高斯—塞德尔迭代法

高斯—塞德尔迭代法
高斯—塞德尔迭代法

高斯 - 塞德尔迭代法

1.高斯 - 塞德尔迭代法公式的矩阵形式

首先将高斯 - 塞德尔迭代法的公式表示为矩阵形式,为此设

这里是系数矩阵 A 的对角部分,是严格下三角部分,是严格上三角部分,则高斯 - 塞德尔迭代法的公式可表示为

(1)

用矩阵乘等式两边得

再用矩阵乘等式两边得

(2)

其中矩阵称为高斯—塞德尔迭代矩阵。

由此可见,高斯 - 塞德尔迭代法是一般迭代法中迭代矩阵为的

特殊情形。需要指出的是,由于矩阵难于计算,所以式(2)多用在理论分析中。

2.高斯—塞德尔迭代法计算框图(见图)

高斯—塞德尔迭代法计算框图

3.高斯—塞德尔迭代法计算方法的代码实现(见GaoSiSaiDeEr.c)

4.结果分析:

ICA使用牛顿迭代法对FastICA算法经行改进

ICA用牛顿迭代法改进的FastICA算法 ICA算法原理: 独立分量分析(ICA)的过程如下图所示:在信源()st中各分量相互独立的假设下,由观察xt通过结婚系统B把他们分离开来,使输出yt逼近st。 图1-ICA的一般过程 ICA算法的研究可分为基于信息论准则的迭代估计方法和基于统计学的代数方法两大类,从原理上来说,它们都是利用了源信号的独立性和非高斯性。基于信息论的方法研究中,各国学者从最大熵、最小互信息、最大似然和负熵最大化等角度提出了一系列估计算法。如FastICA算法, Infomax算法,最大似然估计算法等。基于统计学的方法主要有二阶累积量、四阶累积量等高阶累积量方法。本实验主要讨论FastICA算法。 1. 数据的预处理 一般情况下,所获得的数据都具有相关性,所以通常都要求对数据进行初步的白化或球化处理,因为白化处理可去除各观测信号之间的相关性,从而简化了后续独立分量的提取过程,而且,通常情况下,数据进行白化处理与不对数据进行白化处理相比,算法的收敛性较好。 若一零均值的随机向量 满足 , 其中:I为单位矩阵,我们称这个向量为白化向量。白化的本质在于去相关,这同主分量分析的目标是一样的。在ICA中,对于为零均值的独立源信号 , 有: , 且协方差矩阵是单位阵cov( S ) = I,因此,源信号 S( t )是白色的。对观测信号X( t ),我们应该寻找一个线性变换,使X( t )投影到新的子空间后变成白化向量,即:

其中,W0为白化矩阵,Z为白化向量。 利用主分量分析,我们通过计算样本向量得到一个变换 其中U和 分别代表协方差矩阵XC的特征向量矩阵和特征值矩阵。可以证明,线性变换W0满足白化变换的要求。通过正交变换,可以保证 因此,协方差矩阵: 再将 代入 且令 有 由于线性变换A~连接的是两个白色随机矢量Z( t )和S( t ),可以得出A~ 一定是一个正交变换。如果把上式中的Z( t )看作新的观测信号,那么可以说,白化使原来的混合矩阵A简化成一个新的正交矩阵A~。证明也是简单的: 其实正交变换相当于对多维矢量所在的坐标系进行一个旋转。 在多维情况下,混合矩阵A是N*N 的,白化后新的混合矩阵A~ 由于是正交矩阵,其自由度降为N*(N-1)/2,所以说白化使得ICA问题的工作量几乎减少了一半。 白化这种常规的方法作为ICA的预处理可以有效地降低问题的复杂度,而且算法简单,用传统的PCA就可完成。用PCA对观测信号进行白化的预处理使得原来所求的解混合矩阵退化成一个正交阵,减少了ICA的工作量。此外,PCA本身具有降维功能,当观测信号的个数大于源信号个数时,经过白化可以自动将观测信号数目降到与源信号维数相同。

各种迭代法编程

雅可比迭代法: function x=jacobi(a,b,p,delta,n) %a为n维非奇异矩阵;b为n维值向量 %p为初值;delta为误差界;n为给定的迭代最高次数 N=length(b); for k=1:n for j=1:N x(j)=(b(j)-a(j,[1:j-1,j+1:N])*p([1:j-1,j+1:N]))/a(j,j); end err=abs(norm(x’-p)); p=x’; if(err

function [x,k,err,p]=ddf(f,x0,tol,n) %ddl.m为用迭代法求非线性方程的解 %f为给定的迭代函数;x0为给定的初始值 %tol为给定的误差界;n为所允许的最大迭代次数 %k为迭代次数;x为不动点的近似值;err为误差 p(1)=x0; for k=2:n p(k)=feval(f,p(k-1)); k, err=abs(p(k)-p(k-1)) x=p(k); if(err

非线性回归预测法——高斯牛顿法(詹学朋)

非线性回归预测法 前面所研究的回归模型,我们假定自变量与因变量之间的关系是线性的,但社会经济现象是极其复杂的,有时各因素之间的关系不一定是线性的,而可能存在某种非线性关系,这时,就必须建立非线性回归模型。 一、非线性回归模型的概念及其分类 非线性回归模型,是指用于经济预测的模型是曲线型的。常见的非线性回归模型有下列几种: (1)双曲线模型: i i i x y εββ++=1 2 1 (3-59) (2)二次曲线模型: i i i i x x y εβββ+++=2321 (3-60) (3)对数模型: i i i x y εββ++=ln 21 (3-61) (4)三角函数模型: i i i x y εββ++=sin 21 (3-62) (5)指数模型: i x i i ab y ε+= (3-63) i i i x x i e y εβββ+++=221110 (3-64) (6)幂函数模型: i b i i ax y ε+= (3-65) (7)罗吉斯曲线: i x x i i i e e y εββββ++=++1101101 (3-66) (8)修正指数增长曲线: i x i i br a y ε++= (3-67) 根据非线性回归模型线性化的不同性质,上述模型一般可细分成三种类型。 第一类:直接换元型。 这类非线性回归模型通过简单的变量换元可直接化为线性回归模型,如:(3-59)、(3-60)、(3-61)、(3-62)式。由于这类模型的因变量没有变形,所以可以直接采用最小平方法估计回归系数并进行检验和预测。 第二类:间接代换型。 这类非线性回归模型经常通过对数变形的代换间接地化为线性回归模型,如:(3-63)、(3-64)、(3-65)式。由于这类模型在对数变形代换过程中改变了因变量的形态,使得变形后模型的最小平方估计失去了原模型的残差平方和为最小的意义,从而估计不到原模型的最佳回归系数,造成回归模型与原数列之间的较大偏差。 第三类:非线性型。

数值分析练习第五套

1.填空 1) 计算 f=(2-1)6 , 取2=1.4 , 利用下列算式,那个得到的结果最好?答:C (A) 6121 )(-, (B) (3-22)2, (C) 32231)(+, (D) 99-702 2) 称序列{x n }是p 阶收敛的条件为c x x x x p n n n =--+∞→** lim 1 3) 在等式∑==n k k k n x f a x x x f 010)(],,,[ 中, 系数a k 与函数f (x ) 无 关。 (限填“有”或“无”) 4) 设P k (x k ,y k ) , k =1,2,…,5 为函数y =x 2-3x +1上的5个互异的点,过P 1,…,P 5且次数不超过4次的插值多项式是 x 2-3x +1 。 5) 设f (x )∈C [a ,b ], f (x )的最佳一致逼近多项式是__一定___存在的。 6) 求解微分方程数值解的E ul e r 法的绝对稳定区间是(-2,0) 。 7) n 个节点的插值型求积公式的代数精度不会超过2n -1次。 8) 高次插值容易产生________龙格(R u n g e )现象。 9) R n 上的两个范数||x||p , ||x||q 等价指的是_?C,D ∈R,_C_||x||q _≤||x||p ≤D ||x||q _; R n 上的两个范数_一定__是等价的。(选 填“一定”或“不一定”)。 2.曲线151.03+-=x x y 与89.14.22-=x y 在点(1.6,1)附近相切,试用牛顿迭代法求切点横坐标的近似值1+k x ,使5110-+≤-k k x x 。 解 两曲线的导数分别为51.032-='x y 和x y 8.4=',两曲线相切,导数相等,故有 051.08.432=--x x 令51.08.43)(2--=x x x f ,则f(1)<0,f(2)>0,故区间[1,2]是f(x)=0的有根区间,又当]2,1[∈x 时,08.46)(>-='x x f ,因此f(x)=0在[1,2]上有惟一实根x*,对f(x)应用牛顿迭代法,得计算公式 ,2,1,0,8 .4651.08.4321=----=+k x x x x x k k k k k 由于06)(>=''x f ,故取20=x 迭代计算一定收敛,计算结果如表7-6所示。 表7-6 k k x k k x 0 2.0 3 1.706815287 1 2.293055556 4 1.700025611 2 1.817783592 5 1.7 继续计算仍得7.16=x ,故7.1*=x 。 注 本题也可令89.14.2151.02 3-=+-x x x ,解得切点横坐标满足方程089.2514.2)(23=+--=x x x x f ,用有重根时的牛顿迭代法(7.15)式计算,此时m=2,仍取x0=2,经四步可得x*=1.7。

高斯—牛顿迭代法

高斯牛顿法 高斯—牛顿迭代法的基本思想是使用泰勒级数展开式去近似地代替非线性回归模型,然后通过多次迭代,多次修正回归系数,使回归系数不断逼近非线性回归模型的最佳回归系数,最后使原模型的残差平方和达到最小。高斯—牛顿法的一般步骤为: (1)初始值的选择。其方法有三种,一是根据以往的经验选定初始值;二是用分段法求出初始值;三是对于可线性化的非线性回归模型,通过线性变换,然后施行最小平方法求出初始值。 (2)泰勒级数展开式。设非线性回归模型为: i=1,2,…,n (3-68) 其中r为待估回归系数,误差项~N(0, ),设: ,为待估回归系数的初始值,将(3-68)式在g点附近作泰勒展开,并略去非线性回归模型的二阶及二阶以上的偏导数项,得 (3-69) 将(3-69)式代入(3-68)式,则 移项: 令: 则:i=1,2,…,n 用矩阵形式表示,上式则为:(3-70) 其中: (3)估计修正因子。用最小平方法对(3-70)式估计修正因子B, 则:(3-71) 设g为第一次迭代值,则: (4)精确度的检验。设残差平方和为: ,S为重复迭代次数,对于给定的允许误差率K,当时,则停止迭代;否则,对(3-71)式作下一次迭代。

(5)重复迭代。重复(3-71)式,当重复迭代S次时,则有:修正因子: 第(S+1)次迭代值: 四、应用举例 设12个同类企业的月产量与单位成本的资料如下表: 表3-9 间接代换法计算表 企业编号单位产品成 本(元) 月产量 1 2 3 4 5 6 7 8 9 10 11 12 160 151 114 128 85 91 75 76 66 60 61 60 10 16 20 25 31 36 40 45 51 56 60 65 (注:资料来源《社会经济统计学原理教科书》第435页) 试配合适当的回归模型分析月产量与单位产品成本之间的关系。 解:(1)回归模型与初始值的选择。根据资料散点图的识别,本数据应配合指数模型:对指数模型两边取对数,化指数模型为线性回归模型,然后施行最小平方法求出初始 值。即: 则上述指数模型变为: 对分别求反对数,得,带入原模型, 得回归模型: 高斯—牛顿迭代法 初始回归模型:

数值分析编程及运行结果(高斯顺序消元法)

高斯消元法1.程序: clear format rat A=input('输入增广矩阵A=') [m,n]=size(A); for i=1:(m-1) numb=int2str(i); disp(['第',numb,'次消元后的增广矩阵']) for j=(i+1):m A(j,:)=A(j,:)-A(i,:)*A(j,i)/A(i,i); end A end %回代过程 disp('回代求解') x(m)=A(m,n)/A(m,m); for i=(m-1):-1:1 x(i)=(A(i,n)-A(i,i+1:m)*x(i+1:m)')/A(i,i); end x

2.运行结果:

高斯选列主元消元法1.程序: clear format rat A=input('输入增广矩阵A=') [m,n]=size(A); for i=1:(m-1) numb=int2str(i); disp(['第',numb,'次选列主元后的增广矩阵']) temp=max(abs(A(i:m,i))); [a,b]=find(abs(A(i:m,i))==temp); tempo=A(a(1)+i-1,:); A(a(1)+i-1,:)=A(i,:); A(i,:)=tempo disp(['第',numb,'次消元后的增广矩阵']) for j=(i+1):m A(j,:)=A(j,:)-A(i,:)*A(j,i)/A(i,i); end A end %回代过程 disp('回代求解')

x(m)=A(m,n)/A(m,m); for i=(m-1):-1:1 x(i)=(A(i,n)-A(i,i+1:m)*x(i+1:m)')/A(i,i); end x 2.运行结果:

jacobi,高斯,牛顿迭代

实验二:迭代法求解方程组 姓名:徐烨 学号:08072105 时间:2010-11-17 一、实验目的 利用jacobi 迭代法和gauss-seidei 迭代法求解线性方程组,利用newton 迭代法求解非线性方程组。在求解过程中,利用这三种方法的迭代原理,根据迭代法的求解流程,写出三种迭代法的迭代格式,学习三种迭代法的原理和解题步骤,并使用matlab 软件求解方程。在实验过程中,分别取不同的初值进行求解,并做结果分析,解怒同德方程来比较这三种迭代方法的利弊。 二、实验步骤 newton 迭代法 ⒈newton 迭代原理 考虑非线性方程f(x)=0,求解她的困难在于f 是非线性函数。为克服这一困难,考虑它的线性展开。设当前点为Xk, 在Xk 处的Taylor 展开式为 f ()x ≈f ()()()k k k x x x f x -'+ 令上式右端为0.解其方程得到 ()() k k k k x f x f x x '-=+1 ???=1,0k 此式就称为Newton 公式。 2. newton 迭代法的matlab 实现 function x=newton(fname,dfname,x0,e,N) %用途:牛顿迭代法解非线性方程组分f(x)=0 %fname 和dfname 分别表示f(x)及其到函数的M 函数句柄或内嵌函数的表达式%x0为迭代初值,e 为精度 %x 为返回数值解,并显示计算过程,设置迭代次数上线N 以防发散 if nargin<5,N=500;end if nargin<4,e=le-4;end x=x0;x0=x+2*e;k=0; fprintf('It.no=%2d x%[2d]=%12.9f\n',k,k,x) while abs(x0-x)>e&k

数值分析版试题及答案

例1、已知函数表 求() f x的Lagrange二次插值多项式和Newton二次插值多项式。 解: (1)由题可知 插值基函数分别为 故所求二次拉格朗日插值多项式为 (2)一阶均差、二阶均差分别为 均差表为

故所求Newton 二次插值多项式为 例2、 设2()32f x x x =++,[0,1]x ∈,试求()f x 在[0, 1]上关于()1x ρ=,{}span 1,x Φ=的 最佳平方逼近多项式。 解: 若{}span 1,x Φ=,则0()1x ?=,1()x x ?=,且()1x ρ=,这样,有 所以,法方程为 011231261192 34a a ??????????=?????????? ?????????? ,经过消元得012311 62110123a a ??? ???????=???????????????????? 再回代解该方程,得到14a =,011 6 a = 故,所求最佳平方逼近多项式为* 111 ()46 S x x = +

例3、 设()x f x e =,[0,1]x ∈,试求()f x 在[0, 1]上关于()1x ρ=,{}span 1,x Φ=的最佳平 方逼近多项式。 解: 若{}span 1,x Φ=,则0()1x ?=,1()x x ?=,这样,有 所以,法方程为 解法方程,得到00.8732a =,1 1.6902a =, 故,所求最佳平方逼近多项式为 例4、 用4n =的复合梯形和复合辛普森公式计算积分1?。 解: (1)用4n =的复合梯形公式 由于 2h =,()f x =,()121,2,3k x k k =+=,所以,有 (2)用4n =的复合辛普森公式 由于2h =,()f x =,()121,2,3k x k k =+=,()1 2 220,1,2,3k x k k +=+=,所以,有 例5、 用列主元消去法求解下列线性方程组的解。 解:先消元 再回代,得到33x =,22x =,11x =

非线性回归预测法——高斯牛顿法(詹学朋)知识分享

非线性回归预测法——高斯牛顿法(詹学朋)

非线性回归预测法 前面所研究的回归模型,我们假定自变量与因变量之间的关系是线性的,但社会经济现象是极其复杂的,有时各因素之间的关系不一定是线性的,而可能存在某种非线性关系,这时,就必须建立非线性回归模型。 一、非线性回归模型的概念及其分类 非线性回归模型,是指用于经济预测的模型是曲线型的。常见的非线性回归模型有下列几种: (1)双曲线模型: i i i x y εββ++=1 2 1 (3-59) (2)二次曲线模型: i i i i x x y εβββ+++=2321 (3-60) (3)对数模型: i i i x y εββ++=ln 21 (3-61) (4)三角函数模型: i i i x y εββ++=sin 21 (3-62) (5)指数模型: i x i i ab y ε+= (3-63) i i i x x i e y εβββ+++=221110 (3-64) (6)幂函数模型: i b i i ax y ε+= (3-65) (7)罗吉斯曲线: i x x i i i e e y εββββ++=++1101101 (3-66) (8)修正指数增长曲线: i x i i br a y ε++= (3-67) 根据非线性回归模型线性化的不同性质,上述模型一般可细分成三种类型。 第一类:直接换元型。 这类非线性回归模型通过简单的变量换元可直接化为线性回归模型,如:(3-59)、(3-60)、(3-61)、(3-62)式。由于这类模型的因变量没有变形,所以可以直接采用最小平方法估计回归系数并进行检验和预测。 第二类:间接代换型。 这类非线性回归模型经常通过对数变形的代换间接地化为线性回归模型,如:(3-63)、(3-64)、(3-65)式。由于这类模型在对数变形代换过程中改变了因变量的形态,使得变形后模型的最小平方估计失去了原模型的残差平方和为最小的意义,从而估计不到原模型的最佳回归系数,造成回归模型与原数列之间的较大偏差。 第三类:非线性型。

牛顿-拉夫森(Newton-Raphson)迭代法

§3.4 牛顿迭代法 牛顿迭代法也称为牛顿-拉夫森(Newton-Raphson)迭代法,它是数值分析中最重要的方法之一,它不仅适用于方程或方程组的求解,还常用于微分方程和积分方程求解。 3.4.1 牛顿迭代法 用迭代法解非线性方程时,如何构造迭代函数是非常重要的,那么怎样构造的迭代函数才能保证迭代法收敛呢?牛顿迭代法就是常用的方法之一,其迭代格式的来源大概有以下几种方式: 1设 ],[)(2b a C x f ∈,对)(x f 在点],[0b a x ∈作泰勒展开: !2))((''))((')()(2 0000x x f x x x f x f x f -+-+=ξ 略去二次项,得到)(x f 的线性近似式: ))((')()(000x x x f x f x f -+≈。 由此得到方程=)(x f 0的近似根(假定 ≠)('0x f 0),)(')(000x f x f x x -= 即可构造出迭代格式(假定≠)('k x f 0):)(') (1k k k k x f x f x x -=+ 公式(3.4.1) 这就是牛顿迭代公式,若得到的序列{k x }收敛于α,则α就是非线性方程的根。 2 牛顿迭代法也称为牛顿切线法,这是由于)(x f 的线 性化近似函数)(x l =))((')(000x x x f x f -+是曲线y = )(x f 过点))(,(00x f x 的切线而得名的,求)(x f 的零点代之 以求)(x l 的零点,即切线)(x l 与x 轴交点的横坐标,如右图 所示,这就是牛顿切线法的几何解释。实际上,牛顿迭代法 也可以从几何意义上推出。利用牛顿迭代公式,由k x 得到1+k x ,从几何图形上看,就是过点))(,(k k x f x 作函数)(x f 的切线k l ,切线k l 与x 轴的交点就是1+k x ,所以有 1)()('+-=k k k k x x x f x f ,整理后也能得出牛顿迭代公式: )(') (1k k k k x f x f x x - =+。 3 要保证迭代法收敛,不管非线性方程=)(x f 0的形式如何,总可以构造: )()()(x f x k x x x -==? )0)((≠x k 作为方程求解的迭代函数。因为:)(')()()('1)('x f x k x f x k x --=? 而且)('x ?在根α附近越小,其局部收敛速度越快,故可令:0)('=α?

高斯牛顿迭代

四、非线性回归法 (Method of nonlinear regression ) 在药物动力学中,血药浓度与时间的关系常常不是直线而是曲线,符合指数函数或抛物线等,如一室模型静脉注射即属指数函数kt e C C -=0,通常转化为对数形式 0log 303 .2log C kt C += ,以 log C 对t 进行线性回归求出k 值。但此法不尽合理,因这是log C 与t 之间最小二乘,而不是C 与t 之间最小二乘。故提出非线性回归法,此法所得结果更为准确,但其计算复杂,工作量大,必须采用电子计算机才能完成运算。 非线性回归一般采用高斯-牛顿(Gauss-Newton )迭代法。迭代法是用某个固定公式反复地计算,用以校正方程所得根的近似值,使之逐步精确化,最后得到的精度要求的结果。一般非线性参数的确定,通常采用逐次逼近的方法,即逐次“线性化”的方法。设某药在体内的模型中待定参数a 1,a 2,a 3,…,a m ,求得隔室中药时关系的函数式为: C = f (t ,a 1,a 2,a 3,…,a m ) 其中t 是单个变量,t = ( t 1,t 2,t 3,…,t n ),今有n 组实验观测值(t k ,C k )k = 1,2,…n ,在最小二乘意义下确定m 个参数a 1,a 2,a 3,…,a m 。下面介绍一般解法。 1.先给a i (i = 1,2,…m )一个初始值,记为)0(i a ,并记初值与真值之差i ?(未知),这时有 i i i a a ?+=) 0( 若知i ?则可求a i ,在) 0(i a 附近作Taylor 级数展开并略去i ?的二次以上各项得 f (t k ,a 1,a 2,…,a m )m m k k k k a f a f a f f ???+ +???+ ???+ ≈022 011 00 式中),,,,()0()0(2)0(10m k k a a a t f f = ) 0() 0(1 121) ,,,(m m k i m i ko a a a a t t a a a a t f a f ===??= ?? 当) 0(i a 给定时,0k f , i ko a f ??均可由t 算得。 2.列出正规方程(线性方程组),若参数为4个即m = 4,则应列出以下方程

第十三章 曲线拟合以及常用的药代动力学软件

第十三章 药动学数据的曲线拟合以及常用软件 计算药动学参数,是药代动力学进一步应用的基础。如何测定有关的动力学参数呢?常用的方法是:首先在用药后的若干不同时间,采取血样(或尿样),测定其血药浓度值或尿中药量(这些数值称为实测值或观察值,用C i 表示),这样就有了药物浓度经时曲线数据;然后,依据半对数坐标图,选定一种模型方程 (是时间t 的曲线函数)计算理论估算值(用i C )表示),按照观察值和理论估算值之 差的平方和(即残差平方和)或加权残差平方和(均用Re 表示)最小的原则,采用适当的算法,求出有关的动力学参数。这种方法,在数学上称为曲线拟合(fitting a curve)。由于所采用的线性药代动力学的模型方程是多指数项之和的函数形式,并且是所含动力学参数的非线性函数,所以这种曲线拟合方法称为非线性最小二乘法。 一、最小二乘法的一般原理 设y 是变量x 的函数,含有m 个待定参数a 1,a 2,…,a m 。记为 y =f (x ;a 1,a 2,…,a m ) 若对x 和y 作n 次观察,测得观察值(x 1,y 1),(x 2,y 2),…,(x n ,y n )。根据这样一组二维数据,即平面上的若干点,要求确定这个一元函数y =f (x ;a 1,a 2,…,a m );(i=1,2,…,n),即一条曲线,使这些点与曲线总体来说尽量接近。并使y 的观察值y i 与理论估算值=i y )f (x i ;a 1,a 2,…,a m ) ;(i=1,2,…,m)的误差平方和,即残差平方和21 ()n e i i i y y ==?∑)2121((,,,,)n i i m i y f x a a a ==?…∑R )i 取得最小值, 或者加权残差平方和21()/n e i i i R y y w ==?∑)2121 ((,,,,))/n i i m i i y f x a a a w ==?…∑ 取得 最小值。其中w i 称为权重系数,在后面的段落会详细讲解。这时Re 有时候也称为目标函数。这就是数据拟合成曲线的思想,简称为曲线拟合。曲线拟合的目的是根据实验获得的数据去建立因变量和自变量之间有效的函数关系,这个函数关系对于药动学来讲就是通过房室模型推导出来的药时曲线公式。根据观察值求出待 311

牛顿-拉夫逊迭代法原理及其实现

牛顿迭代法(简写)就是一种近似求解实数域与复数域求解方程的数学方法。那么这个方法是具体是什么原理呢? 牛顿迭代如何迭代? 直接看数学公式描述如何迭代不直观,先来看动图就很容易理解牛顿迭代法为什么叫迭代法以及怎样迭代的: 牛顿迭代法是原理是根据一个初始点在该点做切线,切线与X轴相交得出下一个迭代点的坐标,再在处做切线,依次类推,直到求得满足精度的近似解为止。 由前面描述知道,牛顿迭代法是用来近似求解方程的,这里有两个点需要说明:?为啥要近似求解?很多方程可能无法直接求取其解 ?迭代法非常适合计算机编程实现,实际上计算机编程对于牛顿迭代法广为应用来看看,数学上如何描述的? 其中为函数在处的一阶导数,也就是该点的切线。 来简单推一推上面公式的由来,直线函数方程为: 知道一个直线的一个坐标点以及斜率则该直线的方程就很容易可以得知:

那么该直线与轴的交点,就是y=0也即等式x 的解: 啥时候停止迭代呢? 1.计算出 2.给出一个初始假定根值x0,利用上面迭代式子进行迭代 3.计算绝对相对迭代近似误差 4.将绝对相对近似误差与预定的相对误差容限进行比较。如果,则迭 代步骤2,否则停止算法。另外,检查迭代次数是否已超过允许的最大迭代次数。如果是这样,则需要终止算法并退出。另一个终止条件是: 如何编码呢? 由于牛顿迭代法主要目的是解方程,当然也有可能用于某一个数学函数求极值,所以无法写出通用的代码,这里仅仅给出一个编代码的思路。相信掌握了思路,对于各种实际应用应该能很快的写出符合实际应用的代码。 假定一函数为 其波形图如下: 其一阶导数为:

那么对于该函数的根: 从图上大致可以知道有两个根,如果直接解方程,则很难求出其根,可以编个代码试试: #include #include #include /*假定待求根函数如下*/ #define F(x) (2*(x)*(x)-10*cos(x)+(x)-80) /*其一阶导数为*/ #define DF(x) (4*(x)+10*sin(x)+1) float newton_rooting(float x0,float precision,float min_deltax,int max_iterations) { float xn,xn1,fn,fn1,dfn; float deltax; int step = 0; xn = x0; xn1 = x0; do{ xn = xn1; fn = F(xn); dfn = DF(xn); /*判0*/ if( fabs(dfn) <1e-6 ) { if( fabs(fn)>precision ) return NAN; else return fn; } xn1 = xn - fn/dfn; fn1 = F(xn1); deltax = fabs(xn1-xn); step++; if( step>max_iterations ) { if( fabs(fn1)precision || deltax>min_deltax );

牛顿迭代法收敛定理

关于牛顿迭代法的课程设计实验指导 非线性方程(或方程组)问题可以描述为求 x 使得f (x ) = 0。在求解非线性方程的方法中,牛顿迭代法是求非线性方程(非线性方程组)数值解的一种重要的方法。牛顿是微积分创立者之一,微积分理论本质上是立足于对世界的这种认识:很多物理规律在微观上是线性的。近几百年来,这种局部线性化方法取得了辉煌成功,大到行星轨道计算,小到机械部件设计。牛顿迭代法正是将局部线性化的方法用于求解方程。 一、牛顿迭代法及其收敛速度 牛顿迭代法又称为牛顿-拉夫逊方法(Newton-Raphson method ),是一种在实数域和复数域上通过迭代计算求出非线性方程的数值解方法。方法的基本思路是利用一个根的猜测值x 0做初始近似值,使用函数f (x )在x 0处的泰勒级数展式的前两项做为函数f (x )的近似表达式。由于该表达式是一个线性函数,通过线性表达式替代方程中的求得近似解x 1。即将方程f (x ) = 0在x 0处局部线性化计算出近似解x 1,重复这一过程,将方程f (x ) = 0在x 1处局部线性化计算出x 2,求得近似解x 2,……。详细叙述如下:假设方程的解x *在x 0附近(x 0是方程解x *的近似),函数f (x )在点x 0处的局部线化表达式为 )()()()(000x f x x x f x f '-+≈ 由此得一次方程 0)()()(000='-+x f x x x f 求解,得 ) ()(0001x f x f x x '-= 如图1所示,x 1比x 0更接近于x *。该方法的几何意义是:用曲线上某点(x 0,y 0)的切线代替曲线,以该切线与x 轴的交点(x 1,0)作为曲线与x 轴的交点(x *,0)的近似(所以牛顿迭代法又称为切线法)。设x n 是方程解x *的近似,迭代格式 ) ()(1n n n n x f x f x x '-=+ ( n = 0,1,2,……) 就是著名的牛顿迭代公式,通过迭代计算实现逐次逼近方程的解。牛顿迭代法的最大优点是收敛速度快,具有二阶收敛。以著名的平方根算法为例,说明二阶收敛速度的意义。 例1.已知4.12≈,求2等价于求方程f (x ) = x 2 – 2 = 0的解。由于x x f 2)(='。 应用牛顿迭代法,得迭代计算格式 )/2(2 11n n n x x x +=+,(n = 0,1,2,……) 取x 0= 1.4为初值,迭代计算3次的数据列表如下 图1 牛顿迭代法示意图

(完整版)数值分析每节课的教学重点、难点

计算方法教案新疆医科大学 数学教研室 张利萍

一、课程基本信息 1、课程英文名称:Numerical Analysis 2、课程类别:专业基础课程 3、课程学时:总学时54 4、学分:4 5、先修课程:《高等数学》、《线性代数》、《Matlab 语言》 二、课程的目的与任务: 计算方法是信息管理与信息系统专业的重要理论基础课程,是现代数学的一个重要分支。其主要任务是介绍进行科学计算的理论方法,即在计算机上对来自科学研究和工程实际中的数学问题进行数值计算和分析的理论和方法。通过本课程的学习,不仅使学生初步掌握数值分析的基本理论知识,而且使学生具备一定的科学计算的能力、分析问题和解决问题的能力,为学习后继课程以及将来从事科学计算、计算机应用和科学研究等工作奠定必要的数学基础。 三、课程的基本要求: 1.掌握计算方法的常用的基本的数值计算方法 2.掌握计算方法的基本理论、分析方法和原理 3.能利用计算机解决科学和工程中的某些数值计算应用问题,增强学生综合运用知识的能力 4.了解科学计算的发展方向和应用前景 四、教学内容、要求及学时分配: (一) 理论教学: 引论(2学时) 第一讲(1-2节) 1.教学内容: 计算方法(数值分析)这门课程的形成背景及主要研究内容、研究方法、主要特点;算法的有关概念及要求;误差的来源、意义、及其有关概念。数值计算中应注意的一些问题。 2.重点难点: 算法设计及其表达法;误差的基本概念。数值计算中应注意的一些问题。3.教学目标: 了解数值分析的基本概念;掌握误差的基本概念:误差、相对误差、误差限、相对误差限、有效数字;理解有效数字与误差的关系。学会选用相对较好的数值计算方法。

高斯牛顿法计算药动学参数-po1

高斯 -牛顿法拟合一室模型药物血管外给药的药动学参数的电子表格程序 苏银法 1,杜乐燕 2 (1 浙江省温州市第二人民医院药剂科,温州 325000; 2 浙江省温州医学院附属第一医院,温 州325000), [摘要 ]目的 建立一种简便的一室模型药物血管外给药的药动学参数求解方法。 方法 采用残 数法获得药动学参数初值,根据最小二乘方原理设计获取一室模型药物血管外给药的药动学参 数(A,k,B and ka)的Excel 表格程序。结果 实例显示该Excel 表格程序的拟合效果与 DAS2.1.1药动 学软件一致。结论利用Excel 表格求算药动学参数是一种有效而简便的方法。 [关键词]药动学;Excel ;高斯-牛顿法;血管外给药;参数 Pharmacokinetical Parameters Fitting by Gauss-Newton Method on Excel Software for Extravenous Administration of One-compartment Model Drug SU Yinfa 1 ,DU Leyan 2 (1 Department of Pharmacy, The Second People's Hospital of Wenzhou , Wenzhou 325000, China ; ) [ABSTRACT] AIM To establish a convenius method to be used for obtaining pharmacokinetical parameters of extravenous administration of One-compartment Model Drug . METHODS Gauss-Newton Method on Microsoft Excel software was used to obtain four pharmacokinetical parameters (A,k,B and ka) of extravenous administration of one-compartment drug. RESULTS Through an example, the powerful function with Excel to find out the optimum solution of these parameters was shown. CONCLUSION The Microsoft Excel spreadsheet is an effective method solving four-variable pharmacokinetic parameters. [Keywords] pharmacokinetics ; Microsoft Excel ; Gauss-Newton method ; extravenous administration ; parameter 根据不同时间点的实测药物浓度计算药动学参数是药代动力学研究中的基本要求之一。在 房室模型的药动学参数分析中,除了一室模型药物静脉给药后的药时数据可以通过对数变换予 以线性化外,通常不能通过适当的变换将多指数函数线性化。作为药动学参数估计的经典方法 已得到大家的公认。本文采用 Excel 表格程序实现高斯 -牛顿法计算一室模型药物血管外给药药 动学参数的过程。 1 原理 如某药在体内符合一室模型、 一级吸收且一级消除的动力学过程, 其药时数据符合以下 (1) 1)中参数 A, k , B 和ka 的初始值(A (0), k (0), B (0)和k a (0) ),并 A 、" k 、" B 和"k a ,即:k= k (0) +" k, k a = k a (0) +" k a , A = A (0) 至此问题转化为求修正值" k 、" k a 、" A 和"B 。在初始值附近作泰 勒( Taylor )级数展开,并略去各修正值的二次及二次以上的项,然后按最小二乘准则, 有 关系: -kt -kat C= Ae -Be 采用残数法计算出式( 记它们与真值之差为" + " A, B= B (0) +" B,

数值分析试题及答案解析

数值分析试题 一、 填空题(2 0×2′) 1. ??????-=? ?????-=32,1223X A 设x =0.231是精确值x *=0.229的近似值,则x 有 2 位有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用 该迭代函数的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商 公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所 以当系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于0.1%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…) 收敛于方程组的精确解x *的充分必要条件是 ρ(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。

牛顿迭代法和雅克比迭代法和高斯赛德尔迭代逐次超松弛迭代

实验三非线性方程的牛顿法和线性方程组的迭代数 值求解 信息与计算科学金融崔振威201002034031 一、实验目的: 设计牛顿迭代算法和线性方程组的常用迭代算法 二、实验内容:p69.3、p129.1 三、实验要求: 1、根据题目要求构造迭代格式 2、对线性方程组的迭代求解要求构造三种迭代格式 3、试比较牛顿迭代法和不动点迭代法的优劣(p69.3) 4、试比较线性方程组三种迭代的优劣(收敛和收敛速度) 主程序: a、牛顿迭代法程序: function [x,k]=newton(f,p0,e) %求f(x)=0在给定p0的根。 %f为所求的函数f(x),p0为迭代初始值,e为迭代精度。k为迭代次数 %diff(f)为对函数求导,subs是赋值函数,用数值替代符号变量替换函数例 xa=p0; xb=xa-subs(f,xa)/subs(diff(f),xa); k=1; while abs(xa-xb)>e, k=k+1; xa=xb; xb=xa-subs(f,xa)/subs(diff(f),xa); end x=xb; b、雅克比迭代法程序 function [x,n]=Jacobi_Solve(A,b,x0,eps,varargin) %求解线性方程组的迭代法 %A为方程组的细数矩阵 %b方程组的右端项数字的向量组 %eps为精度要求,默认值为1e-5 %varargin为最大迭代次数,值为100 %x为方程组的解 %n为迭代次数 if nargin==3 eps=1.0e-6; M =200; elseif nargin<3

return elseif nargin==5 M =varargin{1}; end D=diag(diag(A));%求A的对角矩阵 L=-tril(A,-1);%求A的下三角矩阵 U=-triu(A,1);%求A的上三角矩阵 B=D\(L+U); f=D\b; x=B*x0+f; n=1;%迭代次数 while norm(x-x0)>=eps x0=x; x=B*x0+f; n=n+1; if(n>=M) disp('迭代次数太多,可能不收敛。'); return; end end c、高斯_赛德尔迭代程序 function [x,n]=gaussseide(A,b,x0,eps,M) %求解线性方程组的迭代法 %A为方程组的细数矩阵 %b为方程组的右端项数字的向量组 %eps为精度要求,默认值为1e-5 %M为最大迭代次数,值为100 %x为方程组的解 %n为迭代次数 if nargin==3 eps=1.0e-6; M =200; elseif nargin==4 M=200; elseif nargin<3 error return; end D=diag(diag(A));%求A的对角矩阵 L=-tril(A,-1);%求A的下三角矩阵 U=-triu(A,1);%求A的上三角矩阵 G=(D-L)\U;

相关文档
最新文档