美如画,正多边形的尺规作图法,数学原来如此美丽!
正五边形尺规作图的画法及其他(精品)

正五边形尺规作图的画法与其他正五边形的画法第一种:圆内接正五边形的画法如下:1、作一个圆,设它的圆心为O;2、作圆的两条互相垂直的直径AZ和XY;3、作OY的中点M;4、以点M为圆心,MA为半径作圆,交OX于点N;5、以点A为圆心,AN为半径,在圆上连续截取等弧,使弦AB=BC=CD=DE=AN,则五边形ABCDE即为正五边形.第二种作法:1. 以O为圆心,半径长为R画圆,并作互相垂直的直径MN和AP;2. 平分半径OM于K,得OK=KM;3. 以K为圆心,KA为半径画弧与ON交于H, AH即为正五边形的边长;4. 以AH为弦长,在圆周上截得A、B、C、D、E各点,顺次连结这些点.五边形ABCDE即为所求.第三种:圆内接正五边形的画法如下:1、作一个圆,设它的圆心为O;2、作圆的两条互相垂直的直径AZ和XY;3、作OY的中点M;4、以点M为圆心,MA为半径作圆,交OX于点N;5、以点A为圆心,AN为半径,在圆上连续截取等弧,使弦AB=BC=CD=DE=AN,则五边形ABCDE即为正五边形.以上两种图形的作法运用了所求图形边长与已知的线段长度的关系,用构造直角三角形的方法作出与所求图形的边长相等的线段,从而作出整个图形,这是尺规作图中常用的一种方法——等线段法,即用已知图形的线段作出与所求图形边长相等的线段.正多边形的尺规作图是大家感兴趣的.正三边形很好做;正四边形稍难一点;正六边形也很好做;正五边形就更难一点,但人们也找到了正五边形的直规作图方法.确实,有的困难一些,有的容易一些.正七边形的尺规作图是容易一些,还是困难一些呢?人们很久很久未找到作正七边形的办法,这一事实本身就说明作正七边形不容易;一直未找到这种作法,也使人怀疑:究竟用尺规能否作出正七边形来?数学不容许有这样的判断:至今一直没有人找到正七边形的尺规作图方法来,所以断言它是不能用尺规作出的.人们迅速地解决了正三、四、五、六边形的尺规作图问题,却在正七边形面前止步了:究竟能作不能作,得不出结论来.这个悬案一直悬而未决两千余年.17世纪的费马,就是我们在前面已两次提到了的那个法国业余数学家,他研究了形如Fi 〔i为右下角标〕=22i〔底数2指数2的i次幂〕+1 的数.费马的一个著名猜想是,当n≥3时,不定方程xn+yn=zn没有正整数解.现在他又猜测Fi都是素数,对于i=0,1,2,3,4时,容易算出来相应的Fi:F0=3,F1=5,F2=17,F3=257,F4=65 537验证一下,这五个数的确是素数.F5=225+1是否素数呢?仅这么一个问题就差不多一百年之后才有了一个结论,伟大的欧拉发现它竟不是素数,因而,伟大的费马这回可是猜错了!F5是两素数之积:F5=641×6 700 417.当然,这一事例多少也说明:判断一个较大的数是否素数也决不是件简单的事,不然,何以需要等近百年?何以需要欧拉这样的人来解决问题?更奇怪的是,不仅F5不是素数,F6,F7也不是素数,F8,F9,F10,F11等还不是素数,甚至,对于F14也能判断它不是素数,但是它的任何真因数还不知道.至今,人们还只知F0,F1,F2,F3,F4这样5个数是素数.由于除此而外还未发现其他素数,于是人们产生了一个与费马的猜想大相径庭的猜想,形如22i+1的素数只有有限个.但对此也未能加以证明.当然,形如Fi=22i+1的素数被称为费马素数.由于素数分解的艰难,不仅对形如Fi=22i+1的数的一般结论很难做出,而且具体分解某个Fi也不是一件简单的事.更加令人惊奇的事情发生在距欧拉发现F5不是素数之后的60多年,一位德国数学家高斯,在他仅20岁左右之时发现,当正多边形的边数是费马素数时是可以尺规作图的,他发现了更一般的结论:正n 边形可尺规作图的充分且必要的条件是n=2k〔2的k次幂〕或2k×p1×p2×…×ps,〔1,2…s为右下角标〕其中,p1,p2,…,ps是费马素数.正7边形可否尺规作图呢?否!因为7是素数,但不是费马素数.倒是正17边形可尺规作图,高斯最初的一项成就就是作出了正17边形.根据高斯的理论,还有一位德国格丁根大学教授作了正257边形.就这样,一个悬而未决两千余年的古老几何问题得到了圆满的解决,而这一问题解决的过程是如此的蹊跷,它竟与一个没有猜对的猜想相关连.正17边形被用最简单的圆规和直尺作出来了,而正多边形可以换个角度被视为是对圆的等分,那么这也相当于仅用圆规和直尺对圆作了17等分,其图形更觉完美、好看.高斯本人对此也颇为欣赏,由此引导他走上数学道路<他早期曾在语言学与数学之间犹豫过>,而且在他逝后的墓碑上就镌刻着一个正17边形图案.高斯把问题是解决得如此彻底,以致有了高斯的定理,我们对于早已知道如何具体作图的正三边形、正五边形,还进而知道了它们为什么能用尺规作图,就因为3和5都是费马素数<3=F0,5=F1>;对于很久以来未找到办法来作出的正七边形,乃至于正11边形、正 13边形,现在我们能有把握地说,它们不可能由尺规作图,因为7、11、13都不是费马素数;对于正257边形、正65 537边形,即使我们不知道具体如何作,可是理论上我们已经知道它们是可尺规作图的;此外,为什么正四边形、正六边形可尺规作图呢?因为4=22,因为6= 2· 3而 3=F0.。
尺规作图正五边形原理

尺规作图正五边形原理
正五边形作图原理,也叫做“正五边形布线法”,是在机械设计中常用的一种作图原理,它的主要原理是利用直尺和角尺分别在水平和垂直方向上反复作画,最终得到一个正五边形的外形图。
正五边形作图原理的基本步骤如下:
1. 在一张空白纸上,用直尺和角尺绘制出正五边形的中心点。
2. 用直尺将正五边形的中心点分割成五个分段,分别表示正五边形的五条边。
3. 用角尺在水平和垂直方向上反复画出正五边形的五条边,最终得到正五边形的外形图。
正五边形作图原理的优点:
1. 正五边形作图原理简单易懂,能够帮助设计者快速搭建出正五边形的外形图。
2. 正五边形作图原理可以有效地提高设计效率,节省了设计时间和精力。
3. 正五边形作图原理可以在设计过程中,更加精确地掌握正五边形的各项尺寸,从而更加完美地实现设计效果。
正五边形作图原理的应用:正五边形作图原理可以应用于机械设计、模具设计、机械零件设计等领域,帮助设计者快速搭建出正五边形的外形图。
此外,正五边形作图原理还可以用于绘制其他正多边形的外形图,如正六边形、正七边形等。
总的来说,正五边形作图原理是一种简单实用的作图方法,可以提高设计效率,更加精确地掌握正五边形的各项尺寸,从而更加完美地实现设计效果。
画正多边形PPT课件

14
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
画正多边形
2020年10月2日
1
主要内容
1、用量角器等分圆。 2、 用尺规等分圆(介绍正方形、正八 边形、正六边形、正三角形、正十二 边形的画法)。
2020年10月2日
2
用量角器等分圆
依据:在同
圆中,相等 的圆心角所 对的弧相等。
画法:作相
等的圆心角 可以等分圆。
作半径为R的正n边形
2020年10月2日
2020年10月2日
11
方案一、用圆规把圆6等分即可 方案二、如图所示
方案一
2020年10月2日
方案二
12
例3、某单位搞绿化,要在一块圆形空地上种四种颜 色的花,为了便于管理和美观,相同颜色的花集中 种植,且每种颜色的花所占的面积相同。现征集设 计方案,要求设计的图案成轴对称图形或中心对称 图形,请在下面的圆中画出三种设计图案。
3
用尺规等分圆 1、画正四、八边形
2020年10月2日
4
用尺规等分圆 2、画正六、三、十二边形
2020年10月2日
5
圆用 例
内多 1
接 正 三 角 形 。种 工 具 源自 种 方已 知 半 径 为
R ⊙A
法 作
很全的哦正多边形的画法20页PPT

6、纪律是自由的第一条件。——黑格 尔 7、纪律是集体的面貌,集体的声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯
10、一个人应该:活泼而守纪律,天 真而不 幼稚, 勇敢而 鲁莽, 倔强而 有原则 ,热情 而不冲 动,乐 观而不 盲目。 ——马快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
20
正十一边形尺规做法

注册登录•分栏模式•论坛•搜索•导航•christmas•blue•gray•green•orange•purpleICE论坛» 数字家园» 高斯19岁时提出的正十七边形尺规作图返回列表发帖超级版主1#跳转到»倒序看帖打印字体大小: t Tzpabuaa发表于 2010-10-26 22:15 | 只看该作者高斯19岁时提出的正十七边形尺规作图如下所示:附件: 您需要登录才可以下载或查看附件。
没有帐号?注册收藏分享2#zpabuaa发表于 2010-10-26 22:25 | 只看该作者超级版主1976年的一天,德国哥廷根大学,一个19岁的青年吃完晚饭,开始做导师单独布置给他的每天例行的数学题。
正常情况下,青年总是在两个小时内完成这项特殊作业。
像往常一样,前两道题目在两个小时内顺利地完成了。
第三道题写在一张小纸条上,是要求只用圆规和一把没有刻度的直尺做出正17边形。
青年没有在意,像做前两道题一样开始做起来。
然而,做着做着,青年感到越来越吃力。
困难激起了青年的斗志:我一定要把它做出来!他拿起圆规和直尺,在纸上画着,尝试着用一些超常规的思路去解这道题。
当窗口露出一丝曙光时,青年长舒了一口气,他终于做出了这道难题。
作业交给导师后,导师当即惊呆了。
他用颤抖的声音对青年说:“这真是你自己做出来的?你知不知道,你解开了一道有两千多年历史的数学悬案?阿基米德没有解出来,牛顿也没有解出来,你竟然一个晚上就解出来了!你真是天才!我最近正在研究这道难题,昨天给你布置题目时,不小心把写有这个题目的小纸条夹在了给你的题目里。
”多年以后,这个青年回忆起这一幕时,总是说:“如果有人告诉我,这是一道有两千多年历史的数学难题,我不可能在一个晚上解决它。
”这个青年就是数学王子高斯。
有些事情,在不清楚它到底有多难时,我们往往能够做得更好,这就是人们常说的无知者无畏。
TOP超级版主3#zpabuaa发表于 2010-10-26 22:27 | 只看该作者步骤一:给一圆O,作两垂直的直径OA、OB,作C点使OC=1/4OB,作D点使∠OCD=1/4∠OCA作AO延长线上E点使得∠DCE=45度步骤二:作AE中点M,并以M为圆心作一圆过A点,此圆交OB于F点,再以D为圆心,作一圆过F点,此圆交直线OA于G4和G6两点。
24.3 正多边形的画法(第2课时)正式稿

72°
72°
O
O
O
练习
3. 用等分圆的方法画出下列图案.
F
E
A
O
D
O
B
C
练习
3. 用等分圆的方法画出下列图案.
F
E
O
A
O
D
B
C
欣赏图片
用等分圆的方法可以画出如下美丽的图案,欣赏一下.
课堂小结
1.利用等分圆的方法我们可以画出正多边形. 通用的方法:用量角器等分圆. (1)依次画出相等的中心角来等分圆. (2)先用量角器画一个中心角,然后在圆上依次
O
O
45°
A
B
拓广思考
还可以用什么方法作出圆内接正 八边形?
D
D
C
C
O
O
O
A
A
B
B
小结
如何用尺规作图的方法画圆的内接正方形?
只要作出已知⊙O 的互相垂直的直径,就可以把圆 四等分,从而作出圆内接正方形,再过圆心作各边的垂 线与⊙O 相交,或作各中心角的角平分线与⊙O 相交, 即可以作出圆内接正八边形,照此方法依次可作正十六 边形、正三十二边形、正六十四边形……
尺规作图
已知⊙O 的半径为 2 cm,画圆的内接正三角形. 你有几种画法?
O
尺规作图
已知⊙O 的半径为 2 cm,画圆的内接正三角形.
B
D
E
O
A
C
F
如何证明?
拓广思考
如何作出圆内接正方形呢?
D
O ALeabharlann C BDO A
C B
D
O A
C B
如何作出圆内接正六边形?
正n边形的尺规作图方法

几何三大问题如果不限制作图工具,便很容易解决.从历史上看,好些数学结果是为解决三大问题而得出的副产品,特别是开创了对圆锥曲线的研究,发现了一批著名的曲线,等等.不仅如此,三大问题还和近代的方程论、群论等数学分支发生了关系.正五边形的画法](1)已知边长作正五边形的近似画法如下:①作线段AB等于定长l,并分别以A,B为圆心,已知长l为半径画弧与AB的中垂线交于K.②以K为圆心,取AB的2/3长度为半径向外侧取C点,使CK=2/3AB.③以C为圆心,已知边长AB为半径画弧,分别与前两弧相交于M,N.④顺次连接A,B,N,C,M各点即近似作得所要求的正五边形.(2) 圆内接正五边形的画法如下:①以O为圆心,定长R为半径画圆,并作互相垂直的直径MN和AP.②平分半径ON,得OK=KN.③以K为圆心,KA为半径画弧与OM交于H, AH即为正五边形的边长.④以AH为弦长,在圆周上截得A,B,C,D,E各点,顺次连接这些点即得正五边形.(3).民间口诀画正五边形口诀介绍:"九五顶五九,八五两边分."作法:画法:1.画线段AB=20mm,2.作线段AB的垂直平分线,垂足为G.3.在l上连续截取GH,HD,使GH=5.9/5*10mm=19mm,HD=5.9/5*10mm=11.8mm4.过H作EC⊥CG,在EC上截取HC=HE=8/5*10mm=16mm,5.连结DE,EA,EC,BC,CD,五边形ABCDE就是边长为20mm的近似正五边形.(4)1.画一条水平线,通过此线上的任意点做一个圆。
2.将圆规的一腿放在圆与直线的其一交点上,通过上述圆的圆心画半圆,并与之交两点。
连接这两点做垂直线,与先前的水平线相交与(a)点.3.张开圆规,以水平线与第一个圆的两个交点为圆心以相同半径在水平线上下第一个圆外分别做两个交点,这样可以得到一条通过第一个圆圆心的正交线,与第一个圆相交的位于水平线上方的点称之为(b).这是正五边形的第一个角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
美如画,正多边形的尺规作图法,数学原来如此美丽!
导读:他10岁时巧妙算出1-100的等差数列之和;24岁时发表《算术研究》,奠定近代数论的基础,还独立给代数基本定理作出4个证明;他希望自己的墓碑上能刻一个正十七边形。
1777年的今天,数学家高斯出生。
认真看,这就是美如画的正十七边形尺规作图方法
所谓的尺规作图是指只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题。
值得注意的是,以上的“直尺”和“圆规”是抽象意义的,跟现实中的并非完全相同,具体而言,有以下的限制:直尺必须没有刻度,无限长,且只能使用直尺的固定一侧。
只可以用它来将两个点连在一起,不可以在上画刻度。
圆规可以开至无限宽,但上面亦不能有刻度。
它只可以拉开成你之前构造过的长度或一个任意的长度。
正三角形尺规作图法
正五边形。