多因素实验设计的方差分析
多因素试验的方差分析

家兔神经损伤缝合后的轴突通过率(%)
A(缝合方法) B(缝合后时间)
外膜缝合(a1)
1月(b1) 10
2月(b2) 30
10
30
40
70
50
60
10
30
束膜缝合(a2)
1月(b1) 10
2月(b2) 50
20
50
30
70
50
60
30
30
合计
x
24
44
28
52
X
120
220
140
260
740
X2
二、完全随机分组 两因素析因设计与方差分析
例 分析A、B两种镇痛药物联合运用在产妇分 娩时的镇痛效果: A药取3个剂量:1.0mg,2.5mg,5.0mg B药取3个剂量:5μg,15μg,30μg 共9个处理组。将27名产妇随机等分为9组,每 组3名产妇,记录每名产妇分娩时镇痛时间。
组 F
间 S变 组 S/间 异 组 间 M 组S 间 1
组内S 变 组 S/内 异 组 内 M 组S 内
8
3. 计算
k ni
2
X ij
C i 1 j 1
876 . 42
N
k ni
SS 总
X
2 ij
C
82
. 10
i 1 j 1
组间
3 32.16 10.72
组内
116 49.94 0.43
FP 24.93 <0.01
F0.01(3, 116)=3.96
11
5. 作结论
按 0.05水准,拒绝H0,接受H1,认为
SPSS-多因素方差分析

④在Univariate对话框中,单击Options…按钮。在Options对话框中, 把Factor(s) and Factor Interations栏中的变量“保存时间”、 “保存温度”、 和“保存时间*保存温度”放入Display Means for栏;并在Display多选项中,选择Descriptive statistics, Estimates of effect size,Homogeneity tests。单击Model…,选择 默认项,即Full factorial项(全析因模型),单击Continue按钮返 回。
⑤在Univariate对话框,单击OK按钮得到Univariate过程的运行结果。
7
结果
8
均数分布图
9
例2, 用5×2×2析因设计研究5种 类型的军装在两种环境、两种活动状 态下的散热效果,将100名受试者随 机等分20组,观察指标是受试者的主 观热感觉(从“冷”到“热”按等级评 分),结果见下表。试进行方差分析。
多因素方差分析
1
一、析因设计资料的方差分析 两因素两水平 三因素多水平
2
析因设计的特点
必须是: 两个以上(处理)因素(factor)(分 类变量)。 两个以上水平(level)。 两个以上重复(repeat)。 每次试验涉及全部因素,即因素同时 施加观察指标(观测值)为计量资料 (独立、正态、等方差)。
24
25
多因素设计与方差分析

ABC 误差
TAB
SS ABC
MS ABC 1 Ti2 C SS A SS B SS C SS AB SS AC SS BC n MS E
g ( n 1)
T AC
1 S S E X 2 T i2 n
注:其中 分组的合计。
1 rJ 1 rI
MS
Ai2 C
2 Bi C
二阶交互作用 A× B 处理间(合计)
相 减
1 2 T i C r
其中 Ai 表示 A 因素第 i 个水平的小计(不考虑 B 因素) ,B i 表示 B 因素第 i 个水平的小计(不考虑 A 因素) 。将以上三项( A、 B 和 A × B)的 DF、 SS 和 MS 替换表完全随机设计方差分析表中处理组的 DF 、 SS 和 MS。
如主效应有显著差别,则可直接比较各因素不同水平的差别。本 例照射时间存在差别,由 B i 计算各水平的均数
Xi
即刻 0.42
1d 0.39
3d 0.37
5d 0.40
7d 0.39
即照射 3 天后鼠肝细胞的 DNA 含量最低。
对于二因素以上的析因设计,处理组的方差分解更 为复杂,交互作用的解释(如二阶交互作用:三因素之 间的交互作用,三阶交互作用:四因素之间的交互作用) 也更加困难。具体计算过程类似二因素析因设计。
表 完全随机分组的两因素析因设计方差分析表 方差来源 A B A× B 误差 合计 处理间 DF SS MS F值 P值
例
用不同频率毫米波按不同照射时间照射小鼠后,
分析小鼠肝细胞中的DNA含量。共有75只小鼠作试验,
实验因素一个是照射频率(A因素),共3个水平 (36.04GHz、50.05GHz、空白对照),一个是照射时 间( B 因素),共 5 个水平(照射即刻、 1d 、 2d 、 5d、 7d),共3×5=15个处理组。将75只小鼠随机等分15组, 每组5只。各组小鼠肝细胞DNA含量的合计见下表。
多因素方差分析

a i b j c
总离差平方和:SST yijk y
i j k
k
1 c yij. yijk c k 1 1 a c y. j . yijk ac i 1 k 1
y111 y112 …y11c y121 y122 …y12c y211 y212 …y21c y221 y222 …y22c … … y1b1 y1b2 …y1bc y2b1 y2b2 …y2bc ⁞ … yab1 yab2 …yabc
⁞
⁞ ya11 ya12 …ya1c
⁞ ya21 ya22 …ya2c
ij 0, i 1,2,, a, j 1,2,..., b
i j 0
FA
MS A MS B FB MS E MS E
FAB
MS AB MS E
FA F a 1, ab c 1
FB F b 1, ab c 1 FAB F a 1 b 1 , ab c 1
SS A , 的自由度是a-1 a 1 SS MS B B , 的自由度是b-1 因素B的均方: b 1 交互作用的均方: , 的自由度是(a-1)(b-1) SS E MS E ab c 1 a 1 b 1 a 1 b 1 ab c 1 abc 1
两因素非重复试验的方差分析
3.1 与两因素等重复试验的方差分析差异
1 在因素A和因素B的每个水平组合上 Ai , B j 仅做一次试验,从而仅有一个观测数据,即 c 1 模型为:
B
多因素被试内方差分析

4.3.后测:
4.3.1.考察练习效果,参照标准线段画20条一样长的线段,没有反馈。
五、A2S5B5混合实验设计模型
表A2S5B5混合设计模型
A1
A2
B1
B2
B3
B4
B5
B1
B2
B3
B4
B5
S1
S1
S1
S1
S1
S6
S6
S6
S6
S6
S2
S2
S2
一、目的、
通过测定“知道结果”对画线准确性的影响,验证实验中的自变量、因变量和控制变量。
二、被试:
本批被试为某大学学生(年龄在23~40岁之间)分两组:实验组(有反馈);控制组(无反馈)
三、实验材料
3.1.画有标准线段的卡片
3.2.挡板、短尺(最小刻度单位mm)
3.3.每名被试三张记录纸,记录画线结果
∑XA:A因素各水平各自的数据和
∑XB:B因素各水平各自的数据和
∑X=25.36:数据的总和
∑X2=26.88
表被试各自的数据和
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
∑XS
1.91
1.4
0.46
0.49
0.38
1.58
3.62
5.48
1.72
8.37
表中,∑XS:各被试各自的数据和
2.2.分析ASB设计总和方的构成
S2
S2
S7
S7
S7
S7
S7
S3
S3
S3
多因素方差分析的重要公式详解

多因素方差分析的重要公式详解多因素方差分析是一种常用的统计分析方法,可以用于研究实验设计中多个自变量对因变量的影响。
它通过计算各种不同因素所引起的变异程度来确定因素之间的差异是否显著。
本文将详细解析多因素方差分析中的重要公式,帮助读者更好地理解和运用这一方法。
1. 总变异(SST)公式总变异是指因变量整体的变异情况,可以通过计算各观测值与总体均值之间的离差平方和来得到。
总变异公式如下:SST = Σ(yij - ȳ..)^2其中,yij表示第i个处理水平下的第j个观测值,ȳ..表示所有观测值的均值。
2. 处理效应(SSA)公式处理效应是指不同因素水平对因变量的影响程度,可以通过计算各处理水平下观测值与总体均值之间的离差平方和来得到。
处理效应公式如下:SSA = rΣ(ȳi. - ȳ..)^2其中,ȳi.表示第i个处理水平下的观测值均值,r表示每个处理水平下的观测次数。
3. 误差(SSW)公式误差是指无法被因素解释的随机因素引起的变异,可以通过计算各观测值与其所在处理水平均值之间的离差平方和来得到。
误差公式如下:S SW = Σ(yij - ȳi.)^24. 自由度(df)公式自由度是指数据集中独立变动的观测个数。
在多因素方差分析中,自由度的计算有以下几个关键公式:- 总自由度(dft) = 总处理次数 - 1 = I - 1- 处理自由度(dfa) = 处理水平数 - 1 = a - 1- 误差自由度(dfe) = 总观测次数 - 总处理次数 = N - I其中,I表示总处理次数,a表示处理水平数,N表示总观测次数。
5. 均方(MS)公式均方是指各来源变异的均值,可以通过总平方和除以相应的自由度来得到。
均方公式如下:- 处理均方(MSA) = SSA / dfa- 误差均方(MSE) = SSW / dfe6. F比值公式F比值是判断因素之间差异是否显著的依据,可以通过处理均方除以误差均方来计算。
多因素方差分析原理
107.634
.000
父母药物滥用
10.361
2
5.180
.911
.406
父母教养方式 * 父母药物滥用
26.238
6
4.373
.769
.597
Error
500.661
88
5.689
Total
30104.000
100
Corrected Total
2614.360
99
a. R Squared = .808 (Adjus ted R Squared = .785)
• 各实验处理之间的方差一致—即实验处理 内的方差彼此间无显著差异。
方差分析的几个概念和符号
• 离均差 • 离均差之和 • 离均差平方和(SS) • 方差(2 S2 )也叫均方(MS) • 标准差:S • 自由度: df • 关系: MS= SS/ df
方差分析的步骤
• 一、求平方和 总平方和(SST) 组间平方和(SSB) 组内平方和(SSW) SST= SSW+ SSB
方差分析的基本思想
• 方差分析(ANOVA)是由英国统计学家 R.A.Fisher首创,为纪念Fisher,以F命名, 故方差分析又称 F 检验 (F test)。用于推 断多个总体均数有无差异。是一种典型的 还原论思想。
方差分析的基本思想
• 方差分析与t检验的区别 t检验只适宜检验两个平均数之间是否存在 差异。对于一个复杂的问题,t检验只能进 行多组平均数两两之间的差异检验。而方 差分析可以同时检验两个或多个平均数之 间的差异以及几个因素水平之间的交互作 用。
• 方差分析的主要功能是分析因变量的总变 异中不同来源的变异。
方差分析的基本假设
多因素方差分析设计的实施与分析
多因素方差分析设计的实施与分析在统计学中,方差分析是一种用于研究不同变量因素对于数据集中变差的影响的方法。
它可以帮助研究人员确定不同因素之间是否存在显著差异,并进一步分析这些差异的原因。
而多因素方差分析则是在单因素方差分析的基础上,增加了多个自变量进行研究。
多因素方差分析设计的实施可以分为以下几个步骤。
首先,确定实验的自变量和因变量。
自变量是研究者所设定的,用来观察其对因变量的影响;而因变量则是被研究者观察和测量的主要对象。
例如,假设我们要研究不同学习方法对学生成绩的影响,学习方法就是自变量,学生成绩就是因变量。
其次,确定实验中的因素水平。
多因素方差分析需要考虑多个自变量之间的组合情况。
对于每个自变量,需要设定多个不同的水平,以覆盖所有的组合情况。
例如,在研究学习方法对学生成绩的影响时,可能选择两个自变量:学习时间(三个水平:1小时、2小时、3小时)和学习环境(两个水平:教室、图书馆)。
这样就形成了一个2 x 3的因素水平矩阵。
接下来,进行实验数据的采集和处理。
根据之前确定的因素水平矩阵,研究人员需要设计和实施实验,收集相关数据。
例如,在学习方法对学生成绩的研究中,可以随机将学生分为不同组别,每个组别采用不同的学习时间和学习环境,并记录他们的成绩数据。
收集完数据后,需要进行数据处理,计算每个组别的平均数、方差等统计指标。
最后,进行多因素方差分析。
在进行多因素方差分析之前,需要检查数据是否满足方差分析的假设条件。
这些条件包括正态分布假设、方差齐性假设等。
如果数据不满足这些条件,可能需要对数据进行转换或使用非参数方法进行分析。
在满足假设条件的前提下,可以进行多因素方差分析并解释结果。
通过多因素方差分析,可以得出各个自变量和因变量之间的主效应和交互效应。
主效应指的是每个自变量对于因变量的独立影响;而交互效应则是指多个自变量之间相互作用对因变量的影响。
在学习方法对学生成绩的研究中,可能发现学习时间和学习环境都对学生成绩产生了显著影响,且存在交互效应。
心理统计SPSS-第五章 因素型实验设计及方差分析过程剖析
1 2
A1
8 12
A2
16 11
A3
21 16
3
4 5
11
7 13
15
10 12
18
19 22
6
9
14
18
练习
One Way方差分析程序的适用条件: 1.三个以上相等独立被试组在不同条件下接受观测得 到三组以上的独立数据组; 2.来自三个以上不同总体的独立被试组在相同条件下 接受同样的观测,得到三组以上的独立数据组; 3.一般要求因变量必须是连续测量的数据或近似于连
究会得到多组数据,而这些数据必然存在变异。被试差异、测量误 差、其他额外变量的变化等。因素型实验的目的就是考察自变量或准自
变量变化是否引起了因变量数据足够大的改变,以至于可以认为其不同
水平间因变量的差异性并非误差因素造成,而且这种评估是与误差因素 引起数据的变化量相比较而完成的。数据变异可以通过离差平方和或方 差来反映,所以关于数据变异的分析叫方差分析。
续变化的数据;
4.数据总体为正态分布、各数据样本方差齐性。
二、多因素完全随机实验设计方差分析(GLM 方差分析)
当研究的自变量或准自变量不只一个,每个自变量的水平在两个 以上时,就会结合出四个以上的实验处理。将选取来的被试分成四个 独立组,每个组被试只接受一种条件下的实验观察,则构成多因素完 全随机实验设计。其数据分析则要使用SPSS程序中的“General Linear Model-Univariate”模块。 如果进行简单效应检验,可执行类似于下的句法命令: MANOVA SCORE by A(1,2) B(1,2) /design(此句要求先输出完整的方差分析表) /design=A within B(1) A within B(2) B within A(1) B within A(2). (ANOVA命令中不能做简单效应检验)
方差分析公式单因素与多因素方差分析的关键公式
方差分析公式单因素与多因素方差分析的关键公式方差分析是一种统计方法,用于比较不同因素对变量的影响是否显著。
通过方差分析,我们可以确定不同因素之间是否存在统计学差异,并进一步研究这些差异的来源。
在方差分析中,单因素与多因素方差分析是两种常见的方法。
本文将介绍这两种方差分析中的关键公式。
一、单因素方差分析公式在单因素方差分析中,我们只考虑一个因素对变量的影响。
假设我们有k个水平(或组),每个水平下有n个观测值。
那么总观测值的个数为N=k*n。
在进行单因素方差分析之前,我们需要计算以下几个统计量:1. 总平方和(SST):表示所有观测值与整体均值之间的差异的总和。
计算公式为:SST = Σ(Σ(x_ij - X¯)^2)其中,x_ij表示第i组的第j个观测值,X¯表示所有观测值的均值。
2. 组间平方和(SSB):表示各组均值与整体均值之间的差异的总和。
计算公式为:SSB = Σ(n_i * (X¯_i - X¯)^2)其中,n_i表示第i组的观测值个数,X¯_i表示第i组的均值。
3. 组内平方和(SSW):表示每组内个体与组内均值之间的差异的总和。
计算公式为:SSW = Σ(Σ(x_ij - X¯_i)^2)其中,x_ij表示第i组的第j个观测值,X¯_i表示第i组的均值。
根据以上统计量,我们可以计算方差分析的F值,来判断组间差异是否显著。
F值的计算公式为:F = (SSB / (k-1)) / (SSW / (N - k))其中,k表示组数,N表示总观测值的个数。
二、多因素方差分析公式在多因素方差分析中,我们考虑两个或两个以上的因素对变量的影响。
假设我们有r个因素,每个因素有k个水平(或组)。
那么总观测值的个数为N = k^r。
在进行多因素方差分析之前,我们需要计算以下几个统计量:1. 总平方和(SST):表示所有观测值与整体均值之间的差异的总和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
--模型:全因子,即分析所有主效应及交互效应(系统
默认)。 --平方和:类型III(系统默认)。
可整理ppt
12
3)点击“图/plot”按钮,弹出交互作用轮廓图对话框。 交互作用轮廓图是将各因素不同水平组合的均值在二维
H0:因素A和因素B无交互作用 H1:因素A和因素B有交互作用
均取0.05
可整理ppt
10
计算检验统计量
表9-4 例1的两因素析因设计方差分析表
确定P值,作出推断结论
(1)AB交互效应的P>0.05,提示按0.05的检验水准,接受 H0假设,即还不能认为AB两因素间存在交互作用。
(2)A因素主效应的P>0.05,提示不能认为给予升白细胞药 物对大鼠吞噬细胞指数有影响。
间。 --输出:包括描述统计、参数估计、方差齐性检验等
供选择项。本例不选择任何选项。
主要输出结果
1)均值估计: 2)方差分析表:包括处理因素主效应和交互效应比较。 3)交互效应轮廓图:
可整理ppt
14
可整理ppt
15
结论:总的模型拟合效果理想,R2=0.990。
(1)AB交互效应的P>0.05,提示按0.05的检验水准,接受H0假 设,即还不能认为AB两因素间存在交互作用。
对各种可能的组合都进行实验,从而探讨各实验因 素的主效应(main effect),以及各因素间的交互 作用(interaction)的研究设计类型。
例1为最简单的析因设计,即两因素两水平,记作
22或2×2的析因设计。
可整理ppt
3
实例分析
例1:某研究人员为了解升白细胞药物(A)和纯 苯(B)对大鼠吞噬指数的影响,以及两者同时使 用的作用。将20只性别相同、体重相近的大鼠, 按A、B两因素有无分为a1b1、a1b2、a2b1、a2b2四 组(1表示用药,2表示不用)。测得吞噬指数结 果见表9-1。
两因素析因设计与随机区组设计方差分析的区别:后者每个组合 下的数据无重复,不能分析交互效应。
析因设计资料分析:应先分析交互效应。若交互效应有统计学意 义,要逐一分析各因素的单独效应,即固定一个因素对其他因素 进行分析;反之,若交互效应无统计学意义,则因素间的作用相 互独立,直接分析各因素的主效应。
(2)A因素主效应的P>0.05,提示不能认为给予升ቤተ መጻሕፍቲ ባይዱ细胞药物对
大鼠吞噬细胞指数有影响。
(3)B因素主效应的P<0.01 ,提示染毒对吞噬指数有影响,可
以降低大鼠吞噬指数。
可整理ppt
16
交互效应轮廓图中,两条直线几乎平行,提示A、B两因素
的交互效应不显著。反之,若两条直线交叉,则提示可能
存在交互效应。
可整理ppt
18
(二)正交设计的方差分析
(3)B因素主效应的P<0.01 ,提示染毒对吞噬指数有影响
,可以降低大鼠吞噬指数。可整理ppt
11
SPSS操作过程
建立SPSS数据文件(见factorial_1.sav)
定义3个列变量: 1个因变量(y),2个处理因素分组变量
(A,B),设置值标签。 主要分析过程 1)Analyze ->General Linear Model ->Univariate单变量:
可整理ppt
17
小结
析因设计的优点:全面高效性,可以对各因素的不同水平进行组 合,对各因素不同水平主效应进行分析的同时,还可以对交互效 应进行分析;通过比较各实验组合,还可以寻求最佳组合。
析因设计的缺点:工作量大,含有较多因素和水平的实验一般不 用完全交叉分组的析因设计,而采用非全面试验的正交设计,可 以大幅度减少实验次数。
2. 主效应:某一因素各水平间的差异。如A的主效应为0.053。 3. 交互效应:当某一因素的各单独效应随另一因素变化而变化
时,称这两个因素间存在交互效应。如AB的交互效应: AB=[(a1b1-a2b1)-(a1b2-a2b2)]/2可=整(0理.0pp9t60-0.0100)/2=0.0430。 6
多因素实验资料的方差分析 SPSS实现
邹莉玲PH.D 同济大学医学院
可整理ppt
1
主要内容
(一)析因设计的方差分析 (二)正交设计的方差分析 (三)嵌套设计的方差分析 (四)裂区设计的方差分析
可整理ppt
2
(一)析因设计的方差分析
析因设计(factorial design): 是将两个或多个实验因素的各水平进行组合,
• 自由度的分解:
总 ABA B误 差
可整理ppt
8
可整理ppt
9
方差分析的基本步骤
建立检验假设,确定检验水准
对于因素A(升白细胞药物):
H0:给药与不给药的大鼠吞噬指数的总体均数相等 H1:给药与不给药的大鼠吞噬指数的总体均数不等 对于因素B(纯苯染毒):
H0:染毒与不染毒的大鼠吞噬指数的总体均数相等 H1:染毒与不染毒的大鼠吞噬指数的总体均数不等 对于交互作用AB:
可整理ppt
4
若i :表示因素A的水平(i=1,2,…,a),
j :表示因素B的水平(j=1,2,…,b),
k:表示因素A和因素B各水平组合下的观察单位数(k=1,
2,…,n)。
可整理ppt
5
单独效应、主效应和交互效应
1. 单独效应:指其他因素水平固定时,同一因素不同水平的差 异。如A因素固定在1水平时,B因素的单独效应为-1.8100。
图形上标出,以直观描述交互效应。 --水平轴:因素A --单图(线段,separate lines):因素B --多图(分图,separate plots):无
4) Post Hoc(对比)按钮: 用于某处理因素多个水平间的多重比较。本例的研究因
素均为两水平,所以无需此步骤。
可整理ppt
13
5)Options(选项)按钮 --显示均值:输出所选因素的均数、标准误、可信区
研究目的
当研究的因素不止一个时,这种研究设计就称为 多因素的实验设计 。其方法有很多种,析因设计 就是其中的一种。
研究目的:不仅分析单个因素不同水平效应之间 的差异,还要知道两个因素各水平间效应的相互 影响。
分析方法:采用多因素方差分析。
可整理ppt
7
方差分析的基本思想
• 变异分解:
SS总SS处 理SS误 差 SSASSBSSABSS误 差