线性规划
线性规划问题求解例题和知识点总结

线性规划问题求解例题和知识点总结线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。
在经济管理、交通运输、工农业生产等领域都有着广泛的应用。
下面我们通过一些具体的例题来深入理解线性规划问题,并对相关知识点进行总结。
一、线性规划的基本概念线性规划问题是在一组线性约束条件下,求一个线性目标函数的最大值或最小值的问题。
其数学模型一般可以表示为:目标函数:$Z = c_1x_1 + c_2x_2 +\cdots + c_nx_n$约束条件:$\begin{cases}a_{11}x_1 + a_{12}x_2 +\cdots +a_{1n}x_n \leq b_1 \\ a_{21}x_1 + a_{22}x_2 +\cdots +a_{2n}x_n \leq b_2 \\\cdots \\ a_{m1}x_1 + a_{m2}x_2 +\cdots + a_{mn}x_n \leq b_m \\ x_1, x_2, \cdots, x_n \geq0\end{cases}$其中,$x_1, x_2, \cdots, x_n$是决策变量,$c_1, c_2, \cdots, c_n$是目标函数的系数,$a_{ij}$是约束条件的系数,$b_1, b_2, \cdots, b_m$是约束条件的右端项。
二、线性规划问题的求解方法常见的求解线性规划问题的方法有图解法和单纯形法。
1、图解法适用于只有两个决策变量的线性规划问题。
步骤如下:画出直角坐标系。
画出约束条件所对应的直线。
确定可行域(满足所有约束条件的区域)。
画出目标函数的等值线。
移动等值线,找出最优解。
例如,求解线性规划问题:目标函数:$Z = 2x + 3y$约束条件:$\begin{cases}x + 2y \leq 8 \\ 2x + y \leq 10 \\ x \geq 0, y \geq 0\end{cases}$首先,画出约束条件对应的直线:$x + 2y = 8$,$2x + y =10$,以及$x = 0$,$y = 0$。
1.线性规划

通常是求最大值或 最小值;
2.解决问题的约束条件是一组多个决策变量的线性不
等式或等式。
【例1.2】某商场决定:营业员每周连续工作5天后连续休息2天, 轮流休息。根据统计,商场每天至少需要的营业员如表1.2所示。
表1.2 营业员需要量统计表
min f (x), s.t. x∈.
约束条件
可行解域
线性规划(Linear Programming,缩写为LP) 是运筹学的重要分支之一,在实际中应用得较广 泛,其方法也较成熟,借助计算机,使得计算更方便, 应用领域更广泛和深入。 线性规划通常研究资源的最优利用、设备最佳运 行等问题。例如,当任务或目标确定后,如何统筹兼 顾,合理安排,用最少的资源(如资金、设备、原标 材料、人工、时间等)去完成确定的任务或目标;企 业在一定的资源条件限制下,如何组织安排生产获得 最好的经济效益(如产品量最多 、利润最大)。
运筹学的主要内容
数 学 规 划 组 合 优 化 随 机 优 化
线性规划 非线性规划 整数规划 动态规划 多目标规划 双层规划 最优计数问题 网络优化 排序问题 统筹图 对策论 排队论 库存论 决策分析 可靠性分析
学 科
内
容
许多生产计划与管理问题都可以归纳为最优 化问题, 最优化模型是数学建模中应用最广泛的 模型之一,其内容包括线性规划、整数线性规划、 非线性规划、动态规划、变分法、最优控制等. 近几年来的全国大学生数学建模竞赛中,几 乎每次都有一道题要用到此方法. 此类问题的一般形式为: 目标函数
星 期 需要 人数 星 期 需要 人数
一
二 三 四
300
300 350 400
线性规划问题的特征

线性规划问题的特征
线性规划是一种数学优化技术,它可以帮助我们解决一系列有约束的最优化问题。
它的特征是:
1. 目标函数:线性规划的目标函数是一个线性函数,它可以表示为一组变量的线性组合。
2. 约束条件:线性规划的约束条件是一组线性不等式,它们可以表示为一组变量的线性组合。
3. 可行解:线性规划的可行解是满足所有约束条件的解,它们可以使目标函数达到最优值。
4. 最优解:线性规划的最优解是使目标函数达到最优值的可行解。
线性规划是一种有效的数学优化技术,它可以帮助我们解决一系列有约束的最优化问题。
它的特征是:目标函数是一个线性函数,约束条件是一组线性不等式,可行解是满足所有约束条件的解,最优解是使目标函数达到最优值的可行解。
线性规划可以帮助我们解决一系列有约束的最优化问题,它的特征是简单明了,可以有效地解决复杂的优化问题。
线性规划法

线性规划法线性规划法(Linear Programming)是一种数学模型和优化方法,用于解决线性约束条件下的最优决策问题。
线性规划法被广泛应用于经济、管理、工程等领域中的决策问题,可以帮助决策者在有限的资源条件下,实现最优的目标。
线性规划法的核心思想是将问题转化为数学模型,即线性规划模型。
该模型包括目标函数、决策变量和约束条件三个要素。
目标函数是决策问题的数学表达,用于衡量达到最优目标的程度。
通常,目标函数是一个线性函数,可用代数式表示。
决策变量是决策问题中可以被决策者调整的变量,根据实际情况选取。
决策变量的取值会直接影响目标函数的结果。
约束条件是决策问题中各种限制条件,例如资源约束、技术约束等。
约束条件可以是等式约束或不等式约束,也可以是单个约束或多个约束。
线性规划法的基本思路是通过优化算法,对线性规划模型进行求解,找到使目标函数取得最大(或最小)值的决策变量取值。
常见的线性规划求解算法有单纯形法、对偶单纯形法、内点法等。
在应用线性规划法解决实际问题时,需要经过以下步骤:1. 建立数学模型:根据实际问题的特点和需求,确定目标函数和约束条件,制定出线性规划模型。
2. 求解线性规划模型:根据所选的求解算法,对线性规划模型进行求解。
通常,求解算法会根据目标函数和约束条件的特点,进行适当的优化,减少计算量。
3. 分析和解释结果:对求解结果进行分析和解释,评估结果的合理性和可行性。
如果结果满足实际需求,则可以进行下一步决策;如果不满足,则需要根据实际情况,对模型进行优化或修改。
线性规划法的优点在于能够在有限的资源条件下,寻找到最优的决策解。
它可以帮助决策者进行定量分析和优化决策,提高决策的效果和效率。
同时,线性规划法的应用范围广泛,可以应用于各种实际问题中。
然而,线性规划法也存在一些局限性。
首先,线性规划法只适用于具有线性目标函数和线性约束条件的问题,对于非线性问题不适用;其次,线性规划法只能得到局部最优解,无法保证找到全局最优解;此外,线性规划法会受到数据误差、模型假设等因素的影响,需要进行敏感性分析和可行性分析。
线性规划运用举例

线性规划运用举例线性规划是一种经济学和数学领域中的数学优化技术,其主要目的是将某些目标函数在满足一定的约束条件下最大或最小化。
线性规划在现代经济学、决策科学、制造业和生产管理等领域都有广泛的应用。
下面将举例说明线性规划在实际生产和管理中的应用。
1. 生产计划方案优化生产计划方案优化是一个很复杂的问题。
企业的目标是尽可能地减少生产和仓储成本,同时保证所生产的产品能满足市场需求。
线性规划可以帮助企业找到一个最优的计划方案,使得成本最小化,并能够满足市场需求。
例如,生产一种食品有两个不同的发酵温度可以选择。
这个决策需要考虑到提高产量的同时也要保证产品质量。
通过将这个问题转化为线性规划问题,可以确定最佳的温度条件,以最小化生产成本并且保证产品质量。
2. 资源分配问题企业在日常运营中需要管理各种资源,如员工,机器等。
为了确保资源的有效利用,企业需要通过资源分配来确保生产能力最优化。
线性规划可以帮助企业分配资源,使得资源利用更加高效,成本更加低廉和运营更加有效。
例如,在生产线上,可以通过线性规划算法来优化设备的分配和维护计划,使得设备的维护和使用更加平滑,减少因设备故障造成的损失和停机时间。
3. 市场销售策略线性规划也可以帮助企业确定最优的市场营销策略。
在一个竞争激烈的市场中,企业需要考虑产品的定价,销售渠道和营销推广策略等因素。
通过将这些因素转化为线性规划问题,企业可以找到最优的市场营销策略。
例如,在销售一种产品时,企业可以通过确定最优价格来最大化销售收入。
总之,线性规划在生产和管理中的应用非常广泛。
通过线性规划算法可以解决非常复杂的问题,帮助企业做出最优的决策,从而实现成本最小化和收益最大化。
高中线性规划

高中线性规划高中线性规划是高中数学课程中的一部分,是线性代数的重要内容之一。
线性规划是一种优化问题的数学建模方法,通过线性规划可以求解出一组满足一定约束条件的最优解。
线性规划的基本形式是在一组线性约束条件下,求解一个线性目标函数的最大值或最小值。
线性规划的目标函数和约束条件都是线性的,这使得线性规划问题能够用简洁的数学模型来描述。
线性规划的数学模型可以用如下的标准格式来表示:最大化(或最小化)目标函数:Z = c₁x₁ + c₂x₂ + ... + cₙxₙ约束条件:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙ非负约束条件:x₁ ≥ 0, x₂ ≥ 0, ..., xₙ ≥ 0其中,Z表示目标函数的值,c₁、c₂、...、cₙ为目标函数的系数,x₁、x₂、...、xₙ为决策变量,a₁₁、a₁₂、...、aₙₙ为约束条件的系数,b₁、b₂、...、bₙ为约束条件的常数项。
线性规划的求解过程一般分为以下几个步骤:1. 确定决策变量:根据实际问题确定需要优化的变量,将其表示为x₁、x₂、...、xₙ。
2. 建立目标函数:根据实际问题确定需要最大化或最小化的目标函数,并将其表示为Z = c₁x₁ + c₂x₂ + ... + cₙxₙ。
3. 建立约束条件:根据实际问题确定约束条件,并将其表示为线性不等式的形式,即a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁,a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂,...,aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙ。
4. 确定非负约束条件:由于线性规划问题的解必须满足变量的非负性,即x₁≥ 0, x₂ ≥ 0, ..., xₙ ≥ 0。
5. 求解最优解:将线性规划问题转化为数学模型后,可以利用线性规划的求解方法,如单纯形法、对偶理论等,求解出目标函数的最大值或最小值,以及相应的决策变量的取值。
线性规划练习题
线性规划练习题线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。
通过线性规划,我们可以在有限的资源条件下,实现最优的决策和资源分配。
下面让我们一起来看看一些线性规划练习题。
例题 1:某工厂生产甲、乙两种产品,已知生产甲产品 1 件需要 A原料 3 千克,B 原料 2 千克;生产乙产品 1 件需要 A 原料 2 千克,B原料 4 千克。
现有 A 原料 120 千克,B 原料 100 千克。
甲产品每件利润为 20 元,乙产品每件利润为 30 元。
问工厂应如何安排生产,才能使利润最大?首先,设生产甲产品 x 件,生产乙产品 y 件。
根据题目条件,可以列出以下不等式组:3x +2y ≤ 120 (A 原料限制)2x +4y ≤ 100 (B 原料限制)x ≥ 0 ,y ≥ 0 (产品数量非负)目标函数为:Z = 20x + 30y (总利润)接下来,我们通过画图来找到可行域。
将不等式组转化为等式方程,画出直线,然后根据不等式确定可行域的范围。
然后,在可行域内找到目标函数的最优解。
通常可以通过顶点法,计算可行域顶点处的目标函数值,比较得出最大值。
经过计算,当 x = 20,y = 20 时,利润最大,最大利润为 1000 元。
例题 2:某运输公司有 A、B 两种型号的货车,A 型货车每辆可载货 5 吨,B 型货车每辆可载货 8 吨。
现要运输 100 吨货物,且 A 型货车的数量不少于 B 型货车数量的 2 倍。
已知 A 型货车每辆运费 500 元,B 型货车每辆运费 800 元。
问如何安排车辆,能使运费最少?设安排 A 型货车 x 辆,B 型货车 y 辆。
则有:5x + 8y = 100 (货物总量)x ≥ 2y (车辆数量限制)x ≥ 0 ,y ≥ 0 (车辆数量非负)目标函数为:C = 500x + 800y (总运费)同样地,通过画图找到可行域,再计算顶点处的运费,找到最小值。
线性规划论文线性规划 论文
数学建模论文摘要:线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,研究线性约束条件下线性目标函数的极值问题的数学理论和方法。
本文讨论了在企业的各项管理活动如计划、生产、运输、技术等方面各种限制条件的组合选择出最为合理的一般计算方法。
重在通过MATLAB程序设计来实现,建立线性规划模型求得最佳结果。
关键词:MATLAB 线性规划编程线性规划主要用于解决生活、生产中的资源利用、人力调配、生产安排等问题,它是一种重要的数学模型。
简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出。
涉及更多个变量的线性规划问题不能用初等方法解决整数规划是从1958年由R.E.戈莫里提出割平面法之后形成独立分支的,30多年来发展出很多方法解决各种问题。
从约束条件的构成又可细分为线性,二次和非线性的整数规划。
MATLAB自身并没有提供整数线性规划的函数,但可以使用荷兰Eindhoven 科技大学Michel Berkelaer等人开发的LP_Solve包中的MATLAB支持的mex 文件。
此程序可求解多达30000个变量,50000个约束条件的整数线性规划问题,经编译后该函数的调用格式为[x,how]=ipslv_mex(A,B,f,intlist,Xm,xm,ctype)其中,B,B表示线性等式和不等式约束。
和最优化工具箱所提供的函数不同,这里不要求用多个矩阵分别表示等式和不等式,而可以使用这两个矩阵表不等式、大于式和小于式。
如我们在对线性规划求解中可以看出,其目标函数可以用其系数向量f=[-2,-1,-4,-3,-1]T 来表示,另外,由于没有等式约束,故可以定义Aep和Bep为空矩阵。
由给出的数学问题还可以看出,x的下界可以定义为xm=[0,0,3.32,0.678,2.57]T,且对上界没有限制,故可以将其写成空矩阵此分析可以给出如下的MATLAB命令来求解线性规划问题,并立即得出结果为x=[19.785,0,3.32,11.385,2.57]T,fopt=-89.5750。
线性规划的应用
线性规划的应用引言概述:线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。
它在许多领域都有广泛的应用,包括生产计划、资源分配、运输问题等。
本文将详细介绍线性规划的应用,并分为五个部分进行阐述。
一、生产计划的优化1.1 生产成本最小化:线性规划可用于确定生产计划,以最小化生产成本。
通过设定生产量的变量和成本的约束条件,可以得到最优的生产计划。
1.2 资源分配优化:线性规划可以帮助确定资源的最优分配,以满足生产需求。
通过考虑资源的供应量和需求量,可以得出最佳的资源分配方案。
1.3 生产效率提升:线性规划可以优化生产过程,提高生产效率。
通过考虑生产线上的各个环节和资源的利用率,可以得出最佳的生产安排,从而提升生产效率。
二、运输问题的解决2.1 最优运输方案:线性规划可用于解决运输问题,以确定最佳的运输方案。
通过考虑运输成本、运输量和运输距离等因素,可以得出最优的运输方案。
2.2 供应链优化:线性规划可以优化供应链的运作,以提高运输效率和降低成本。
通过考虑供应商、生产商和分销商之间的关系和需求,可以得出最佳的供应链优化方案。
2.3 库存管理:线性规划可用于优化库存管理,以最小化库存成本和满足需求。
通过考虑库存量、订购量和供应量等因素,可以得出最佳的库存管理方案。
三、资源分配问题的解决3.1 人力资源优化:线性规划可以优化人力资源的分配,以满足不同部门和项目的需求。
通过考虑人员的技能、工作量和工作时间等因素,可以得出最佳的人力资源分配方案。
3.2 资金分配优化:线性规划可用于优化资金的分配,以最大化利润或最小化成本。
通过考虑不同项目的收益和成本,可以得出最佳的资金分配方案。
3.3 能源利用优化:线性规划可以优化能源的利用,以提高能源效率和降低能源成本。
通过考虑不同能源的供应量和需求量,可以得出最佳的能源利用方案。
四、市场营销策略的制定4.1 定价策略优化:线性规划可用于优化产品定价策略,以最大化利润或市场份额。
数学公式知识:线性规划的基本概念与解法
数学公式知识:线性规划的基本概念与解法线性规划是一种数学优化方法,它的目的是在一组线性约束条件下,最大化或最小化一个线性目标函数。
基本概念
1.线性函数
线性函数是指满足以下两个条件的函数:(1)任意两个自变量的加权和的值,等于这两个自变量各自代入函数后的加权和的值;(2)函数的系数是定值。
2.线性规划模型
线性规划模型是由线性约束条件和线性目标函数组成的模型。
线性约束条件包括不等式约束条件和等式约束条件。
线性目标函数表示需要优化的目标。
3.线性规划问题
线性规划问题是指在一组线性约束条件下,求解线性目标函数的最大值或最小值。
4.线性规划的基本形式
线性规划的基本形式是将问题转化为以下形式:最大化cT x (或最小化cT x),使得Ax≤b,x≥0,其中c、x和b都是向量,A是一个矩阵。
解法
线性规划的解法分为两种:图形法和单纯性法。
1.图形法
图形法是一种直观的方法,它使用二维或三维图形表示变量的取值范围,并在此基础上确定最优解。
2.单纯性法
单纯性法是一种基于矩阵运算的高效解法。
它通过不断地迭代,减少约束条件的个数,并在此过程中找到最优解。
线性规划在实际应用中具有广泛的应用,例如,生产成本优化、库存管理、交通运输规划等。
它是一种非常有用的工具,可以帮助管理者更有效地制定决策方案。