热重分析
热重分析法

热重分析法热重分析法(Thermogravimetric Analysis,简称TGA)是一种热分析技术,通过对样品在升温过程中的质量变化进行监测和分析,以了解样品的热稳定性、分解特性等信息。
本文将介绍热重分析法的原理、仪器设备、应用领域以及未来的发展趋势。
热重分析法是在恒定加热速率下,通过记录样品重量随温度或时间的变化,来研究样品的热衰减、热失重等热性能。
这种分析方法可以对各种材料进行测试,如聚合物、陶瓷、金属等。
它可以用于研究材料的热稳定性、热分解过程、腐蚀、氧化等热化学性质,并可以对化学反应、降解行为等进行动态监测。
热重分析法的仪器设备主要由称量装置、升温装置、传感器、数据采集和处理系统等组成。
在测试过程中,样品一般以小颗粒、薄片或粉末的形式存在,称量时要求准确并保持恒定性。
样品装入称量器后,通过升温装置以控制加热速率,并通过传感器可以实时监测样品重量的变化。
数据采集和处理系统可以将监测到的重量变化转化为曲线图或数字数据,进一步进行分析和解释。
热重分析法在许多领域有广泛的应用。
在研究材料的热稳定性方面,可以用于评估聚合物材料的耐高温性能,为材料选择、设计和改性提供依据。
在研究催化剂的活性和稳定性时,可以通过热重分析法来研究其在高温下的热失重和活性损失情况。
此外,热重分析法还可以用于纺织品的研究、煤炭和石油产品的分析、药物的稳定性研究等。
在未来,热重分析法有望得到进一步发展和广泛应用。
随着材料科学和工程技术的不断进步,对材料热性能的研究需求日益增加。
新的测试方法和装置将不断涌现,以满足更多领域对材料热性能测量的需求。
同时,热重分析法也将与其他热分析技术结合,如差热分析(Differential Scanning Calorimetry,简称DSC)、热导率测试等,以获取更准确、全面的热性能数据。
总之,热重分析法作为一种重要的热分析技术,具有广泛的应用前景和重要的科学意义。
通过研究样品在升温过程中的质量变化,可以了解材料的热稳定性、热分解特性等重要信息。
热重分析原理

热重分析原理
热重分析(TGA)是一种热分析技术,通过对样品在控制温度下的质量变化进
行监测和分析,来研究样品的热稳定性、热分解过程、吸附性能等。
热重分析原理是基于样品在受热条件下质量变化的基本规律,通过对样品质量变化曲线的分析,可以得到样品的热重损失、热重增加等信息,从而揭示样品的性质和特性。
在进行热重分析时,首先需要将样品放置在热重仪的样品盘中,然后在一定的
温度范围内对样品进行加热,同时监测样品的质量变化。
在加热过程中,样品会发生热分解、失水、失重等反应,导致样品的质量发生变化。
通过记录样品质量随温度的变化曲线,可以得到样品在不同温度下的质量损失情况,从而分析样品的热稳定性和热分解特性。
热重分析原理主要包括样品在受热条件下的质量变化规律、质量损失的原因和
机制等内容。
样品在受热条件下会发生热分解、失水、氧化、还原等反应,导致样品的质量发生变化。
通过对样品质量变化曲线的分析,可以得到样品的热重损失、热重增加等信息,从而揭示样品的性质和特性。
同时,热重分析还可以用于研究样品的吸附性能、反应动力学等内容,为样品的研究和应用提供重要参考。
总之,热重分析原理是基于样品在受热条件下的质量变化规律,通过对样品质
量变化曲线的分析,可以揭示样品的热稳定性、热分解特性、吸附性能等重要信息。
热重分析在材料科学、化学、环境科学等领域有着广泛的应用,对于研究样品的性质和特性具有重要意义。
希望本文对热重分析原理有所帮助,欢迎大家阅读。
热重分析

典型热重曲线
如何确定起始温度、外延起始温度、外延终止温度、终止温度、半寿温度、 分解5%、10%的温度呢?如下图:
几个常用术语
①热天平(Thermobalance)在程序温度下,连续称量 试样重量的仪器; ②测温热电偶 由于不同金属接触存在接触电势,两接 触头温度一致,无电动势,两温度不同则产生E,这叫 温差电动势,是1821年德国物理学家塞贝克首先发现的 。E与ΔT有正比关系。这可用来测高温,铂铑-铂电偶可测1600℃高温,镍-镍 铝热电偶可测到1100℃,铜-康铜热电偶<300℃(见上图); ③试样(sample)实际研究的材料,即被测定物质; ④样品池或称钳锅 放试样的容器(陶瓷、铝、铂等等); ⑤试样支持器(sample holder)放样品池或称钳锅的支架; ⑥ 曲线平台(plateau)TG曲线上质量基本不变的部分; ⑦起始温度(Initial temperature)Ti 累积质量变化达到热天平能够检测时的温 度; ⑧ 终止温度(final temperature)Tf 累积质量变化达到最大值的温度; ⑨反应区间(reaction interval)起始温度与终止温度间的温度间隔(Ti - Tf).
热重分析的应用
目前,热重分析法已在下述诸方面得到应用:
(1)无机物、有机物及聚合物的热分解; (2)金属在高温下受各种气体的腐蚀过程; (3)固态反应; (4)矿物的煅烧和冶炼; (5)液体的蒸馏和汽化; (6)煤、石油和木材的热解过程; (7)含湿量、挥发物及灰分含量的测定; (8)升华过程; (9)脱水和吸湿; (10)爆炸材料的研究; (11)反应动力学的研究; (12)发现新化合物; (13)吸附和解吸; (14)催化活度的测定; (15)氧化稳定性和还原稳定性的研究; (16)反应机理的研究;
热重分析原理

热重分析原理热重分析(Thermogravimetric Analysis,TGA)是一种通过测量样品在升温过程中的质量变化来研究材料性质的分析技术。
它是一种广泛应用于材料科学、化学、生物学等领域的重要实验手段。
热重分析原理主要是利用样品在不同温度下的质量变化来分析样品的成分、热稳定性、热分解动力学等信息。
在进行热重分析时,首先需要将样品放入热重仪的样品盘中,并在恒定的升温速率下进行加热。
在加热的过程中,热重仪会实时监测样品的质量变化,并将数据记录下来。
通过对样品质量变化曲线的分析,可以得到样品在升温过程中的质量损失情况,进而推断样品的热分解温度、热分解产物、热分解动力学参数等信息。
热重分析原理的核心在于样品在升温过程中的质量变化。
当样品受热时,其内部的化学键可能会发生断裂,导致挥发分的释放、热分解产物的生成等过程,从而引起样品质量的变化。
通过监测样品的质量变化,可以得到样品在不同温度下的热稳定性情况,进而推断样品的热分解特性。
热重分析原理不仅可以用于研究样品的热稳定性,还可以用于分析样品的成分。
在进行热重分析时,可以结合其他分析技术,如气相色谱-质谱联用技术(GC-MS)、傅里叶变换红外光谱(FTIR)等,对样品在不同温度下释放的挥发分进行在线分析,从而推断样品的成分信息。
此外,热重分析原理还可以用于研究样品的热分解动力学。
通过对样品在不同升温速率下的热重曲线进行分析,可以得到样品的热分解动力学参数,如活化能、反应级数等信息,从而揭示样品的热分解反应机理。
总之,热重分析原理是一种重要的材料分析技术,通过研究样品在升温过程中的质量变化,可以得到样品的成分、热稳定性、热分解动力学等信息,为材料科学、化学、生物学等领域的研究提供了重要的实验手段。
热重分析

第三节 热重分析(TG )一、基本原理热重法是在程序控温下,测量物质的质量随温度(或时间)的变化关系的一种技术,简称TG 。
如熔融、结晶和玻璃化转变之类的热行为,试样确无质量变化,而分解、升华、还原、解吸附、吸附、蒸发等伴有质量改变的热变化可用TG 来测。
如果在程序升温的条件下不断记录试样的重量的变化,即可得到TG 曲线。
如图1所示。
一般可以观察到二到三个台阶,第一个失重台阶W 0—W 2多数发生在100℃以下,这多半是由于试样的吸附水或试样内残留的溶剂挥发所致。
第二个台阶往往是试样内添加的小分子助剂,如高聚物增塑剂、抗老剂和其他助剂的挥发(如纯物质试样则无此部分)。
第三个台阶发生在高温是属于试样本体的分解。
为了清楚地观察到每阶段失重最快的温度。
经常用微分热重曲线DTG (如图1b )。
这种/dW dt 曲线可以利用电子微分电路在绘制TG 曲线的同时绘出。
对于分解不完全的物质常常留下残留物W R 。
在某种特殊的情况下还会发生增重现象,这可能是物质与环境气体(如空气中的氧)进行了反应所致。
另外目前又出现了一种等温TG 曲线。
这是在某一定温度条件下,观察试样的重量随时间的变化,所以又称“等温热失重法”即:W=f (t )(温度为定值)W 0 W 1 W 2 W 3重量图1 热重分析曲线(a )与微商热重曲线(b )微量天平计算机温度程序器试样和坩埚炉子图2-1 热天平方块图它能提供很多有用的信息,如在某温度下物体的分解速度或某成分的挥发速度等。
二、基本结构热重法的仪器称为热天平,给出的曲线为热重曲线。
热重曲线以时间t 或炉温T 为横坐标,以试样的质量变化(损失)为纵坐标。
热天平的基本单元是微量天平、炉子、温度程序器、气氛控制器以及同时记录这些输出的仪器。
热天平的示意图如图2-1所示。
通常是先由计算机存储一系列质量和温度与时间关系的数据完成测量后,再由时间转换成温度。
三、影响因素虽然由于技术的进步,在设计TG 仪器时进行了周密的考虑,尽量减少各种因素的影响,但是客观上这些因素还不同程度在存在着,为了数据的可靠性,有必要分述如下:1.坩埚的影响坩埚是用来盛装试样的,坩埚具有各种尺寸、形状并由不同材质制成。
热重分析

7
注意事项:
(1)打开仪器外壳或更换保险丝时,断开TGA的电源,移开电
源线。
(2)绝不要充入可能会引起爆炸的混合性气体,不要使用可燃 性气体或有爆炸性的混合气体作为吹扫气体,否则可能会发生爆 炸。
(3)当炉子温度高于300º C时,绝不要关闭恒温水浴槽,否则 仪器的冷却会就此关闭,测量单元的四周会变热而无法控制。
热重分析
顾晶晶
LOREM IPSUM DOLOR
1.热重基本知识 2.热重曲线及其影响因素 3.热重分析在催化中的应用 4.热重分析联用技术
2
1.热重基本知识
Q1.什么是热重分析? 热重分析(Thermogravimetric Analysis,TG或TGA), 是指在程序控制温度下测量待测样品的质量与温度变化 关系的一种热分析技术,用来研究材料的热稳定性和组 份。
20
End
Thank you
21
8
(4)绝不要触碰炉体、炉盖或刚从炉体中取出的样品。
(5)如果测量的是会分解出有毒气体的物质,那么将 测量单元放置在通风橱内。
(6)通过气体出口活塞有控制的排除所有反应气体, 为了合理的排放气体,可以接一段长度适中的管子。
9
2.热重曲线及其影响因素
当几个效应接连发 生,部分重叠,平 台不容易确定时, DTG曲线较TG更清 晰
调整安装在天平系统和磁场中线圈的电流,使线圈转动
恢复天平梁的倾斜,即所谓零位法。
6
Q4.使用热重仪的步骤以及注意事项? 步骤:称取适当重量样品于坩埚中 打开盖子 - 装入样品坩埚 - 关上盖子 在软件中设定温度程序与气氛等条件,初始化工作条件, 如气体流量、抽真空等
热重分析TGA完整版

热重分析TGA完整版热重分析(Thermogravimetric Analysis,TGA)是一种热分析技术,通过对样品在不同温度条件下质量的变化进行检测和分析,可以获得样品热稳定性、反应性以及成分等信息。
本文将介绍热重分析的原理、仪器设备、实验步骤以及应用等内容。
热重分析的原理是利用热电偶作为探头,将样品加热至一定温度范围内,并监测样品质量的变化。
当样品受热时,会发生热分解、脱水、脱插等反应,此时会产生质量的变化,通过记录样品质量与温度之间的关系,可以获得样品的热重曲线。
通过分析热重曲线,可以得到样品的热分解温度、失重量、反应动力学等信息。
热重分析的仪器设备主要由加热器、电子天平和温度控制系统组成。
其中,加热器提供恒定的温度场,电子天平能够检测样品质量的变化,并将数据传输到计算机上,温度控制系统能够精确控制样品的加热温度。
进行热重分析的实验步骤如下:1.准备样品:将需要进行热重分析的样品制备成适当的形式,如粉末状或块状。
2.称取样品:使用精确的天平称取适量的样品,通常是数毫克至数十毫克。
为了减小试样质量的不确定性,可以进行多次称重取平均值。
3.装样:将样品放置在热重秤上,并确保样品均匀分布在秤盘上,以减小实验误差。
4.实施实验:将热重秤放入热重仪器中,并设置合适的实验参数,如加热速率、温度范围等。
开始实验后,仪器将按照参数进行加热,并记录样品质量的变化。
5.数据处理:根据实验得到的质量变化数据,绘制热重曲线。
可以通过计算失重率、热分解温度、半失重温度等参数来进一步分析样品的性质。
热重分析广泛应用于材料科学、化学、生物科学、制药工业等多个领域。
在材料科学中,可以通过热重分析来研究材料的热稳定性、热分解机理等。
在化学领域,可以通过热重分析来研究催化剂的活性以及催化反应的动力学。
在生物科学中,可以使用热重分析来研究生物大分子的热稳定性和降解动力学。
在制药工业中,可以通过热重分析来研究药物的热稳定性,以指导药物的储存和使用。
第2章热重分析技术TGA(DTG)

汇报人:XX
contents
目录
• 热重分析技术概述 • TGA(DTG)技术介绍 • 热重分析实验方法与步骤 • 热重曲线解析及参数计算 • 热重分析技术在材料科学中应用案例 • 热重分析技术发展趋势与挑战
01
热重分析技术概述
热重分析技术定义
热重分析技术原理
热重分析技术应用领域
化学工程
用于研究化学反应的动力学过 程、催化剂的活性评价、反应 机理的探讨等。
生物医药
用于研究药物的稳定性、生物 大分子的热变性、生物组织的 热损伤等。
材料科学
用于研究材料的热稳定性、热 分解、相变等过程,以及材料 的组成和结构对性能的影响。
环境科学
用于研究大气污染物的来源和 转化过程、固体废弃物的热解 和焚烧过程等。
金属材料氧化过程分析
氧化过程定义
金属材料在加热过程中与氧气反 应形成氧化物的过程。
TGA(DTG)应用
通过TGA(DTG)技术可以分析金属 材料的氧化过程。例如,可以测 定金属在程序升温下的质量变化 和氧化速率,进而评估其抗氧化 性能。
案例分析
以钢铁为例,通过TGA(DTG)测试 ,可以研究其在加热过程中的氧 化行为,为钢铁材料的防腐蚀和 表面处理技术提供指导。
多种气氛可选
TGA(DTG)实验可在不同气 氛(如空气、氧气、氮气等 )中进行,以模拟不同环境 下的物质变化过程。
定量分析
通过对热重曲线的分析,可 以定量计算样品中各组分的 含量,为物质组成分析提供 依据。
TGA(DTG)技术应用范围
材料科学
用于研究材料的热稳定性、热分解过程 、氧化还原反应等,为材料设计和性能
高分子材料热稳定性评价
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试样粒度对TG曲线的影响
% 细 粗粒 片 粒
T
4.3.3 试样性质的影响
试样的比热、导热性和反应热会影响热重曲线,试样的反应热使 试样的实际温度和程序温度出现偏差。
仪器操作注意事项:
➢ 不可用力过大,造成样品支架不可挽救的损坏;
➢ 可升华的固体尽量避免;
➢ 热降解期间会产生大量炭黑的样品应避免;
不扣基线的样品测试
100 [[13]]
50
20
25
自浮 动力 扣效 除应
的 修 正 : 基 线 的 测 试 与
TG
4.1.2 试样皿的影响
影响因素:皿的大小、材质、形状 影响原因:涉及试样的热传导和热扩散形状与表面积有关,
影响试样的挥发率 理想的皿:皿材料是惰性的,不失重,不是试样的催化剂
浅皿,试样摊成薄层,有利热传导、扩散和挥发 常用的皿:铂皿,要关注它是否为试样的催化剂
热重分析仪(TGA)
主要内容:
➢ 热分析的发展简史 ➢ 热分析概述 ➢ 热重分析概述 ➢ 影响热重法测定结果的因素 ➢ TG失重曲线的处理和计算 ➢ 材料热稳定性的评价方法 ➢ 热重分析应用举例
一、 热分析的发展简史
➢ 公元前600年~18世纪 与热有关的相转变现象的早期历 史阶段;
➢ 1887年 Le Chatelier 利用升温速率变化曲线来鉴定粘土; ➢ 1899 Roberts-Austen 提出温差法; ➢ 1903年 Tammann 首次使用热分析这一术语; ➢ 1915年 本多光太郎奠定了现代热重法的初步基础,提出
TG曲线关键温度表示法
TG曲线失重量表示法
100 m/%
50
A:99.5%
B:50% C:50% D:24.5%
A点至B点温度失重率: 99.5-50/100=49.5% C点至D点温度失重率: 50-24.5/100=25.5%
微商曲线(DTG)表示和意义
DTG
质量变化 Dw/dt
TG
T/゜C
达到了-20%
TGA举例5:
有些溶剂(多为有机溶剂), 在初始温度时就不断失重, 恒温很久也得不到恒定重量, 这样就不能测准易挥发物的
含量。
TGA举例6:
有些样品不适合用TGA做 水分,因为在到达游离水失 重温度时,样品也已开始分 解,不能达到独立的失重平 台
四、影响热重法测定结果的因素
➢ 4.1仪器因素的影响 ➢ 4.2实验条件的影响 ➢ 4.3试样的影响
二、差示扫描量热法( DSC ) 差示扫描量热法是在程序控制温度下,测量输给待测物质和 参比物的能量差与温度 ( 或时间 ) 关系的一种技术。
三、差热分析法( DTA ) 差热分析法是在程序控制温度下,测量待测物质和参比物之 间的温度差与温度 ( 或时间 ) 关系的一种技术。
3、热分析的应用:
➢ 1.成份分析:无机物、有机物、药物和高聚物的鉴别和分 析以及它们的相图研究;
40ml/min 60ml/min
热重曲线(TG曲线)
➢ 由TG实验获得的曲线。记录质量变化对温度的关系曲 线。 m = f(T)
➢ 纵坐标是质量(从上向下表示质量减少),横坐标为 温度或时间。
梯度曲线
曲线的纵坐标为质量mg 或剩 余百分数%表示;
横坐标T为温度。用热力学温 度(K)或摄氏温(℃)。
热天平这一术语;
➢ 1945年 首批商品热天平生产本世纪60年代初 Hale Waihona Puke 始研制和 生产较为精细的差热分析仪;
➢ 1964年 Waston 提出差示扫描量热法; ➢ 1979年 中国化学会溶液化学、化学热力学、热化学和热分
析专业委员会成立; ➢ 1980年 在西安召开第一届热化学、热力学和热分析学术讨
对策:只需了解总分解量,采用高速,节省时间。 重点想了解各阶段的分解过程,采用低速,以保高分辨 率。
1-5℃/min; 2-10℃/min; 3-20 ℃/min 煤在不同升温速率下的TG图
4.2.2 气氛的影响
气体种类的影响:1. 活性气体(空气、氧气)、惰性气体(氮 气、氦气)、催化反应气体(催化加氢)影 响反应类型 2. 表观增重程度不同
TGA基本原理:
在程序控温下,测量物质的质量随温度(或时间)的变化 关系。 TG的测量都要依靠热天平(热重分析仪),主要介绍 热天平及热重测量的原理。
微量热 天平
铂金样 品盘
加 热 器
热天平种类:
➢ 根据试样与天平横梁支撑点之间的相对位置,热天平可分 为下皿式,上皿式与水平式三种。
热天平测量原理
➢ 定失重量温度法 规定一个失重百分数,求与此相对应的温度,温度越高者,热 稳定性越好
➢ 始点温度法 求材料开始失重的温度Ti,Ti越高,热稳定性越好
➢ 终点温度法 求出材料结束失重的温度Tf,Tf越高,热稳定性越好
TGA图怎么看?
TG /% 100 80 60
TG 曲线 起始点: 424.6 ℃
DTG 曲线
DTG /(%/min) 5
0 质量变化: -96.34 % -5
40
-10
20 0
300
峰值: 455.0 ℃
350
400
450
温度 /℃
-15
终止点: 474.5 ℃ -20
500
TGA举例1:
80℃-120℃左右,一般为游 离水的失重造成
TGA举例2:
这个失重的开时温度比 前一个要早一些。推测 它的失重是由水或某种 有机溶剂的残留引起的
TGA举例3:
30℃-60℃可能是因 为有机溶剂引起的 失重,例如乙醇等。
150℃和300℃是样 品的分部分解引起
的
TGA举例4:
一般失重总在0%-100%之间, 但也有例外的情况。这个样品 有升华现象,并且结晶凝在支 撑管和托盘之间,这时的称重 就不再是样品称重,这个图就
重量的变化率与温度(时间)的函数关系。 DTG是峰形曲线,可精确反映出样品T起、 T,T终; DTG曲线峰面积与样品对应的重量变化成正比。 可将热失重阶段分成不同部分,区分各反应阶段。
六、材料热稳定性的评价方法
➢ 热重曲线直接比较法 将几种材料的TG曲线叠加到同一张图纸上,进行直观的比较
➢ 定温失重量法 规定一个温度值,求此温度下的失重百分数,失重量越大,热 稳定性越差
升温速度的增加,炉壁温度与试样皿温度之差越大, 在2.5、5、10C/min 范围内,炉壁温度与试样皿温度 之差为314C
表现:1、升温速率提高,使分解的起始温度和终止温度都相 应提高,但失重量不受升温速率的影响。 2、升温速率不同,热重曲线形状改变,升温速率提高, 分辨率下降,不利于中间产物的检出。
DTG曲线具有以下一些特点:
(1)能精确反映出起始反应温度、最大反应速率温度和反应 终止温度(相对来说,TG曲线对此就迟钝的多);
(2)能精确区分出相继发生的热重变化。在TG曲线上,对应 于整个变化过程中各阶段的变化相互衔接而不易区分开,而 同样的变化过程在DTG曲线上能呈现出明显的最大值,可以 以峰的最大值为界把一个热失重反应分成两部分。故DTG能 很好地区分出重叠反应,区分各反应阶段。
➢ 定义:在程序控制温度下,测量物质质量与温度关系的 一种技术;
m = f (T)
➢ 特点:定量性强,能准确地测量物质的质量变化及变化 的速率,不管引起这种变化的是化学的还是物理的;
➢ 是使用最多、最广泛的热分析技术;
➢ 类型: 两种 ✓ 1.等温(或静态)热重法:恒温 ✓ 2.非等温(或动态)热重法:程序升温
➢ 腐蚀性样品,特别是酸应避免,测试必须用Pt坩埚。 ➢ 样品量一般不低于1mg。 ➢ TGA内部构造为一精密光学天平,故实验中避免震动,严禁
擅自挪动仪器位置; ➢ 请勿用手挂铂金盘,避免损伤铂金吊钩; ➢ 进行开机操作前务必确认电源线路、进气管道、冷却水管道
连接正常;
五、 TG失重曲线的处理和计算
论会,第二次会议1984年在武汉召开,之后逢双年召开。
二、 热分析概述
1、定义
热分析是在程序控制温度下,测量物质的物理性质与 温度关系的一类技术。
所谓“程序控制温度”是指用固定的速率加热或冷却, 所谓“物理性质”则包括物质的质量、温度、热焓、尺寸、 机械、电学及磁学性质等。
2、热分析的分类 :
一、 热重法( TG) 热重法是在程序控制温度下,测量物质重量与温度关系的一 种技术。
气体流速的影响:流速越大,表观增重越大
4.3 试样的影响
4.3.1 试样量的影响
影响因素:试样量的大小对热传导、热扩散、挥发物逸出都有 影响。
表 现:1、试样量越大,则热效应和温度梯度越大,对热传 导和气体逸出不利,导致温度偏差,偏差程度随试 样量增多而变大。 2、试样量过小,噪声(仪器灵敏度和表观增重等)
➢ 什么是浮力效应?
TG /mg 0.10
0
样品 + 基线修正测试
-0.10
-0.20
浮力效应对热重测量的影响
样品:一水合草酸钙
-0.30
称重:4.19mg
-0.40
-0.50
-0.60 0
5
10
15 时间 /分钟
基线
温度 /℃ [123]
250 [2]
200
-0.52 mg
-0.51 mg
150
误差的原因:1、实验中测温元件不能与试样直接接触,因而测 定值与试样的真实温度有差异。 2、试样周围温度不均匀,试样发生反应(如燃烧) 产生的热效应导致试样周围环境温度分布不均匀。
实验对策:1、校正 2、尽可能减少试样量 3、降低扫描速度
➢ 4.2 实验条件的影响
4.2.1 升温速率的影响
规律:升温速率越大,影响越大 原因:随升温速率的不同,炉子与试样间的热滞后不同,随