增,在(,1)递减;

(Ⅱ)由已知对任意的x1>x2>0,总有≥2恒成立,

即f(x1)﹣f(x2)≥2x1﹣2x2恒成立,即对任意x1>x2>0,f(x1)﹣2x1≥f(x2)﹣2x2恒成立,

即h(x)=f(x)﹣2x在(0,+∞)递增,∴x>0时,h′(x)≥0恒成立,h′(x)=a+2x+﹣2,

即2﹣a≤2x+(x>0)恒成立,故当且仅当2x=即x=时,2﹣a≤2,故a≥2﹣2.

3.(2018?四川模拟)设函数,f(x)=lnx+,k∈R.

(1)若曲线y=f(x)在点(e,f(e))处的切线与直线x﹣2=0垂直,求f(x)的单调递减区间和极小值(其中e为自然对数的底数);

(2)若对任意x1>x2>0,f(x1)﹣f(x2)<x1﹣x2恒成立,求k的取值范围.

解:(1)由已知得.

∵曲线y=f(x)在点(e,f(e))处的切线与直线x﹣2=0垂直,∴此切线的斜率为0.

即f′(e)=0,有,解得k=e.

∴,由f′(x)<0得0<x<e,由f′(x)>0得x>e.

∴f(x)在(0,e)上单调递减,在(e,+∞)上单调递增,当x=e时f(x)取得极小值.故f(x)的单调递减区间为(0,e),极小值为2.

(2)条件等价于对任意x1>x2>0,f(x1)﹣x1<f(x2)﹣x2(*)恒成立.

设h(x)=f(x)﹣x=lnx+.∴(*)等价于h(x)在(0,+∞)上单调递减.

由在(0,+∞)上恒成立,得恒成立.

所以(对k=,h′(x)=0仅在x=时成立),故k的取值范围是[,+∞).

4.(2018?张掖一模)已知函数f(x)=ax2﹣e x(a∈R).

(1)若曲线y=f(x)在x=1处的切线与y轴垂直,求y=f'(x)的最大值;

(2)若对任意0≤x1<x2都有f(x2)+x2(2﹣2ln2)<f(x1)+x1(2﹣2ln2),求a的取值范围.

解:(1)由f'(x)=2ax﹣e x,得,,令g(x)=f'(x)=ex﹣e x,则g'(x)=e﹣e x,

可知函数g(x)在(﹣∞,1)上单调递增,在(1,+∞)上单调递减,所以g(x)max=g(1)=0.(2)由题意得可知函数h(x)=f(x)+x(2﹣2ln2)=ax2+x(2﹣ln2)﹣e x在[0,+∞)上单调递减,

从而h'(x)=2ax+(2﹣2ln2)﹣e x≤0在[0,+∞)上恒成立,

令F(x)=2ax+(2﹣2ln2)﹣e x,则F'(x)=2a﹣e x,

当时,F'(x)≤0,所以函数F(x)在[0,+∞)上单调递减,则F(x)max=F(0)=1﹣2ln2<0,当时,F'(x)=2a﹣ex=0,得x=ln2a,所以函数F(x)在[0,ln2a)上单调递增,

在[ln2a,+∞)上单调递减,则F(x)max=F(ln2a)=2aln2a+2﹣2ln2﹣2a≤0,即2aln2a﹣2a≤2ln2﹣2,通过求函数y=xlnx﹣x的导数可知它在[1,+∞)上单调递增,故,

综上,实数a的取值范围是(﹣∞,1].

5.(2018?湖北模拟)设f(x)=ax3+xlnx(a∈R).

(1)求函数的单调区间;

(2)若?x1,x2∈(0,+∞)且x1>x2,不等式恒成立,求实数a的取值范围.

解:(1)g(x)=ax2+lnx(x>0),

①当a≥0时,2ax2+1>0恒成立,∴f(x)在(0,+∞)上单调递增;

②当a<0时,由2ax2+1>0得,

∴f(x)在上单调递增,在上单调递减.

(2)∵x1>x2>0,,∴f(x1)﹣f(x2)<2x1﹣2x2,

∴f(x1)﹣2x1<f(x2)﹣2x2,即F(x)=f(x)﹣2x在(0,+∞)上为减函数,

F(x)=ax3﹣2x+xlnx,F'(x)=3ax2﹣2+1+lnx=3ax2﹣1+lnx≤0,∴,x>0

令,,∴

当,h'(x)<0,h(x)单调递减,当,h'(x)>0,h(x)单调递增,

∴,∴,∴∴a的取值范围是.6.(2018?河北区二模)已知函数f(x)=﹣ax+(a﹣1)lnx,其中a>2.

(Ⅰ)讨论函数f(x)的单调性;

(Ⅱ)若对于任意的x1,x2∈(0,+∞),x1≠x2,恒有>﹣1,求a的取值范围;(Ⅲ)设a∈(3,4),x n=,n∈N*,求证:|f(x n+1)﹣f(x1)|<.

解:(Ⅰ)函数f(x)的定义域为x∈(0,+∞),

令f'(x)=0,则x2﹣ax+a﹣1=0,即(x﹣1)[x﹣(a﹣1)]=0,x=1或x=a﹣1,

因为a>2,所以a﹣1>1

当x∈(0,1),f'(x)>0,函数f(x)为增函数;

当x∈(1,a﹣1),f'(x)<0,函数f(x)为减函数

当x∈(a﹣1,+∞),f'(x)>0,函数f(x)为增函数

(Ⅱ)设x 1>x2,则不等式等价于f(x1)﹣f(x2)>x2﹣x1

整理得到f(x1)+x1>f(x2)+x2令

即函数g(x)在x∈(0,+∞)上为增函数,,不等式恒成立.

而,所以,因为a>2,所以

(Ⅲ)因为a∈(3,4),由(Ⅰ)可以知道当x∈(1,a﹣1)时,函数f(x)为减函数,

而,x1=2∈(1,a﹣1),

<x1所以f(x n+1)>f(x1)所以|f(x n+1)﹣f(x1)|=f(x n+1)﹣f(x1)

那么x n

+1

由(Ⅱ)知道所以

7.(2009?辽宁)已知函数f(x)=x2﹣ax+(a﹣1)lnx,(a>1).

(1)讨论函数f(x)的单调性;

(2)证明:若a<5,则对于任意x1,x2∈(0,+∞),x1≠x2,有.

解:(1)f(x)的定义域为(0,+∞).

(i)若a﹣1=1即a=2,则故f(x)在(0,+∞)单调增.

(ii)若a﹣1<1,而a>1,故1<a<2,则当x∈(a﹣1,1)时,f′(x)<0;

当x∈(0,a﹣1)及x∈(1,+∞)时,f′(x)>0,故f(x)在(a﹣1,1)单调减,

在(0,a﹣1),(1,+∞)单调增.

(iii)若a﹣1>1,即a>2,

同理可得f(x)在(1,a﹣1)单调减,在(0,1),(a﹣1,+∞)单调增.

(2)函数g(x)=f(x)+x=则

由于1<a<5,故g'(x)>0,即g(x)在(0,+∞)单调增加,

从而当x1>x2>0时有g(x1)﹣g(x2)>0,

即f(x1)﹣f(x2)+x1﹣x2>0,故,

当0<x1<x2时,有

8.(2018?重庆模拟)已知函数f(x)=ln(x+1)+ax,其中a∈R.

(Ⅰ)当a=﹣1时,求证:f(x)≤0;

(Ⅱ)对任意x2≥ex1>0,存在x∈(﹣1,+∞),使成立,求a 的取值范围.(其中e是自然对数的底数,e=2.71828…)

解:(Ⅰ)证明:当a=﹣1时,f(x)=ln(x+1)﹣x(x>﹣1),

则,令f'(x)=0,得x=0.

当﹣1<x<0时,f'(x)>0,f(x)单调递增;当x>0时,f'(x)<0,f(x)单调递减.

故当x=0时,函数f(x)取得极大值,也为最大值,所以f(x)max=f(0)=0,所以,f(x)≤0,得证.

(Ⅱ)不等式,即为.

=.

令.故对任意t≥e,存在x∈(﹣1,+∞),使恒成立,

所以,设,则,

函数导数中双变量问题的四种转化化归思想-厦门一中

处理函数双变量问题的六种解题思想 吴享平(福建省厦门第一中学)361000 在解决函数综合题时,我们经常会遇到在某个范围内都可以任意变动的双变量问题,由 于两个变量都在变动,因此不知把那个变量当成自变量进行函数研究,从而无法展开思路, 造成无从下手的之感,正因为如此,这样的问题往往穿插在试卷压轴题的某些步骤之中,是 学生感到困惑的难点问题之一,本文笔者给出处理这类问题的六种解题思想,希望能给同学 们以帮助和启发。 一、改变“主变量”思想 例1.已知时在|2|,1)(2≤≥-+=m m mx x x f 恒成立,求实数x 的取值范围. 分析:从题面上看,本题的函数式)(x f 是以x 为主变量,但由于该题中的“恒”字是 相对于变量m 而言的,所以该题应把m 当成主变量,而把变量x 看成系数,我们称这种思 想方法为改变“主变量”思想。 解: 01)1(122≥-+-?≥-+x x m m mx x 时在|2|≤m 恒成立,即关于m 为自 变量的一次函数=)(m h 1)1(2-+-x m x 在]2,2[-∈m 时的函数值恒为非负值{0 )2(0 )2(≥-≥?h h 得{130 1203222≥-≤?≥+-≥-+x x x x x x 或。 对于题目所涉及的两个变元,已知其中一个变元在题设给定范围内任意变动,求另一个 变元的取值范围问题,这类问题我们称之为“假”双变元问题,这种“假”双变元问题,往 往会利用我们习以常的x 字母为变量的惯性“误区”来设计,其实无论怎样设计,只要我们 抓住“任意变动的量”为主变量,“所要求范围的量”为常数,便可找到问题所隐含的自变 量,而使问题快速获解。 二、指定“主变量”思想 例2.已知,0n m <≤试比较)1ln(++-m e m n 与)1ln(1++n 的大小,并给出证明. 分析:本题涉及到两个变量m,n ,这里不妨把m 当成常数,指定n 为主变量x ,解答如下 解:构造函数 ),[),1ln(1)1ln()(+∞∈+--++=-m x x m e x f m x ,0≥m , 由0)1()1(1111)(>+-+=+-=+-='-m m x m x m x e x e e x x e e x e x f 在),[+∞∈m x 上恒成立,∴)(x f 在),[+∞m 上递增,∴0)()(min ==m f x f ,于是,当n m <≤0时, 0)1ln(1)1ln()(>+--++=-n m e n f m n 即)1ln(++-m e m n >)1ln(1++n 。 因此,有些问题虽然有两个变量,只要把其中一个当常数,另一个看成自变量,便可使 问题得以解决,我们称这种思想方法为:指定“主变量”思想。 三、化归为值域或最值思想 例3.已知函数)1(,ln )(2 >-+=a a x x a x f x ,对1|)()(|],1,1[,2121-≤--∈?e x f x f x x ,

高中数学导数及微积分练习题

1.求 导:(1)函数 y= 2cos x x 的导数为 -------------------------------------------------------- (2)y =ln(x +2)-------------------------------------;(3)y =(1+sin x )2------------------------ ---------------------- (4)y =3x 2+x cos x ------------------------------------ ;(5)y =x 2cos(2x -π 3 )---------------------------------------- . (6)已知y =ln 3x e x ,则y ′|x =1=________. 2.设1ln )(2+=x x f ,则=)2('f ( ). (A).5 4 (B).5 2 (C).5 1 (D). 5 3 3.已知函数d cx bx ax x f +++=23)(的图象与x 轴有三个不同交点 )0,(),0,0(1x ,)0,(2x ,且)(x f 在1x =-,2=x 时取得极值,则21x x ?的值为 ( ) (A).4 (B).5 (C).-6 (D).不确定 34.()34([0,1])1()1 () ()0 ()1 2 f x x x x A B C D =-∈-函数的最大值是( ) 5.设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,

底面边长为( ). (A).3V (B).32V (C).34V (D).32V 6.由抛物线x y 22=与直线4-=x y 所围成的图形的面积是( ). (A).18 (B). 3 38 (C). 3 16 (D).16 7.曲线3x y =在点)0)(,(3≠a a a 处的切线与x 轴、直线a x =所围成的三角形的面积为6 1,则=a _________ 。 8.已知抛物线2y x bx c =++在点(12),处的切线与直线20x y ++=垂直,求函数2y x bx c =++的最值. 9.已知函数x bx ax x f 3)(23-+=在1±=x 处取得极值.(1)讨论)1(f 和 )1(-f 是函数)(x f 的极大值还是极小值;(2)过点)16,0(A 作曲线 )(x f y =的切线,求此切线方程.

导数中的双变量问题

导数 1、设函数/(x) = (2-a)Inx + 2l/(x1)-/(x2)P?成立,求实数加的 取值范围. 2、已知二次函数g(x)对PxwR都满足g(x-l) + g(l-x)" - 2x-l且g(l) = j,设函数 19 = g(x + -) + m\nx + - ( m x>0 ) ? e R r 2o (I)求gd)的表达式;(II)若3xe/?+,使/W<0成立,求实数用的取值范围; (【II)设15", H(x) = f(x)-(m + l)x,求证:对于Vxp x2e[l,w],恒有I//(x1)-//(x2)l< 10

3、设x = 3是函数/(x) = (x2 + ax+e /?)的一个极值点. (1)求"与〃的关系式(用"表示方),并求的单调区间; 95 (2)设。>0,曲)=oh扌若存在匚盒可0,4],使得|/(切-&(幻<1成立,求"的取 x q丿 值范围. 4、f (A) = (x2 + cix + b)e x(x 已R). (1)若a = 2t b = -2f求函数/⑴的极值; (2)若x = l是函数/(x)的一个极值点,试求出“关于b的关系式(用。表示b ),并确定/(兀)的单调区间; (3)在(2)的条件下,设。>0,函数g(x) = (/ +⑷严.若存在衛仆[0,4]使得1/(2,)-/(22)1<1成立,求"的取值范围.

5、已知函数f(^x) = ax i+bx2 -3x(a,beR)在点(1J⑴)处的切线方程为y + 2 = 0. ⑴求函数f(x)的解析式; ⑵若对于区间[-2,2]±任意两个自变量的值几花都有|/(州)-/(勺)|“,求实数c的最小值; ⑶若过点M(2冲)(〃?工2)可作曲线y = f(X)的三条切线,求实数山的取值范围. 6、设函数/(x) = x —丄一dlnx(dR). x ⑴讨论函数/(劝的单调性; ⑵若/⑴有两个极值点州內,记过点心后)),BgJ(兀2))的直线斜率为问:是否存在",使得k = 2-a若存在,求出"的值;若不存在,请说明理由.

2018年高考理科数学全国卷二导数压轴题解析

2018年高考理科数学全国卷二导数压轴题解析 已知函数2()x f x e ax =-. (1) 若1a =,证明:当0x ≥时,()1f x ≥. (2) 若()f x 在(0,)+∞只有一个零点,求a . 题目分析: 本题主要通过函数的性质证明不等式以及判断函数零点的问题考察学生对于函数单调性以及零点存在定理性的应用,综合考察学生化归与分类讨论的数学思想,题目设置相对较易,利于选拔不同能力层次的学生。第1小问,通过对函数以及其导函数的单调性以及值域判断即可求解。官方标准答案中通过()()x g x e f x -=的变形化成2()x ax bx c e C -+++的形式,这种形式的函数求导之后仍为2()x ax bx c e -++这种形式的函数,指数函数的系数为代数函数,非常容易求解零点,并且这种变形并不影响函数零点的变化。这种变形思想值得引起注意,对以后导数命题有着很大的指引作用。但是,这种变形对大多数高考考生而言很难想到。因此,以下求解针对函数()f x 本身以及其导函数的单调性和零点问题进行讨论,始终贯穿最基本的导函数正负号与原函数单调性的关系以及零点存在性定理这些高中阶段的知识点,力求完整的解答该类题目。 题目解答: (1)若1a =,2()x f x e x =-,()2x f x e x '=-,()2x f x e ''=-. 当[0,ln 2)x ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x ∈+∞时,()0f x ''>,()f x '单调递增; 所以()(ln 2)22ln 20f x f ''≥=->,从而()f x 在[0,)+∞单调递增;所以()(0)1f x f ≥=,得证. (2)当0a ≤时,()0f x >恒成立,无零点,不合题意. 当0a >时,()2x f x e ax '=-,()2x f x e a ''=-. 当[0,ln 2)x a ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x a ∈+∞时,()0f x ''>,()f x '单调递增;所以()(ln 2)2(1ln 2)f x f a a a ''≥=-. 当02 e a <≤ 时,()0f x '≥,从而()f x 在[0,)+∞单调递增,()(0)1f x f ≥=,在(0,)+∞无零点,不合题意.

高考导数压轴题题型(精选.)

高考导数压轴题题型 李远敬整理 2018.4.11 一.求函数的单调区间,函数的单调性 1.【2012新课标】21. 已知函数()f x 满足满足12 1()(1)(0)2 x f x f e f x x -'=-+; (1)求()f x 的解析式及单调区间; 【解析】 (1)12 11()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f = 1211 ()(1)(0)(1)1(1)2 x f x f e x x f f e f e --'''=-+?==?= 得:21 ()()()12 x x f x e x x g x f x e x '=-+?==-+ ()10()x g x e y g x '=+>?=在x R ∈上单调递增 ()0(0)0,()0(0)0f x f x f x f x ''''>=?><=?< 得:()f x 的解析式为21()2 x f x e x x =-+ 且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞ 2.【2013新课标2】21.已知函数f (x )=e x -ln(x +m ). (1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; 【解析】 (1)f ′(x )=1 e x x m - +. 由x =0是f (x )的极值点得f ′(0)=0,所以m =1. 于是f (x )=e x -ln(x +1),定义域为(-1,+∞),f ′(x )=1 e 1 x x -+. 函数f ′(x )=1 e 1 x x -+在(-1,+∞)单调递增,且f ′(0)=0. 因此当x ∈(-1,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0. 所以f (x )在(-1,0)单调递减,在(0,+∞)单调递增. 3.【2014新课标2】21. 已知函数()f x =2x x e e x --- (1)讨论()f x 的单调性; 【解析】 (1)+ -2≥0,等号仅当x=0时成立,所以f (x )在(—∞,+∞)单调递 增 【2015新课标2】21. 设函数 f (x )=e mx +x 2-mx 。 (1)证明: f (x )在 (-¥,0)单调递减,在 (0,+¥)单调递增; (2)若对于任意 x 1,x 2?[-1,1],都有 |f (x 1)-f (x 2)|£e -1,求m 的取值范围。

高中数学导数练习题(有答案)

导数练习题(含答案) 【编著】黄勇权 一、求下函数的导数 (1)f (x )=2x 2+3x+2 (2)f (x )=3sinx+7x 2 (3)f (x )=lnx+2x (4)f (x )=2x +6x (5)f (x )=4cosx -7 (6)f (x )=7e x +9x (7)f (x )=x 3+4x 2+6 (8)f (x )=2sinx -4cosx (9)f (x )=log2x (10)f (x )= x 1 (11)f (x )=lnx+3e x (12)f (x )=2x x (13)f (x )=sinx 2 (14)f (x )=ln (2x 2+6x ) (15)f (x )=x 1x 3x 2++ (16)f (x )=xlnx+9x (17)f (x )= x sinx lnx + (18)f (x )=tanx (19)f (x )=x x e 1e 1-+ (20) f (x )=(x 2-x )3 【答案】 一、求下函数的导数 (1)f /=4x+3 (2)f /=3cos+14x (3)f /=x 1+2 (4)f /=2x ln2+6 (5)f /= -4sinx (6)f /=7e x (7)f /=3x 2+8x (8)f /=2cosx+4sinx

(9)因为f (x )=log2x =2ln lnx =lnx 2 ln 1? 所以:f /=(lnx 2ln 1?)/ =(2ln 1)?(lnx )/ =2ln 1?x 1 =ln2 x 1? (10)因为:f (x )=x 1 f /=2x x 1x 1) ()()('?-?'= x x 1210?- = x x 21- = 2x 2x - (11)f /= x e 3x 1+ (12)f (x )= 2x x =23x - f /=(2 3-)25x -= 3 x 2x 3- (13)f /=(sinx 2)/?(x 2)/=cosx 2?(2x )=2x ?cosx 2 (14)f /=[ln (2x 2+6x )]/?(2x 2+6x)/ = x 6x 212+? (4x+6) = x 3x 3x 22++ (15)f (x )=x 1x 3x 2++ = x+3+x 1 f /=(x+3+x 1)/= 1+0 -2x 1 =22x 1-x (16)f /=(x )/(lnx )+(x )(lnx )/+9 =lnx+x 1x ?+9 =lnx+10

(完整版)导数中双变量的函数构造(2)

导数中双变量的函数构造 21.(12分)已知函数()ln e x f x x λ-=-(λ∈R ). (1)若函数()f x 是单调函数,求λ的取值范围; (2)求证:当120x x <<时,都有21112 1 e e 1x x x x --->- . 21.解:(1)函数()f x 的定义域为(0,)+∞,∵()ln e x f x x λ-=-,∵e ()e x x x f x x x λ λ--+'=+= , ∵函数()f x 是单调函数,∵()0f x '≤或()0f x '≥在(0,)+∞上恒成立, ∵∵()0f x '≤,∵e 0x x x λ-+≤,即e 0x x λ-+≤,e e x x x x λ--=- ≤, 令()e x x x ?=- ,则1 ()e x x x ?-'=,当01x <<时,()0x ?'<;当1x >时,()0x ?'>. 则()x ?在(0,1)上递减,(1,)+∞上递增,∵min 1()(1)x e ??==-,∵1 e λ-≤; ∵∵()0f x '≥,∵e 0x x x λ-+≥,即e 0x x λ-+≥,e e x x x x λ--=-≥, 由∵得()e x x x ?=-在(0,1)上递减,(1,)+∞上递增,又(0)0?=,x →+∞时()0x ?<,∵0λ≥; 综上∵∵可知, 1e λ-≤或0λ≥; ...............................6分 (2)由(1)可知,当1e λ-=时,1()ln e e x f x x -=--在(0,)+∞上递减,∵120x x <<, ∵12()()f x f x >,即121211ln e ln e e e x x x x ---->--,∵211112e e ln ln x x x x --->-, 要证21112 1 e e 1x x x x --->- ,只需证2121ln ln 1x x x x ->-,即证1221ln 1x x x x >-, 令12x t x = ,(0,1)t ∈,则证1ln 1t t >-,令1()ln 1h t t t =+-,则21 ()0t h t t -'=<, ∵()h t 在(0,1)上递减,又(1)0h =,∵()0h t >,即1 ln 1t t >-,得证. ...............................12分 [典例] 已知函数f (x )=ax 2+x ln x (a ∈R)的图象在点(1,f (1))处的切线与直线x +3y =0垂直. (1)求实数a 的值; (2)求证:当n >m >0时,ln n -ln m >m n -n m . [解] (1)因为f (x )=ax 2+x ln x ,

2007——2014高考数学新课标卷(理)函数与导数压轴题汇总

2007——2014高考数学新课标卷(理)函数与导数综合大题 【2007新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数2()ln()f x x a x =++ (I )若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性; (II )若()f x 存在极值,求a 的取值范围,并证明所有极值之和大于e ln 2 . 【解析】(Ⅰ)1()2f x x x a '= ++,依题意有(1)0f '-=,故32a =. 从而2231(21)(1) ()3322 x x x x f x x x ++++'==++. ()f x 的定义域为32?? -+ ??? ,∞,当312x -<<-时,()0f x '>; 当1 12 x -<<-时,()0f x '<; 当1 2 x >- 时,()0f x '>. 从而,()f x 分别在区间3 1122????---+ ? ?????,,, ∞单调增加,在区间112?? -- ??? ,单调减少. (Ⅱ)()f x 的定义域为()a -+,∞,2221 ()x ax f x x a ++'=+. 方程2 2210x ax ++=的判别式2 48a ?=-. (ⅰ)若0?< ,即a << ()f x 的定义域内()0f x '>,故()f x 的极值. (ⅱ)若0?= ,则a a = 若a = ()x ∈+ ,2 ()f x '= . 当x =时,()0f x '=,

当2 x ? ??∈-+ ? ????? ,∞时, ()0f x '>,所以()f x 无极值. 若a =)x ∈+,()0f x '= >,()f x 也无极值. (ⅲ)若0?>,即a > a <22210x ax ++=有两个不同的实根 1x = 2x = 当a <12x a x a <-<-,,从而()f x '有()f x 的定义域内没有零点, 故()f x 无极值. 当a > 1x a >-,2x a >-,()f x '在()f x 的定义域内有两个不同的零点, 由根值判别方法知()f x 在12x x x x ==,取得极值. 综上,()f x 存在极值时,a 的取值范围为)+. ()f x 的极值之和为 2221211221()()ln()ln()ln 11ln 2ln 22 e f x f x x a x x a x a +=+++++=+->-=. 【2008新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数1 ()()f x ax a b x b =+ ∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为y =3. (Ⅰ)求()f x 的解析式: (Ⅱ)证明:函数()y f x =的图像是一个中心对称图形,并求其对称中心; (Ⅲ)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值. 21.解:(Ⅰ)2 1 ()() f x a x b '=- +,

导数压轴题题型(学生版)

导数压轴题题型 引例 【2016高考山东理数】(本小题满分13分) 已知. (I )讨论的单调性; (II )当时,证明对于任意的成立. 1. 高考命题回顾 例1.已知函数)f x =(a e 2x +(a ﹣2) e x ﹣x . (1)讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围. ()2 21 ()ln ,R x f x a x x a x -=-+ ∈()f x 1a =()3 ()'2 f x f x +>[]1,2x ∈

例2.(21)(本小题满分12分)已知函数()()()2 21x f x x e a x =-+-有两个零点. (I)求a 的取值范围; (II)设x 1,x 2是()f x 的两个零点,证明:122x x +<.

例3.(本小题满分12分) 已知函数f (x )=31 ,()ln 4 x ax g x x ++ =- (Ⅰ)当a 为何值时,x 轴为曲线()y f x = 的切线; (Ⅱ)用min {},m n 表示m,n 中的最小值,设函数}{ ()min (),()(0)h x f x g x x => , 讨论h (x )零点的个数 例4.(本小题满分13分) 已知常数,函数 (Ⅰ)讨论在区间 上的单调性; (Ⅱ)若存在两个极值点且 求的取值范围.

例5已知函数f(x)=e x-ln(x+m). (1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性; (2)当m≤2时,证明f(x)>0.

例6已知函数)(x f 满足21 2 1)0()1(')(x x f e f x f x + -=- (1)求)(x f 的解析式及单调区间; (2)若b ax x x f ++≥2 2 1)(,求b a )1(+的最大值。 例7已知函数,曲线在点处的切线方程为。 (Ⅰ)求、的值; (Ⅱ)如果当,且时,,求的取值范围。 ln ()1a x b f x x x = ++()y f x =(1,(1))f 230x y +-=a b 0x >1x ≠ln ()1x k f x x x >+-k

高中数学导数经典习题

导数经典习题 选择题: 1.已知物体做自由落体运动的方程为2 1(),2 s s t gt == 若t ?无限趋近于0时, (1)(1) s t s t +?-?无限趋近于9.8/m s ,那么正确的说法是( ) A .9.8/m s 是在0~1s 这一段时间内的平均速度 B .9.8/m s 是在1~(1+t ?)s 这段时间内的速度 C .9.8/m s 是物体从1s 到(1+t ?)s 这段时间内的平均速度 D .9.8/m s 是物体在1t s =这一时刻的瞬时速度. - 2.一个物体的运动方程为2 1t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3. 若函数f(x)=x 2+b x +c 的图象的顶点在第四象限,则函数f /(x)的图象是 ( ) 4.函数)(x f y =在一点的导数值为0是函数)(x f y = 在这点取极值的( ) A .充分条件 B .必要条件 C .充要条件 D .必要非充分条件 , 5.()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足''()()f x g x =,则()f x 与()g x 满足( ) A .()f x =()g x B .()f x -()g x 为常数函数 C .()f x =()0g x = D .()f x +()g x 为常数函数 6.. 若()sin cos f x x α=-,则'()f α等于( ) A .sin α B .cos α C .sin cos αα+ D .2sin α 7. 已知函数1)(2 3--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数a 的取值范围是( ) A .),3[]3,(+∞--∞ B .]3,3[- C .),3()3,(+∞--∞ D .)3,3(- 8. 对于R 上可导的任意函数()f x ,若满足'(1)()0x f x -≥,则必有 ( ) ! A . (0)(2)2(1)f f f +< B. (0)(2)2(1)f f f +≤ C. (0)(2)2(1)f f f +≥ D. (0)(2)2(1)f f f +> 填空题: 1.若2012)1(/=f ,则x f x f x ?-?+→?) 1()1(lim 0= , x f x f x ?--?+→?)1()1(lim 0= ,x x f f x ??+-→?4) 1()1(lim 0= , x f x f x ?-?+→?)1()21(lim 0= 。 2.函数y= x -e 的导数为 A x D C x B

导数双变量专题

导数-双变量问题 1.构造函数利用单调性证明 2.任意性与存在性问题 3.整体换元—双变单 4.极值点偏移 5.赋值法 构造函数利用单调性证明 形式如:1212|()()|||f x f x m x x -≥- 方法:将相同变量移到一边,构造函数 1.已知函数23 9()()(24 f x x x =++)对任意[]12,1,0x x ∈-,不等式12|()()|f x f x m -≤恒成立,试求m 的取值范围。 2.已知函数2 ()(1)ln 1f x a x ax =+++.设1a <-,如果对12,(0,)x x ?∈+∞,有 1212|()()|4||f x f x x x -≥-,求实数a 的取值范围. 3.已知函数2 )1ln()(x x a x f -+=区间)1,0(内任取两个实数q p ,,且q p ≠时,若不等式 1) 1()1(>-+-+q p q f p f 恒成立,求实数a 的取值范围。 4.已知函数2 1()2ln (2),2 f x x a x a x a R = -+-∈.是否存在实数a ,对任意的 ()12,0,x x ∈+∞,且21x x ≠,有 2121 ()() f x f x a x x ->-,恒成立,若存在求出a 的取值范围, 若不存在,说明理由. 练习1:已知函数2 ()ln =+f x a x x ,若0>a ,且对任意的12,[1,]∈x x e ,都有 1212 11 |()()|| |-<-f x f x x x ,求实数a 的取值范围. 练习2.设函数 ()ln ,m f x x m R x =+ ∈.若对任意()()0,1f b f a b a b a ->><-恒成立, 求m 的取值范围.

高三数学导数压轴题

导数压轴 一.解答题(共20小题) 1.已知函数f(x)=e x(1+alnx),设f'(x)为f(x)的导函数. (1)设g(x)=e﹣x f(x)+x2﹣x在区间[1,2]上单调递增,求a的取值范围; (2)若a>2时,函数f(x)的零点为x0,函f′(x)的极小值点为x1,求证:x0>x1. 2.设. (1)求证:当x≥1时,f(x)≥0恒成立; (2)讨论关于x的方程根的个数. 3.已知函数f(x)=﹣x2+ax+a﹣e﹣x+1(a∈R).

(1)当a=1时,判断g(x)=e x f(x)的单调性; (2)若函数f(x)无零点,求a的取值范围. 4.已知函数. (1)求函数f(x)的单调区间; (2)若存在成立,求整数a的最小值.5.已知函数f(x)=e x﹣lnx+ax(a∈R).

(Ⅰ)当a=﹣e+1时,求函数f(x)的单调区间; (Ⅱ)当a≥﹣1时,求证:f(x)>0. 6.已知函数f(x)=e x﹣x2﹣ax﹣1. (Ⅰ)若f(x)在定义域内单调递增,求实数a的范围; (Ⅱ)设函数g(x)=xf(x)﹣e x+x3+x,若g(x)至多有一个极值点,求a的取值集合.7.已知函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R).

(2)若对?x∈(0,+∞),f(x)≥0,求实数a的取值范围. 8.设f′(x)是函数f(x)的导函数,我们把使f′(x)=x的实数x叫做函数y=f(x)的好点.已知函数f(x)=. (Ⅰ)若0是函数f(x)的好点,求a; (Ⅱ)若函数f(x)不存在好点,求a的取值范围. 9.已知函数f(x)=lnx+ax2+(a+2)x+2(a为常数).

(完整word)高中数学导数练习题

专题8:导数(文) 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 解析:()2'2 +=x x f ,所以()3211'=+=-f 答案:3 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 解析:因为21= k ,所以()2 1 1'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()2 5 1=f ,所以()()31'1=+f f 答案:3 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 解析:443'2 --=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例 4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 解析:Θ直线过原点,则()000 ≠= x x y k 。由点()00,y x 在曲线C 上,则02030023x x x y +-=,∴ 2302 00 0+-=x x x y 。又263'2+-=x x y ,∴ 在 () 00,y x 处曲线C 的切线斜率为()263'02 00+-==x x x f k ,∴

导数中双变量问题的四种策略

双变量问题的几种处理策略 策略一:合的思想 问题1:已知函数x x f ln )(=的图象上任意不同的两点, ,线段的中点为 ,记直线的斜率为,试证明:. 解析:因为 ∴, ∴,又 不妨设 , 要比较与的大小,即比较与的大小, 又∵,∴ 即比较与 的大小. 令,则, ∴在上位增函数. 又,∴, ∴,即 二:分的思想 问题2:若1 ln )(++=x a x x g ,且对任意的(]2,1,21∈x x ,, 都有, 求a 的取值范围. 解析∵ ,∴ 由题意得在区间(]2,1上是减函数. ∴ () 11,y x A () 22,y x B AB ),(00y x C AB k )(0x f k '>x x f ln )(=x x f 1)(='210021)(x x x x f +=='121212121212ln ln ln )()(x x x x x x x x x x x f x f k -= --=--=12x x >k )(0x f '1 212 ln x x x x -2 12 x x +12x x >12ln x x 1)1( 2) (21 2 1 2 2 112+-=+-x x x x x x x x )1(1) 1(2ln )(≥+--=x x x x x h 0) 1()1()1(41)(2 22≥+-=+-='x x x x x x h )(x h [)+∞,1112>x x 0)1()(12 =>h x x h 1)1( 2ln 1 2 1 2 1 2+->x x x x x x )(0x f k '>21x x ≠1 ) ()(1 212-<--x x x g x g 1)()(1 212-<--x x x g x g []0)()(121122<-+-+x x x x g x x g x x g x F +=)()(1)1(1)(2 ++-= 'x a x x F

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

高中数学导数题型分析及解题方法

导数题型分析及解题方法 一、考试内容 导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。 二、热点题型分析 题型一:利用导数研究函数的极值、最值。 1. 32 ()32f x x x =-+在区间[]1,1-上的最大值是 2 2.已知函数2)()(2 =-==x c x x x f y 在处有极大值,则常数c = 6 ; 3.函数3 31x x y -+=有极小值 -1 ,极大值 3 题型二:利用导数几何意义求切线方程 1.曲线3 4y x x =-在点 ()1,3--处的切线方程是 2y x =- 2.若曲线x x x f -=4 )(在P 点处的切线平行于直线03=-y x ,则P 点的坐标为 (1,0) 3.若曲线4 y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 430x y --= 4.求下列直线的方程: (1)曲线123++=x x y 在P(-1,1)处的切线; (2)曲线2 x y =过点P(3,5)的切线; 解:(1) 123|y k 23 1)1,1(1x /2/2 3===∴+=∴++=-=-上,在曲线点-x x y x x y P 所以切线方程为02 11=+-+=-y x x y 即, (2)显然点P (3,5)不在曲线上,所以可设切点为) ,(00y x A ,则 2 00x y =①又函数的导数为x y 2/ =, 所以过 ) ,(00y x A 点的切线的斜率为 /2|0x y k x x ===,又切线过),(00y x A 、P(3,5)点,所以有 3 5 2000--= x y x ②,由①②联立方程组得,??????====25 5 110 000y x y x 或,即切点为(1,1)时,切线斜率为 ; 2201==x k ;当切点为(5,25)时,切线斜率为10202==x k ;所以所求的切线有两条,方程分 别为2510 12 )5(1025)1(21-=-=-=--=-x y x y x y x y 或即, 或 题型三:利用导数研究函数的单调性,极值、最值 1.已知函数 ))1(,1()(,)(23f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1 (Ⅰ)若函数2)(-=x x f 在处有极值,求)(x f 的表达式; (Ⅱ)在(Ⅰ)的条件下,求函数)(x f y =在[-3,1]上的最大值;

导数中的双变量任意

导数中的双变量任意、存在恒成立问题 解决方法:转化为最值问题处理 ●类型 一:若2211D x D x ∈?∈?,,)()(21x g x f >恒成立 ?max 2min 1)()(x g x f >. 基本思想是:函数)(x f 的任一函数值均大于)(x g 的任一函数值, 故只需max 2min 1)()(x g x f >即可. 几何解释如图一. 例1、已知x x x f ln )(=,3)(2++-=ax x x g ,若对)0(1∞+∈?,x , ]1[2e x ,∈?使得)(21x f ≥)(2x g 成立,求实数a 的取值范围. 【变式训练1】已知函数14341ln )(-+-=x x x x f ,42)(2-+-=bx x x g ,若)20(1,∈?x , ]21[2,∈?x ,不等式)(1x f ≥)(2x g 恒成立,求实数b 的取值范围. ●类型 二:若2211D x D x ∈?∈?,,)()(21x g x f >恒成立 ?min 2max 1)()(x g x f >. 基本思想是:函数)(x f 的某些函数值大于)(x g 的某些函数值, 只要求有这样的函数值,不要求所有的函数值. 故只需min 2max 1)()(x g x f >即可. 几何解释如图二. 例2、已知a ≤2,设函数x a x x x f ln 1)(--=,e x x x g 1ln )(--=, 若在]1 [e ,上存在21x x ,,使)(1x f ≥)(2x g 成立,求实数a 取值范围. 【变式训练2】已知函数x x x g ln )(=,ax x g x f -=)()(. (1)求函数)(x g 的单调区间; (2)若函数)(x f 在(1,∞+)上是减函数,求实数a 的最小值; (3)若存在][221e e x x ,,∈,使得)(1x f ≤a x f +')(2成立,求实数a 取值范围.

高考导数压轴题题型

高考导数压轴题题型 远敬整理 2018.4.11 一.求函数的单调区间,函数的单调性 1.【2012新课标】21. 已知函数()f x 满足满足121()(1)(0)2x f x f e f x x -'=-+ ; (1)求()f x 的解析式及单调区间; 【解析】 (1)1211()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f = 1211()(1)(0)(1)1(1)2 x f x f e x x f f e f e --'''=-+?==?= 得:21()()()12 x x f x e x x g x f x e x '=-+?==-+ ()10()x g x e y g x '=+>?=在x R ∈上单调递增 ()0(0)0,()0(0)0f x f x f x f x ''''>=?><=?< 得:()f x 的解析式为21()2 x f x e x x =-+ 且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞ 2.【2013新课标2】21.已知函数f (x )=e x -ln(x +m ). (1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; 【解析】 (1)f ′(x )=1e x x m -+. 由x =0是f (x )的极值点得f ′(0)=0,所以m =1. 于是f (x )=e x -ln(x +1),定义域为(-1,+∞),f ′(x )=1e 1x x - +. 函数f ′(x )=1e 1 x x -+在(-1,+∞)单调递增,且f ′(0)=0. 因此当x ∈(-1,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0.

高中数学导数专题训练

精心整理 高二数学导数专题训练 一、选择题 1.一个物体的运动方程为S=1+t+2 t 其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是() A 7米/秒 B 6米/秒 C 5米/秒 D 8米/秒 2.已知函数f (x )=ax 2 +c ,且(1)f '=2,则a 的值为() A.1 B.2 C.-1 D.0 3()f x 与(f x A (f C (f 4.函数y A (5.若函数A.f(x)6.0'()f x A C 7.曲线f A (1,0)C (1,0)8.函数y A.C.9.对于R A (0)(2)2(1)f f f + 10.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000 ()() lim h f x h f x h h →+-- 的值为() A .' 0()f x B .' 02()f x C .' 02()f x -D .0 二、填空题 11.函数32 y x x x =--的单调区间为___________________________________. 12.已知函数3 ()f x x ax =+在R 上有两个极值点,则实数a 的取值范围是.

13.曲线x x y 43 -=在点(1,3)-处的切线倾斜角为__________. 14.对正整数n ,设曲线)1(x x y n -=在2x =处的切线与y 轴交点的纵坐标为n a ,则数列1n a n ?? ??+?? 的前n 项和的公式是 . 三、解答题: 15.求垂直于直线2610x y -+=并且与曲线3 2 35y x x =+-相切的直线方程 16 17 (1)求y (2)求 y 18(I (II (III 19(I (II 20.已知x (1)求m (2)求f (3)当x AABCBACCDB 二、填空题 11.递增区间为:(-∞,13),(1,+∞)递减区间为(1 3 -,1) (注:递增区间不能写成:(-∞,1 3 )∪(1,+∞)) 12.(,0)-∞13.3 4 π 14.1 2 2n +-()()/ 112 22,:222(2)n n n x y n y n x --==-++=-+-切线方程为,

相关文档
最新文档