高考数学易错题解题方法(4) 共7套 免费

合集下载

高考数学易错易误易忘题分类汇总及解析(61页)

高考数学易错易误易忘题分类汇总及解析(61页)

f
1
x
1
1 x 1 2 1
2x 1 x
再求
y f 1 x 1 的反函数得 g x 2 x 。正确答案:B
1 x
【知识点分类点拔】函数 y f 1 x 1 与函数 y f x 1 并不互为反函数,他只是表示
f 1 x 中 x 用 x-1 替代后的反函数值。这是因为由求反函数的过程来看:设 y f x 1 则
答案:B 【易错点 4】求反函数与反函数值错位
例 4、已知函数 f x 1 2x ,函数 y g x的图像与 y f 1 x 1 的图象关于直线
1 x
y x 对称,则 y g x的解析式为()
A、 g x 3 2x B、 g x 2 x C、 g x 1 x D、 g x 3
4
4
28
8
28
+ 因此当 x=-1 时 x2+y2 有最小值 1, 当 x=- 时,x2+y2 有最大值 。故 x2+y2 的取值范围是[1,
3
3
3
28
]
3
【知识点归类点拔】事实上我们可以从解析几何的角度来理解条件 x 2 2 y2 1对 x、y 的限制,
4
显然方程表示以(-2,0)为中心的椭圆,则易知-3≤x≤-1, 2 y 2 。此外本题还可通过三角换元
x 的取值范围为()A、 ( a2 1, ) 2a
(a, )
B、 (, a2 1) 2a
a2 1
C、 (
, a)
D、
2a
答案:A ( a 1 时, f x单调增函数,所以 f 1 x 1 f f 1 x f 1 x f 1 a2 1 .) 2a
【易错点 7】证明或判断函数的单调性要从定义出发,注意步骤的规范性及树立定义域优先的原则。

64高考数学易错题举例解析

64高考数学易错题举例解析

k 2 或 k 3.
错解 由已知得 y2=-4x2-16x-12,因此 x2+y2=-3x2-16x-12=-3(x+
8 2 28 )+ , 3 3
8 28 28 ∴当 x=-3 时,x2+y2 有最大值 3 ,即 x2+y2 的取值范围是(-∞, 3 ]。 分析 没有注意 x 的取值范围要受已知条件的限制,丢掉了最小值。 事实上,由于(x+2)2+ y2 y2 =1 (x+2)2=1- ≤1 -3≤x≤-1, 4 4 x2+y2 的取值范围是[1, 28 ]。 3
1 ,显然,这两个条件是不能同时成立的。因此,8 不是最小值。 ab 1 1 1 1 1 1 2 事实上,原式= a2+b2+ 2 + 2 +4=( a2+b2)+( 2 + 2 )+4=[(a+b)2-2ab]+[( + )2- ]+4 a b ab a b a b
第 2 页 共 13 页
= (1-2ab)(1+ 由 ab≤(
从而当 x=-1 时 x2+y2 有最小值 1。∴
注意有界性:偶次方 x2≥0,三角函数-1≤sinx≤1,指数函数 ax>0,圆锥曲线有界性等。
●忽视不等式中等号成立的条件,导致结果错误。 1 1 【例 3】已知:a>0 , b>0 , a+b=1,求(a+ a )2+(b+ b )2 的最小值。 错解 (a+
4 2
或 q 1。
错误分析 在错解中,由
a1 (1 q 3 ) a1 (1 q 6 ) a (1 q 9 ) , 2 1 1 q 1 q 1 q

2024届高考数学易错题专项(平面向量) 练习(附答案)

2024届高考数学易错题专项(平面向量) 练习(附答案)

2024届高考数学易错题专项(平面向量) 练习易错点一:注意零向量书写及三角形与平行四边形适用前提(平面向量线性运算)1.已知a 、b为不共线的向量,5AB a b =+ ,28BC a b =-+ ,()3CD a b =-uu u r r r ,则( )A .1233AB AD -+C .15AB AD -A .43a +23b C .23a 43-b1.在梯形ABCD 中,//AB CD ,2AB CD =,E ,F 分别是AB ,CD 的中点,AC 与BD 交于M ,设AB a =,,则下列结论正确的是()A .1233AE AB AC =+ B .若0AB AC ⋅= ,则易错点三:忽视数量积不满足结合律(平面向量的数量积及其应用)1.如图,在三棱柱111ABC A B C -中,M ,N 分别是1A B ,11B C 上的点,且12BM A M =,112C N B N =.设AB a=,AC b = ,1AA c = ,若90BAC ∠= ,1160BAA CAA ∠=∠=,11AB AC AA ===,则( )A .112333MN a b c =++C .11AB BC ⊥A .1AC BD ⊥ C .185BD =10.(多选)下列说法中正确的是(参考答案易错点一:注意零向量书写及三角形与平行四边形适用前提(平面向量线性运算)1.已知a 、b为不共线的向量,5AB a b =+ ,28BC a b =-+ ,()3CD a b =-uu u r r r ,则( ) A .1233AB AD -+C .15AB AD -A.43a+23bC.23a43 -b故选:B.y= 10.已知抛物线C:24∵3FA FB = ,由ABH 与△AFM ∵||2MF =,∴2||23BH =⨯=由抛物线定义得||||BF BH =,∴即4AF = ,3AF BH =,故故选:BC .易错点二:忽略基底选取原则(平面向量的基本定理及坐标表示)【答案详解】由题意可得,12AC AD DC b a=+=+,故A112对于A ,12||||||OF OF OA ==,因此对于B ,直线2:1AF y x =-,由⎧⎨⎩A .1233AE AB AC =+ B .若0AB AC ⋅= ,则易错点三:忽视数量积不满足结合律(平面向量的数量积及其应用)1.如图,在三棱柱111ABC A B C -中,M ,N 分别是1A B ,11B C 上的点,且12BM A M =,112C N B N =.设AB a=,AC b = ,1AA c = ,若90BAC ∠= ,1160BAA CAA ∠=∠=,11AB AC AA ===,则( )A .112333MN a b c =++C .11AB BC ⊥7.已知向量()()2,11,,,1a b c ==-=A .a 与b的夹角为钝角B .向量a 在b 方向上的投影为C .24m n +=对于C ,由PA PB PB PC ⋅=⋅ ,得(PA - 所以点P 是ABC 的垂心,故C 正确;A .1AC BD ⊥ C .185BD =【答案】AB由题意得,2216AB AD == ,1AA cos 4AB AD AB AD BAD ⋅=⋅∠=⨯111cos 4AB AA AB AA BAA ⋅=⋅∠=,其中四边形ABDC 为平行四边形,因为又|OA |=|CA|=|OC |,所以所以∠ACB=60°,且BC。

平面向量(3大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错(原卷版)

平面向量(3大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错(原卷版)

专题07平面向量易错点一:注意零向量书写及三角形与平行四边形适用前提(平面向量线性运算)1.向量的有关概念(1)定义:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模).(2)向量的模:向量AB 的大小,也就是向量AB的长度,记作||AB .(3)特殊向量:①零向量:长度为0的向量,其方向是任意的.②单位向量:长度等于1个单位的向量.③平行向量:方向相同或相反的非零向量.平行向量又叫共线向量.规定:0与任一向量平行.④相等向量:长度相等且方向相同的向量.⑤相反向量:长度相等且方向相反的向量.2.向量的线性运算和向量共线定理(1)向量的线性运算运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则①交换律a b b a +=+ ②结合律()a b c ++ =()a b c ++减法求a 与b 的相反向量b -的和的运算叫做a与b的差三角形法则()a b a b -=+-数乘求实数λ与向量a的积的运算(1)||||||a a λλ=(2)当0λ>时,a λ 与a的方向相同;当0λ<时,a λ 与a的方向相同;当0λ=时,0a λ=()()a a λμλμ= ()a a aλμλμ+=+()a b a bλλλ+=+共线向量定理向量()0a a ≠ 与b 共线,当且仅当有唯一的一个实数λ,使得b a λ=.共线向量定理的主要应用:(1)证明向量共线:对于非零向量a ,b ,若存在实数λ,使a b λ=,则a 与b 共线.(2)证明三点共线:若存在实数λ,使AB AC λ=,则A ,B ,C 三点共线.(3)求参数的值:利用共线向量定理及向量相等的条件列方程(组)求参数的值.平面向量线性运算问题的求解策略:(1)进行向量运算时,要尽可能地将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量,三角形的中位线及相似三角形对应边成比例等性质,把未知向量用已知向量表示出来.(2)向量的线性运算类似于代数多项式的运算,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在线性运算中同样适用.(3)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.解决向量的概念问题应关注以下七点:(1)正确理解向量的相关概念及其含义是解题的关键.(2)相等向量具有传递性,非零向量的平行也具有传递性.(3)共线向量即平行向量,它们均与起点无关.(4)相等向量不仅模相等,而且方向要相同,所以相等向量一定是平行向量,而平行向量未必是相等向量.(5)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象移动混为一谈.(6)非零向量a 与||a a 的关系:||a a是a方向上的单位向量.(7)向量与数量不同,数量可以比较大小,向量则不能,但向量的模是非负实数,故可以比较大小易错提醒:(1)向量表达式中的零向量写成0,而不能写成0.(2)两个向量共线要区别与两条直线共线,两个向量共线满足的条件是:两个向量所在直线平行或重合,而在直线中,两条直线重合与平行是两种不同的关系.(3)要注意三角形法则和平行四边形法则适用的条件,运用平行四边形法则时两个向量的起点必须重合,和向量与差向量分别是平行四边形的两条对角线所对应的向量;运用三角形法则时两个向量必须首尾相接,否则就要把向量进行平移,使之符合条件.(4)向量加法和减法几何运算应该更广泛、灵活如:OA OB BA -= ,AM AN NM -= ,+OA OB CA OA OB CA BA CA BA AC BC =⇔-=⇔-=+=.A .AB AD AC+= C .AB AD CD AD++=uu u r uuu r uu u r uuu r 变式1:给出下列命题,其中正确的命题为(A .若AB CD = ,则必有B .若1233AD AC AB =+ C .若Q 为ABC 的重心,则D .非零向量a ,b ,c 变式2:如图所示,在平行四边形(1)试用向量,a b来表示DN (2)AM 交DN 于O 点,求AO 变式3:如图所示,在矩形1.已知a 、b为不共线的向量,5AB a b =+ ,28BC a b =-+ ,()3CD a b =-uu u r r r ,则()A .ABC ,,三点共线C .A BD ,,三点共线2.如图,在平行四边形ABCD A .1233AB AD-+C .1536AB AD - 3.在四边形ABCD 中,若AC AB = A .四边形ABCD 是平行四边形C .四边形ABCD 是菱形4.已知,AD BE 分别为ABC 的边A .43a +23bC .23a 43-b 5.如果21,e e是平面α内两个不共线的向量,那么下列说法中不正确的是(①(12,R a e e λμλμ=+∈②对于平面α内任一向量③若向量1112e e λμ+ 与λ④若实数λ、μ使得1e λ+ A .①②B 6.给出下列各式:①AB 对这些式子进行化简,则其化简结果为A .4B 7.已知平面向量a ,bA .若a b ∥,则a = C .若a b ∥,b c ∥,则8.设1e 与2e 是两个不共线的向量,k 的值为()41.平面向量基本定理和性质(1)共线向量基本定理如果()a b R λλ=∈ ,则//a b ;反之,如果//a b 且0b ≠ ,则一定存在唯一的实数λ,使a b λ=.(口诀:数乘即得平行,平行必有数乘).(2)平面向量基本定理如果1e 和2e 是同一个平面内的两个不共线向量,那么对于该平面内的任一向量a,都存在唯一的一对实数12,λλ,使得1122a e e λλ=+,我们把不共线向量1e ,2e 叫做表示这一平面内所有向量的一组基底,记为{}12,e e ,1122e e λλ+ 叫做向量a关于基底{}12,e e 的分解式.注意:由平面向量基本定理可知:只要向量1e 与2e 不共线,平面内的任一向量a都可以分解成形如1122a e e λλ=+的形式,并且这样的分解是唯一的.1122e e λλ+ 叫做1e ,2e 的一个线性组合.平面向量基本定理又叫平面向量分解定理,是平面向量正交分解的理论依据,也是向量的坐标表示的基础.推论1:若11223142a e e e e λλλλ=+=+,则1324,λλλλ==.推论2:若11220a e e λλ=+=,则120λλ==.(3)线段定比分点的向量表达式如图所示,在ABC △中,若点D 是边BC 上的点,且BD DC λ=(1λ≠-),则向量1AB AC AD λλ+=+ .在向量线性表示(运算)有关的问题中,若能熟练利用此结论,往往能有“化腐朽为神奇”之功效,建议熟练掌握.DACB(4)三点共线定理平面内三点A ,B ,C 共线的充要条件是:存在实数,λμ,使OC OA OB λμ=+,其中1λμ+=,O 为平面内一点.此定理在向量问题中经常用到,应熟练掌握.A 、B 、C 三点共线⇔存在唯一的实数λ,使得AC AB λ=;⇔存在唯一的实数λ,使得OC OA AB λ=+;⇔存在唯一的实数λ,使得(1)OC OA OB λλ=-+;⇔存在1λμ+=,使得OC OA OB λμ=+.(5)中线向量定理如图所示,在ABC △中,若点D 是边BC 的中点,则中线向量1(2AD AB =+ )AC,反之亦正确.DACB2.平面向量的坐标表示及坐标运算(1)平面向量的坐标表示.在平面直角坐标中,分别取与x 轴,y 轴正半轴方向相同的两个单位向量,i j作为基底,那么由平面向量基本定理可知,对于平面内的一个向量a,有且只有一对实数,x y 使a xi yj =+ ,我们把有序实数对(,)x y 叫做向量a的坐标,记作(,)a x y = .(2)向量的坐标表示和以坐标原点为起点的向量是一一对应的,即有向量(,)x y 一一对应向量OA 一一对应点(,)A x y .(3)设11(,)a x y = ,22(,)b x y = ,则1212(,)a b x x y y +=++ ,1212(,)a b x x y y -=--,即两个向量的和与差的坐标分别等于这两个向量相应坐标的和与差.若(,)a x y = ,λ为实数,则(,)a x y λλλ=,即实数与向量的积的坐标,等于用该实数乘原来向量的相应坐标.(4)设11(,)A x y ,22(,)B x y ,则AB OB OA =-=12(,x x -12)y y -,即一个向量的坐标等于该向量的有向线段的终点的坐标减去始点坐标.3.平面向量的直角坐标运算①已知点11()A x y ,,22()B x y ,,则2121()AB x x y y =--,,||AB ②已知11(,)a x y = ,22(,)b x y = ,则a b ±1212()x x y y =±±,,11(,)a x y λλλ= ,∥12211212向量共线(平行)的坐标表示1.利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a共线的向量时,可设所求向量为a λ (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入a λ 即可得到所求的向量.2.利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,则利用“若11(),a x y =,22(),b x y = ,则a b∥的充要条件是1221x y x y =”解题比较方便.3.三点共线问题.A ,B ,C 三点共线等价于AB与AC 共线.4.利用向量共线的坐标运算求三角函数值:利用向量共线的坐标运算转化为三角方程,再利用三角恒等变换求解.用平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用平面向量基本定理将条件和结论表示成该基底的线性组合,再进行向量的运算.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便,另外,要熟练运用线段中点的向量表达式.向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.易错提醒:(1)平面向量基本定理中的基底必须是两个不共线的向量.(2)选定基底后,通过向量的加、减、数乘以及向量平行的充要条件,把相关向量用这一组基底表示(3)强调几何性质在向量运算中的作用,用基底表示未知向量,常借助图形的几何性质,如平行、相。

新课标高考数学易错题解题方式大全3

新课标高考数学易错题解题方式大全3
一.选择题
10 高考数学易错题解题方法大全(3)
【范例 1】集合 A {3, log2 a}, B {a,b}, 若 A B {2}, 则 A B (
A.{2,3,4}
答案:A
B.{2 ,4}
【错解分析】此题主要考查对集合的交集的理解。
C.{2,3}
【解题指导】 A B {2},log2 a 2, a 4 , b 2 .
a, b 的大小关系是(
A. a b
二.填空题
B. a b

-2-


1 2
D. 2 2
2

C. b 15

5 2
i

D. 第四象限
2 可得 2x 2 5x b x 2 x 6
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2021高考数学易错题解题方法大全(7)

2021高考数学易错题解题方法大全(7)

2021高考数学易错题解题方法大全(7)2021高考数学易错题解题方法大全(7)[示例1]已知的⊙ B{ZZ?XY,x?A,y?B},设定A?{1,0,1},b?{sin?,cos?}那么集合a的所有元素之和⊙ B是()a.1b.0c.-1d.sin??cos?答案:b【错误的解决方案分析】这个问题很容易被错误地选为a、C和D。

错误的原因是集合a中元素的特性不好。

[问题解决指导]设定一个目标?1和1是相反的数字【练习1】集合p?xx?2n,n?n?,q?xx?3n,n?n?,则p?q中的最小元素为()a.0b.6c.12d.?6?[例2]在序列中?一进来,让阿南进来?2.0的n值是()A1?143an?3安?1.2,a.21b。

22摄氏度。

23d。

回答:a【错解分析】此题容易错选为b,错误原因是没有理解该数列为等差数列。

【解题指导】由已知得an?1?an??=2244? 2n,一个?14? (n?1)(?)阿南?233344? 2n40?2n<0,(n?20)(n?22)?0,20? N22岁,那么n?21.选择a.33[练习2]系列?一关于x的不等式x2的通式是?十、nx(n?n?)解集合中的整数个数,然后序列?一第一个N和Sn=()a.nb N(N+1)c。

222N(N?1)d.(N+1)(N+2)2[例3]如果圆x?Y1和直线y?kx?2.没有公共点的充要条件是()。

好吗?(?2,2)b.k?(?3,3)c.k?(?∞,?2)?(2,∞?)d.k?(?∞,?3)?(3,∞?)回答:B【错解分析】此题容易错选为d,错误原因是对直线在转动过程中,斜率的变化规律掌握不好。

[问题解决指导]当k??3时,直线与圆相切,直线y?kx?超过2分(0,2)。

[练习3]经典22过圆x?2x?y?0的圆心c,且与直线x?y?0垂直的直线方程是()a、 x?Y1.0b。

十、Y1.0c。

十、Y1.0d。

十、Y1.0【范例4】已知cosπ?47π??,则?sin??3sin的值是()6.56?? 第1页,共9页a.?442323b.c.?d.答案:C【错解分析】此题容易错选为d,错误原因是对诱导公式掌握不牢。

高考数学易错易误易忘题分类汇总及解析(61页)

高中高考数学易错易混易忘题分类汇总及解析“会而不对,对而不全”一直以来成为制约学生数学成绩提高的重要因素,成为学生挥之不去的痛,如何解决这个问题对决定学生的高考成败起着至关重要的作用。

本文结合笔者的多年高三教学经验精心挑选学生在考试中常见的66个易错、易混、易忘典型题目,这些问题也是高考中的热点和重点,做到力避偏、怪、难,进行精彩剖析并配以近几年的高考试题作为相应练习,一方面让你明确这样的问题在高考中确实存在,另一方面通过作针对性练习帮你识破命题者精心设计的陷阱,以达到授人以渔的目的,助你在高考中乘风破浪,实现自已的理想报负。

【易错点1】忽视空集是任何非空集合的子集导致思维不全面。

例1、 设{}2|8150A x x x =-+=,{}|10B x ax =-=,若A B B =,求实数a 组成的集合的子集有多少个?【易错点分析】此题由条件A B B =易知B A ⊆,由于空集是任何非空集合的子集,但在解题中极易忽略这种特殊情况而造成求解满足条件的a 值产生漏解现象。

解析:集合A 化简得{}3,5A =,由A B B =知B A ⊆故(Ⅰ)当B φ=时,即方程10ax -=无解,此时a=0符合已知条件(Ⅱ)当Bφ≠时,即方程10ax -=的解为3或5,代入得13a =或15。

综上满足条件的a 组成的集合为110,,35⎧⎫⎨⎬⎩⎭,故其子集共有328=个。

【知识点归类点拔】(1)在应用条件A ∪B =B⇔A ∩B =A⇔AB时,要树立起分类讨论的数学思想,将集合A是空集Φ的情况优先进行讨论.(2)在解答集合问题时,要注意集合的性质“确定性、无序性、互异性”特别是互异性对集合元素的限制。

有时需要进行检验求解的结果是满足集合中元素的这个性质,此外,解题过程中要注意集合语言(数学语言)和自然语言之间的转化如:(){}22,|4A x y x y =+=,()()(){}222,|34B x y x y r =-+-=,其中0r >,若A B φ=求r 的取值范围。

圆锥曲线(4大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错(原卷版)


D.3
变式
3.过双曲线
C

x a
2 2
y2 b2
1(a
0,b
0)
的右焦点 F2 作双曲线一条渐近线的垂线,垂
足为
A
,且与另一条渐近线交于点
B
,若
|
AF2
|
1 3
|
F2 B
|
,则双曲线
C
的离心率是(

A. 6 2
B. 3 或 6 2
C. 3 6 2
D. 3 3
1.已知圆 C1 : x2
y2
b2 b

A. 1+ 5 2
B. 3 1 2
C. 3
D.2
变式
2.已知双曲线 E :
y2 a2
x2 8
1(a
0) 的上焦点为 F1 ,点
P
在双曲线的下支上,若
A(4, 0) ,且 PF1 | PA | 的最小值为 7,则双曲线 E 的离心率为( )
A.2 或 697 25
B.3 或 697 25
C.2
A. 3
B.2
C. 2 3
D. 13
8.已知双曲线
x2 a2
y2 b2
1(a
0,b
0)
的左、右焦点分别为 F1, F2 ,以 F1F2 为直径的圆与双
曲线在第二象限的部分交于点
P
,若双曲线上的点
Q
满足
F1P
2 3
F2Q
,则双曲线的离
心率为( )
A. 37 5
B. 35 5
C. 37
4
D. 15 3
专题 11 圆锥曲线
易错点一:求轨迹方程时忽略变量的取值范围(求动点轨迹 方程)

不等式(3大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错题(解析版)

专题03不等式易错点一:忽略不等式变号的前提条件(等式与不等式性质的应用)1.比较大小基本方法关系方法做差法与0比较做商法与1比较b a >0>-b a )0(1>>b a b a ,或)0(1<<b a b a ,b a =0=-b a )0(1≠=b baba <0=-b a )0(1><b a b a ,或)0(1<>b a ba ,2..等式的性质(1)基本性质性质性质内容对称性ab b a a b b a >⇔<<⇔>;传递性c a c b b a c a c b b a <⇒<<>⇒>>,;,可加性cb c a b a >>+⇔>可乘性b ac c b a bc ac c b a <⇒<>>⇒>>00,;,同向可加性db c a d c c a +>+⇒>>,同向同正可乘性bdac d c b a >⇒>>>>00,可乘方性nn b a N n b a >⇒∈>>*0,类型1.应用不等式的基本性质,不能忽视其性质成立的条件,解题时要做到言必有据,特别提醒的是在解决有关不等式的判断题时,有时可用特殊值验证法,以提高解题的效率.类型2.比较数(式)的大小常用的方法有比较法、直接应用不等式的性质、基本不等式、利用函数的单调性.比较法又分为作差比较法和作商比较法.作差法比较大小的步骤是:(1)作差;(2)变形;(3)判断差式与0的大小;(4)下结论.作商比较大小(一般用来比较两个正数的大小)的步骤是:(1)作商;(2)变形;(3)判断商式与1的大小;(4)下结论.其中变形是关键,变形的方法主要有通分、因式分解和配方等,变形要彻底,要有利于0或1比较大小.作差法是比较两数(式)大小最为常用的方法,如果要比较的两数(式)均为正数,且是幂或者因式乘积的形式,也可考虑使用作商法.易错提醒:(1)一般数学结论都有前提,不等式性质也是如此.在运用不等式性质之前,一定要准确把握前提条件,一定要注意不可随意放宽其成立的前提条件.(2)不等式性质包括“充分条件(或者是必要条件)”和“充要条件”两种,前者一般是证明不等式的理论基础,后者一般是解不等式的理论基础.,b,,若a b>,则下列不等式成立的是()易错点二:遗漏一元二次方法求解的约束条件(有关一元二次不等式求解集问题)解一元二次不等式的步骤:第一步:将二次项系数化为正数;第二步:解相应的一元二次方程;第三步:根据一元二次方程的根,结合不等号的方向画图;第四步:写出不等式的解集.容易出现的错误有:①未将二次项系数化正,对应错标准形式;②解方程出错;③结果未按要求写成集合.对含参的不等式,应对参数进行分类讨论具体模型解题方案:1、已知关于x 的不等式02>++c bx ax 的解集为)(n m ,(其中0>mn ),解关于x 的不等式02>++a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2>++c x b x a 的解集为)11(m n ,,即关于x 的不等式02>++a bx cx 的解集为11(mn ,.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,,解关于x 的不等式02≤++a bx cx .由02>++c bx ax 的解集为)(n m ,,得:011(2≤++c x b x a 的解集为)1[]1(∞+-∞,,m n 即关于x 的不等式02≤++a bx cx 的解集为)1[]1(∞+-∞,,mn .2、已知关于x 的不等式02>++c bx ax 的解集为)(n m ,(其中0>>m n ),解关于x 的不等式02>+-a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2>+-c x b x a 的解集为11(n m --,即关于x 的不等式02>+-a bx cx 的解集为)11(nm --,.3.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,,解关于x 的不等式02≤+-a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2≤+-c x b x a 的解集为)1[1(∞+---∞,,nm 即关于x 的不等式02≤+-a bx cx 的解集为)1[]1(∞+---∞,,nm ,以此类推.4、已知关于x 的一元二次不等式02>++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆>00a ;5、已知关于x 的一元二次不等式02>++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆<00a ;6、已知关于x 的一元二次不等式02<++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆<00a ;7、已知关于x 的一元二次不等式02<++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆>00a .易错提醒:一元二次不等式一元二次不等式20(0)ax bx c a ++>≠,其中24b ac ∆=-,12,x x 是方程20(0)ax bx c a ++>≠的两个根,且12x x <(1)当0a >时,二次函数图象开口向上.(2)①若0∆>,解集为{}21|x x x x x ><或.(2)当0a <时,二次函数图象开口向下.①若0∆>,解集为{}12|x x x x <<②若0∆≤,解集为∅。

高考数学压轴专题(易错题)备战高考《函数与导数》技巧及练习题含答案

【高中数学】数学《函数与导数》高考知识点一、选择题1.已知函数()2100ax x f x lnx x ⎧+≤=⎨⎩,,>,,下列关于函数()()0f f x m +=的零点个数的判断,正确的是( )A .当a =0,m ∈R 时,有且只有1个B .当a >0,m ≤﹣1时,都有3个C .当a <0,m <﹣1时,都有4个D .当a <0,﹣1<m <0时,都有4个 【答案】B 【解析】 【分析】分别画出0a =,0a >,0a <时,()y f x =的图象,结合()t f x =,()0f t m +=的解的情况,数形结合可得所求零点个数. 【详解】令()t f x =,则()0f t m +=,当0a =时, 若1m =-,则0t ≤或t e =,即01x <≤或e x e =, 即当0a =,m R ∈时,不是有且只有1个零点,故A 错误;当0a >时,1m ≤-时,可得0t ≤或m t e e -=≥,可得x 的个数为123+=个,即B 正确;当0a <,1m <-或10m -<<时,由0m ->,且1m -≠,可得零点的个数为1个或3个,故C ,D 错误. 故选:B .【点睛】本题考查了函数零点的相关问题,考查了数形结合思想,属于中档题.2.已知()(1)|ln |xf x x x =≠,若关于x 方程22[()](21)()0f x m f x m m -+++=恰有4个不相等的实根,则实数m 的取值范围是( ) A .1,2(2,)e e⎛⎫⋃ ⎪⎝⎭B .11,e e ⎛⎫+⎪⎝⎭C .(1,)e e -D .1e e ⎛⎫ ⎪⎝⎭,【答案】C 【解析】 【分析】由已知易知()f x m =与()1f x m =+的根一共有4个,作出()f x 图象,数形结合即可得到答案. 【详解】由22[()](21)()0f x m f x m m -+++=,得()f x m =或()1f x m =+,由题意()f x m =与()1f x m =+两个方程的根一共有4个,又()f x 的定义域为(0,1)(1,)⋃+∞,所以()|ln |ln x x f x x x ==,令()ln x g x x=,则'2ln 1()(ln )x g x x -=,由'()0g x >得x e >, 由'()0g x <得1x e <<或01x <<,故()g x 在(0,1),(1,)e 单调递减,在(,)e +∞上单调递 增,由图象变换作出()f x 图象如图所示要使原方程有4个根,则01m em e <<⎧⎨+>⎩,解得1e m e -<<.故选:C 【点睛】本题考查函数与方程的应用,涉及到方程根的个数问题,考查学生等价转化、数形结合的思想,是一道中档题.3.函数f (x )=x ﹣g (x )的图象在点x =2处的切线方程是y =﹣x ﹣1,则g (2)+g '(2)=( ) A .7 B .4C .0D .﹣4【答案】A 【解析】()()()(),'1'f x x g x f x g x =-∴=-Q ,因为函数()()f x x g x =-的图像在点2x =处的切线方程是1y x =--,所以()()23,'21f f =-=-,()()()()2'2221'27g g f f ∴+=-+-=,故选A .4.已知奇函数()f x 在R 上是增函数,若21log 5a f ⎛⎫=- ⎪⎝⎭,()2log 4.1b f =,()0.82c f =,则,,a b c 的大小关系为( )A .a b c <<B .b a c <<C .c b a <<D .c a b <<【答案】C 【解析】由题意:()221log log 55a f f ⎛⎫=-= ⎪⎝⎭, 且:0.822log 5log 4.12,122>><<,据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>,即,a b c c b a >><<. 本题选择C 选项.【考点】 指数、对数、函数的单调性【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.5.已知函数f (x )=(k +4k )lnx +24x x-,k ∈[4,+∞),曲线y =f (x )上总存在两点M (x 1,y 1),N (x 2,y 2),使曲线y =f (x )在M ,N 两点处的切线互相平行,则x 1+x 2的取值范围为A .(85,+∞) B .(165,+∞) C .[85,+∞) D .[165,+∞) 【答案】B 【解析】 【分析】利用过M 、N 点处的切线互相平行,建立方程,结合基本不等式,再求最值,即可求x 1+x 2的取值范围. 【详解】由题得f′(x )=4k k x +﹣24x ﹣1=﹣2244x k x k x ⎛⎫-++ ⎪⎝⎭=﹣()24x k x k x ⎛⎫-- ⎪⎝⎭,(x >0,k >0)由题意,可得f′(x 1)=f′(x 2)(x 1,x 2>0,且x 1≠x 2),即21144k k x x +-﹣1=24k k x +﹣224x ﹣1,化简得4(x 1+x 2)=(k+4k)x 1x 2, 而x 1x 2<212()2x x +, 4(x 1+x 2)<(k+4k )212()2x x +, 即x 1+x 2>164k k+对k ∈[4,+∞)恒成立, 令g (k )=k+4k, 则g′(k )=1﹣24k =()()222k k k+->0对k ∈[4,+∞)恒成立, ∴g (k )≥g (4)=5, ∴164k k+≤165, ∴x 1+x 2>165, 故x 1+x 2的取值范围为(165,+∞). 故答案为B 【点睛】本题运用导数可以解决曲线的切线问题,函数的单调性、极值与最值,正确求导是我们解题的关键,属于中档题.6.函数22cos x xy x x--=-的图像大致为( ).A .B .C .D .【答案】A 【解析】 【分析】 本题采用排除法: 由5522f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭排除选项D ; 根据特殊值502f π⎛⎫>⎪⎝⎭排除选项C; 由0x >,且x 无限接近于0时, ()0f x <排除选项B ; 【详解】对于选项D:由题意可得, 令函数()f x = 22cos x xy x x--=-,则5522522522f ππππ--⎛⎫-= ⎪⎝⎭,5522522522f ππππ--⎛⎫= ⎪⎝⎭;即5522f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭.故选项D 排除; 对于选项C :因为55225220522f ππππ--⎛⎫=> ⎪⎝⎭,故选项C 排除;对于选项B:当0x >,且x 无限接近于0时,cos x x -接近于10-<,220x x -->,此时()0f x <.故选项B 排除;故选项:A 【点睛】本题考查函数解析式较复杂的图象的判断;利用函数奇偶性、特殊值符号的正负等有关性质进行逐一排除是解题的关键;属于中档题.7.函数()xe f x x=的图象大致为( )A .B .C .D .【答案】B 【解析】函数()xe f x x=的定义域为(,0)(0,)-∞+∞U ,排除选项A ;当0x >时,()0f x >,且()2(1)'xx e f x x-= ,故当()0,1x ∈时,函数单调递减,当()1,x ∈+∞时,函数单调递增,排除选项C ;当0x <时,函数()0xe f x x=<,排除选项D ,选项B 正确.选B .点睛:函数图象的识别可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置; (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的周期性,判断图象的循环往复; (5)从函数的特征点,排除不合要求的图象.8.已知函数()f x 是定义在R 上的偶函数,且在()0,∞+上单调递增,则( ) A .()()()0.633log 132f f f -<-<B .()()()0.6332log 13f f f -<<-C .()()()0.632log 133f f f <-<- D .()()()0.6323log 13f f f <-<【答案】C 【解析】 【分析】利用指数函数和对数函数单调性可得到0.632log 133<<,结合单调性和偶函数的性质可得大小关系. 【详解】()f x Q 为R 上的偶函数,()()33f f ∴-=,()()33log 13log 13f f -=,0.633322log 9log 13log 273<=<<=Q 且()f x 在()0,∞+上单调递增,()()()0.632log 133f f f ∴<<,()()()0.632log 133f f f ∴<-<-.故选:C . 【点睛】本题考查函数值大小关系的比较,关键是能够利用奇偶性将自变量转化到同一单调区间内,由自变量的大小关系,利用函数单调性即可得到函数值的大小关系.9.已知函数在区间上有最小值,则函数在区间上一定( )A .有最小值B .有最大值C .是减函数D .是增函数【答案】D 【解析】 【分析】 由二次函数在区间上有最小值得知其对称轴,再由基本初等函数的单调性或单调性的性质可得出函数在区间上的单调性.【详解】 由于二次函数在区间上有最小值,可知其对称轴,.当时,由于函数和函数在上都为增函数,此时,函数在上为增函数; 当时,在上为增函数;当时,由双勾函数的单调性知,函数在上单调递增,,所以,函数在上为增函数.综上所述:函数在区间上为增函数,故选D.【点睛】本题考查二次函数的最值,同时也考查了型函数单调性的分析,解题时要注意对的符号进行分类讨论,考查分类讨论数学思想,属于中等题.10.已知函数()2943,02log 9,0x x x f x x x ⎧+≤=⎨+->⎩,则函数()()y f f x =的零点所在区间为( )A .73,2⎛⎫ ⎪⎝⎭B .()1,0-C .7,42⎛⎫ ⎪⎝⎭D .()4,5【答案】A 【解析】 【分析】首先求得0x ≤时,()f x 的取值范围.然后求得0x >时,()f x 的单调性和零点,令()()0f f x =,根据“0x ≤时,()f x 的取值范围”得到()32log 93x f x x =+-=,利用零点存在性定理,求得函数()()y f f x =的零点所在区间.【详解】当0x ≤时,()34f x <≤.当0x ≥时,()2932log 92log 9xxx f x x =+-=+-为增函数,且()30f =,则3x =是()f x 唯一零点.由于“当0x ≤时,()34f x <≤.”,所以 令()()0ff x =,得()32log 93xf x x =+-=,因为()303f =<,337782log 98 1.414log 39 3.312322f ⎛⎫=+->⨯+-=> ⎪⎝⎭,所以函数()()y f f x =的零点所在区间为73,2⎛⎫⎪⎝⎭.故选:A 【点睛】本小题主要考查分段函数的性质,考查符合函数零点,考查零点存在性定理,考查函数的单调性,考查化归与转化的数学思想方法,属于中档题.11.函数()||()af x x a R x=-∈的图象不可能是( ) A . B .C .D .【答案】C 【解析】 【分析】变成分段函数后分段求导,通过对a 分类讨论,得到函数的单调性,根据单调性结合四个选项可得答案. 【详解】,0(),0a x x x f x a x x x ⎧->⎪⎪=⎨⎪--<⎪⎩,∴221,0()1,0a x xf x a x x ⎧+>⎪⎪=⎨⎪-+<⎩'⎪.(1)当0a =时,,0(),0x x f x x x >⎧=⎨-<⎩,图象为A;(2)当0a >时,210ax+>,∴()f x 在(0,)+∞上单调递增, 令210ax-+=得x a = ∴当x a <,210ax-+<,当0x <<时,210ax -+>,∴()f x 在(,-∞上单调递减,在(上单调递增,图象为D; (3)当0a <时,210ax-+<,∴()f x 在(,0)-∞上单调递减,令210ax +=得x =∴当x >时,210ax +>,当0x <<,210ax+<,∴()f x 在上单调递减,在)+∞上单调递增,图象为B; 故选:C. 【点睛】本题考查了分段函数的图像的识别,考查了分类讨论思想,考查了利用导数研究函数的单调性,属于中档题.12.已知函数()ln xf x x=,则使ln ()()()f x g x a f x =-有2个零点的a 的取值范围( ) A .(0,1) B .10,e ⎛⎫ ⎪⎝⎭C .1,1e ⎛⎫ ⎪⎝⎭D .1,e ⎛⎫-∞ ⎪⎝⎭【答案】B 【解析】 【分析】 令()ln xt f x x==,利用导数研究其图象和值域,再将ln ()()()f x g x a f x =-有2个零点,转化为ln ta t=在[),e +∞上只有一解求解. 【详解】 令()ln x t f x x ==,当01x <<时,()0ln xt f x x==<, 当1x >时,()2ln 1()ln x t f x x -''==,当1x e <<时,0t '<,当x e >时,0t '>, 所以当x e =时,t 取得最小值e ,所以t e ≥, 如图所示:所以ln ()()()f x g x a f x =-有2个零点,转化为ln t a t =在[),e +∞上只有一解, 令ln t m t =,21ln 0t m t -'=≤,所以ln t m t=在[),e +∞上递减, 所以10m e<≤, 所以10a e <≤,当1a e =时,x e =,只有一个零点,不合题意, 所以10a e<<故选:B【点睛】本题主要考查导数与函数的零点,还考查了数形结合的思想和运算求解的能力,属于中档题.13.()263,034,0x x x x f x x ⎧---≤=⎨->⎩,则函数()y f f x =⎡⎤⎣⎦的零点个数为( ) A .3 B .5 C .6 D .7【答案】D【解析】【分析】作出()f x 的图像,将()y f f x =⎡⎤⎣⎦的零点个数即()0f f x =⎡⎤⎣⎦的实数根个数,令()t f x =,解()0f t =有三个实数根,再结合图像即可得到答案.【详解】由题意,()y f f x =⎡⎤⎣⎦的零点个数即()0f f x =⎡⎤⎣⎦的实数根个数,作()f x 的图像如图所示,设()t f x =,则()0f t =,当0t ≤时,即2630t t ---=,解得,1236,36t t =-=-当0t >时,即340t -=,解得33log 4t =; 结合图像知,()36f x =-()36f x =-+3()log 4f x =时有三个根,所以()0f f x =⎡⎤⎣⎦有7个根,即()y f f x =⎡⎤⎣⎦的零点个数为7. 故选:D【点睛】本题主要考查函数的零点问题、解函数值以及一元二次函数和指数函数的图像,考查学生数形结合的思想,属于中档题.14.若函数()()sin x f x ex a =+在区间,22ππ⎛⎫- ⎪⎝⎭上单调递增,则实数a 的取值范围是()A .)2,⎡+∞⎣B .[)1,+∞C .()1,+∞D .()2,-+∞ 【答案】B【解析】【分析】将问题转化为()0f x '≥在,22ππ⎛⎫- ⎪⎝⎭上恒成立;根据导函数解析式可知问题可进一步转化204x a π⎛⎫++≥ ⎪⎝⎭在,22ππ⎛⎫- ⎪⎝⎭上恒成立;利用正弦型函数值域求法可求得(2124x a a a π⎛⎫⎤++∈-+ ⎪⎦⎝⎭,则只需10a -+?即可,解不等式求得结果. 【详解】由题意得:()()sin cos 4x x x f x e x a e x e x a π⎫⎛⎫'=++=++ ⎪⎪⎝⎭⎭ ()f x Q 在,22ππ⎛⎫- ⎪⎝⎭上单调递增 ()0f x '∴≥在,22ππ⎛⎫- ⎪⎝⎭上恒成立又0x e > 04x a π⎛⎫++≥ ⎪⎝⎭在,22ππ⎛⎫- ⎪⎝⎭上恒成立当,22x ππ⎛⎫∈- ⎪⎝⎭时,3,444x πππ⎛⎫+∈- ⎪⎝⎭ sin 4x π⎛⎤⎛⎫∴+∈ ⎥ ⎪ ⎝⎭⎝⎦ (14x a a a π⎛⎫⎤++∈-+ ⎪⎦⎝⎭ 10a ∴-+≥,解得:[)1,a ∈+∞ 本题正确选项:B【点睛】本题考查根据函数在一段区间内的单调性求解参数范围问题,涉及到正弦型函数值域的求解问题;本题解题关键是能够将问题转化为导函数在区间内恒大于等于零的问题,从而利用三角函数的最值来求得结果.15.一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄a 元一年定期,若年利率为r 保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为( )A .17(1)a r +B .17[(1)(1)]a r r r +-+C .18(1)a r +D .18[(1)(1)]a r r r+-+ 【答案】D【解析】【分析】由题意可得:孩子18岁生日时将所有存款(含利息)全部取回,可以看成是以(1)a r +为首项,(1)r +为公比的等比数列的前17项的和,再由等比数列前n 项和公式求解即可.【详解】解:根据题意,当孩子18岁生日时,孩子在一周岁生日时存入的a 元产生的本利合计为17(1)a r +, 同理:孩子在2周岁生日时存入的a 元产生的本利合计为16(1)a r +,孩子在3周岁生日时存入的a 元产生的本利合计为15(1)a r +, ⋯⋯孩子在17周岁生日时存入的a 元产生的本利合计为(1)a r +,可以看成是以(1)a r +为首项,(1)r +为公比的等比数列的前17项的和,此时将存款(含利息)全部取回,则取回的钱的总数:17171618(1)[(1)1](1)(1)(1)[(1)(1)]11a r r a S a r a r a r r r r r ++-=++++⋯⋯++==+-++-; 故选:D .【点睛】本题考查了不完全归纳法及等比数列前n 项和,属中档题.16.若函数()f x 的定义域为R ,其导函数为()f x '.若()3f x '<恒成立,()20f -=,则()36f x x <+ 解集为( )A .(),2-∞-B .()2,2-C .(),2-∞D .()2,-+∞【答案】D【解析】【分析】设()()36g x f x x =--,求导后可得()g x 在R 上单调递减,再结合()20g -=即可得解.【详解】设()()36g x f x x =--, Q ()3f x '<,∴()()30g x f x ''=-<,∴()g x 在R 上单调递减,又()()22660g f -=-+-=,不等式()36f x x <+即()0g x <,∴2x >-,∴不等式()36f x x <+的解集为()2,-+∞.故选:D.【点睛】本题考查了导数的应用,关键是由题意构造出新函数,属于中档题.17.对于任意性和存在性问题的处理,遵循以下规则:18.设123log 2,ln 2,5a b c -===则A .a b c <<B .b c a <<C .c a b <<D .c b a << 【答案】C【解析】【分析】由ln 2ln 2ln 3a b =<=及311log ,22a c >==<=可比较大小. 【详解】∵2031a ln ln =>,>,∴ln 2ln 2ln 3a b =<=,即a b <.又3311log 2log ,22a c =>==<=.∴a c >.综上可知:c a b << 故选C.【点睛】 本题主要考查了指数与对数的运算性质及对数函数的单调性比较大小,属于中档题.19.函数()()()log 5,0,1a f x ax a a =->≠在()1,3上是减函数,则a 的取值范围是( ) A .5,3⎛⎫+∞ ⎪⎝⎭B .1,15⎛⎫ ⎪⎝⎭C .51,3⎛⎫ ⎪⎝⎭D .51,3⎛⎤ ⎥⎝⎦【答案】D【解析】【分析】根据0a >可知5y ax =-在定义域内单调递减,若使得函数()()()log 5,0,1a f x ax a a =->≠在()1,3上是减函数,则需1530a a >⎧⎨-≥⎩,解不等式即可. 【详解】0a >Q5y ax ∴=-在定义域内单调递减若使得函数()()()log 5,0,1a f x ax a a =->≠在()1,3上是减函数则需1530a a >⎧⎨-≥⎩,解得513a <≤ 故选:D【点睛】本题考查对数函数的单调性,属于中档题.20.设113000,,a b xdx c x dx ===⎰⎰,则,,a b c 的大小关系为( ) A .b c a >>B .b a c >>C .a c b >>D .a b c >>【答案】D【解析】根据微积分定理,3120022|33a x ⎛⎫=== ⎪⎝⎭,1210011|22b xdx x ⎛⎫=== ⎪⎝⎭⎰,13410011|44c x dx x ⎛⎫=== ⎪⎝⎭⎰,所以a b c >>,故选择D 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

,. ;.. 高考数学易错题解题方法大全(4)(共7套)

一.选择题 【范例1】掷两颗骰子得两数,则事件“两数之和大于4”的概率为( )

A.61 B.21 C.32 D.65 答案:D 【错解分析】此题主要考查用枚举法计算古典概型。容易错在不细心而漏解。 【解题指导】求古典概型的概率常采用用枚举法,细心列举即可。

【练习1】矩形ABCD中,7,6CDAB,在矩形内任取一点P,则π2APB的概率为( )

A.2831 B.283 C.143 D.1431 【范例2】将锐角为060BAD且边长是2的菱形ABCD,沿它的对角线BD折成60°的二面角,则( ) ①异面直线AC与BD所成角的大小是 . ②点C到平面ABD的距离是 .

A.90°,23 B.90°,2 C.60°,23 D.60°,2 答案:A 【错解分析】此题容易错选为C,错误原因是对空间图形不能很好的吃透。。

【解题指导】设BD中点为O,则有AOCBD平面,则ACBD.及平面AOCABD平面.且

AOC是边长为3的正三角形,作AOCE,则ABDCE面,于是异面直线ACBD与所成的角是

90°,点C到平面ABD的距离是23CE.

【练习2】长方体ABCD—A1B1C1D1中,AB=AA1=2,AD=1,E为CC1的中点,则异面直线BC1与AE所成角的余弦值为( )

A.1010 B. 1030 C.1060 D.10103 【范例3】已知P为抛物线221xy上的动点,点P在x轴上的

射影为M,点A的坐标是)217,6(,则PMPA的最小值是( ) A 8 B 219 C 10 D 221 答案:B 【错解分析】此题容易错选为C,在解决抛物线的问题时经常需要把到焦点的距离和到准线的距离互相转化。

A B C D

A1 D1 C1 B1 ,.

;.. 【解题指导】抛物线yx22的焦点为21,0F,点P到准线的距离为d。则

2121PFPAdPAPMPA,所以当P,A,F三点共线时最小为21921AF.

【练习3】已知定点)4,3(A,点P为抛物线xy42上一动点,点P到直线1x的距离为d,则|PA|+d的最小值为( ) A.4 B.52 C.6 D.328 【范例4】函数]2,0[,sin2sin)(xxxxf的图象与直线ky有且仅有两个不同的交点,则k的取值范围是( ) A.31kk B.31kk C.31kk D.31kk 答案:C 【错解分析】此题容易错选为A,错误原因是对函数)(xf不能合理的化为

3sin,[0,]()sin2sinsin,(,2]xxfxxxxx





【解题指导】作函数)(xf和直线ky的草图,借助数形结合,可得,31k. 【练习4】函数xxfsin)(在区间ba,上是增函数,且,1)(,1)(bfaf则cos2ba的值为( ) A. 0 B. 22 C. 1 D. -1 【范例5】平面上有n个圆,其中每两个都相交于两点,每三个都无公共点,它们将平面分成)(nf块区域,有(1)2,(2)4,(3)8,(4)14ffff,则)(nf的表达式为( )

A、n2 B、22nn C、)3)(2)(1(2nnnn D、410523nnn 答案:B 【错解分析】此题容易错选为A,错误原因是在作归纳猜想时没有认真审题只看到

(1)2,(2)4,(3)fff导致结论太片面且不合理。

【解题指导】由(2)(1)2,(3)(2)4,(4)(3)6,ffffff,(1)()2fnfnn猜想 利用累加法,得2)(2nnnf. 【练习5】古希腊数学家把数1,3,6,10,15,21,……叫做三角数,它有一定的规律性,第30个三角数与第28个三角数的差为( ) A. 20 B. 29 C. 30 D. 59

【范例6】函数f(x)=3x(x≤2)的反函数的定义域是( )

A.(,9] B.[9,) C.(0,9] D.(0,) ,. ;.. 答案:C 【错解分析】此题容易错选为D,错误原因是对原函数与反函数理解不透。 【解题指导】反函数的定义域即为原函数的值域,所以求原函数的值域即可。

【练习6】若函数f(x)的反函数),0(1)(21xxxf则)2(f= ( ) A.1 B.-1 C.1或-1 D.5 二.填空题

【范例7】若}1log|{},822|{2xRxBZxAx,则BA= .

答案:3 【错解分析】此题容易错填为13,,错误原因是没有看清楚A中的元素要是整数。 【解题指导】2,3,2,1xxBA

【练习7】已知集合NxNxA68|,集合A的子集共有 个. 【范例8】给出下列命题 ① 向量 ab、满足abab,则与aab的夹角为030;

② ab>0,是 ab、的夹角为锐角的充要条件; ③ 将函数y =1x的图象按向量a=(-1,0)平移,得到的图象对应的函数表达式为y =x; ④ 若)(ACAB0)(ACAB,则ABC为等腰三角形; 以上命题正确的是 (注:把你认为正确的命题的序号都填上) 答案:③④ 【错解分析】此题容易错选为①②,错误原因是对一些特殊情况考虑不周到。 【解题指导】利用向量的有关概念,逐个进行判断切入, 对于 ① 取特值零向量错误,若前提为非零向量由向量加减法的平行四边形法则与夹角的概念正确;

对②取特值夹角为直角错,认识数量积和夹角的关系,命题应为ab>0,是 ab、的夹角为锐角的必要条件;

对于③,注意按向量平移的意义,就是图象向左移1个单位,结论正确; 对于④;向量的数量积满足分配率运算,结论正确.

【练习8】已知13(,)22a,(1,3)b,则||()atbtR的最小值等于 .

【范例9】已知抛物线)1)0(22mMppxy,(上一点到其焦点的距离为5,双曲线122ayx的左顶点为A,若双曲线一条渐近线与直线AM垂直,则实数a . 答案:14 ,. ;.. 【错解分析】此题容易错在抛物线不能求对,下面就无法解决了。

【解题指导】抛物线为xy162,1m,渐进线为xay.

【练习9】一个酒杯的轴截面是抛物线的一部分,它的方程是)200(22yyx. 在杯内放入一个玻璃球,要使球触及酒杯底部,则玻璃的半径r的范围为 . 【范例10】若nxx)1(展开式的二项式系数之和为64,则展开式的常数项为 . 答案:20 【错解分析】此题容易错在找不对第几项是常数项,对二项展开式的基本性质还要掌握好。

【解题指导】36264,6,20nnC常数项为.

【练习10】若1()11nx的展开式中第三项系数等于6,则n等于 . 【范例11】如果复数)2)(1(iai的实部和虚部相等,则实数a等于 . 答案:31 【错解分析】此题容易错写1,切记:21i。 【解题指导】iaaiai)21()2()2)(1(. 【练习11】设Rbabiaz,,zabi,将一个骰子连续抛掷两次,第一次得到的点数为a,第二次得到的点数为b,则使复数2z为纯虚数的概率为 . 【范例12】已知函数xxmxxf2ln2在定义域内是增函数,则实数m的取值范围为____. 答案:12m≥。 【错解分析】此题容易错填12m等,错误原因是对利用'0f求解。 【解题指导】注意区别不等式有解与恒成立: max()()afxafx恒成立; min()()afxafx恒成立;

min()()afxafx有解; max()()afxafx有解

0212/xmxxf在,0上恒成立,,1212xxm所以max2)121(xxm

所以12m≥. 【练习12】已知函数()fx的导函数'()29fxx,且(0)f的值为整数,当(,1]xnn*()nN时,()fx的值为整数的个数有且只有1个,则n= . ,. ;.. A B

A1

B

1

C1

O

三.解答题 【范例13】设数列}{na的前n项和为22nSn, }{nb为等比数列,且.)(,112211baabba

(1)求数列}{na和}{nb的通项公式;

(2)设nnnbac,求数列}{nc的前n项和nT。 【错解分析】(1)求数列{}na的通项公式时,容易遗忘对n=1情况的检验。 (2)错位相减法虽然是一种常见方法,但同时也是容易出错的地方,一定要仔细。 解:(1)当111,2;naS时

,24)1(22,2221nnnSSannnn时当 故}{na的通项公式为4,2}{,241daanann公差是即的等差数列. 设}{nb的通项公式为.41,4,,11qdbqdbq则 故.42}{,4121111nnnnnnbbqbb的通项公式为即 (2),4)12(422411nnnnnnnbac

]4)12(4)32(454341[4],4)12(45431[13212121nnnnnnnnTncccT



两式相减得:

].54)56[(91]54)56[(314)12()4444(2131321nnnnnnnTnnT

【练习13】设等比数列{na}的前n项和nS,首项11a,公比()(1,0)1qf. (1)证明:(1)nnSa; (2)若数列{nb}满足112b,*1()(,2)nnbfbnNn,求数列{nb}的通项公式; (3)若1,记1(1)nnncab,数列{nc}的前项和为nT,求证:当2n时,24nT.

【范例14】已知斜三棱柱111CBAABC的各棱长均为2, 侧棱1BB与底面ABC所成角为3, 且侧面11AABB底面ABC. (1)证明:点1B在平面ABC上的射影O为AB的中点;

相关文档
最新文档