高斯—塞德尔迭代法

合集下载

高斯赛德尔法

高斯赛德尔法

的系数矩阵A可逆且主对角元素都不为零,令
)
并将A分解成
A = (A D) + D
Dx = (D A)x + b 从而方程可以写成 x = B1 x + f1 令 B = I D A, f = D b 其中
1 1 1 1
以 B 为迭代矩阵的迭代法 称为雅克比迭代法。
1
x ( k +1) = B1 x ( k ) + f1
(k ) 由雅可比迭代公式可知,在迭代的每一步计算过程中是用x 的全部分量 ( k +1 ) ( k+1) x i 时,已经算出最新的 来计算 x 的 所有分量 , 显然在计算第i个分量 分量,但没被利用。因此,将最新算出来的第k+1次近似加以利用,就 得到了高斯赛德尔迭代法。 A = D L U 将矩阵A分解成 其中 D = diag ( a11 ,a 22 ,..., a nn ) , L ,U 是A的主对角除外的下三角 和上三角部分,于是有 (D L )x = Ux + b
ρ 是迭代矩阵的谱半径(B0中绝对值最大的特征值的绝对值)
首先取 α =1.5,迭代若干次后,有 式中: 为第k 次迭代的节点电压与该节 点前次迭代值的差值的绝对值 U ( m ) U ( m 1) 为所有节点中差值绝对值最大的 ∞ Bso为加速迭代矩阵 再有
U ( m ) U ( m 1)
将上式带入最佳加速因子公式得到近似最佳加 速因子 α 。
x = B2 x + f 2 即 B = (D L ) U , f = (D L ) 其中 以 B2 为迭代矩阵的迭代法 x ( k +1) = B2 x ( k ) + f 2 称为高斯-赛德尔迭代法。

高斯—塞德尔迭代法

高斯—塞德尔迭代法
(2)按行弱对角占优:
上式至少有一个不等号严格成立。
*定义 每行每列只有一个元素是1,其余 元素是零的方阵称为置换阵(或排列阵).
定理8(对角占优定理)若矩阵A按行(或列)严格对角占优 或按行(或列)弱对角占优且不可约;则矩阵A非奇异。
定理9 若矩阵A按行(或列)严格对角占优,或按行(或列) 对角占优不可约;则Jacobi迭代、Gauss-Seidel迭代都 收敛。
高斯—塞德尔迭代法又等价于:对k=0,1,…,
三、逐次超松驰(SOR)迭代法
SOR迭代法的计算公式:对k=0,1,…,
说明:1)ω=1,GS; 2)ω>1超松驰,ω<1低松驰;
3)控制迭代终止的条件: 例3 用上述迭代法解线性代数方程组
初值x(0)=0,写出计算格式。
四、三种迭代法的收敛性
定理7 对线性方程组Ax=b,A,D非奇异,则 Jacobi迭代法收敛的充要条件是 GS迭代法收敛的充要条件是 SOR迭代法收敛的充要条件是 定义6 (1)按行严格对角占优:
证明 若矩阵A按行严格对角占优,或按行(或列)弱对角占优不可
则GS迭代收敛。假若不然,ρ(BG)≥1,即迭代矩阵BG的某一特征 值λ使得|λ|≥1,并且
类似地,若矩阵A按行严格对角占优,或按行(或列)弱对角占优不
可约,则Jacobi迭代收敛。假若不然,ρ(BJ)≥1,即迭代矩阵BJ 的某一特征值λ使得|λ|≥1,并且
定理10 对线性方程组Ax=b,若A为对称正定矩阵,则 1)GS迭代法收敛. 2)若2D-A也是对称正定矩阵,则Jacobi迭代法收敛。
例8 见书上
定理12 对于线性方程组Ax=b,若A为对称正定矩阵,则
当0<ω<2时,SOR迭代收敛. 证明 只需证明λ<1(其中λ为Lω的任一特征值) .

研究生数值分析高斯-赛德尔(Gauss-Seidel)迭代法 PPT

研究生数值分析高斯-赛德尔(Gauss-Seidel)迭代法 PPT

一种算子范数 , 即
(A)
A r
证明:设λ为A的任一特征值,X为对应于λ的A
的特征向量,即 AX= λX, (X ≠0)
由范数的性质立即可得
X X AX A X
r
r
r
r
r
因为 X ≠0 , 所以
A r
即A的任一特征值的模都不超过
A r
于是 (A) A r
定理给出了一阶线性定常迭代法 X (k1) BX (k) f
将上式写成 (D L)1 (D L) U 0
由于
(D L)1 0
所以
(D L) U 0
上式左端为将系数矩阵 A 的对角线及对角线
以下元素同乘以 λ 后所得新矩阵的行列式。
例9 用高斯-赛德尔迭代法解方程组
10x1 2x2 x3 3 2x1 10x2 x3 15 x1 2x2 5x3 10
其矩阵表示形式为 X (k1) D1(LX (k1) UX (k) b)
现将 X (k1) 显式化,由 (D L) X (k1) UX (k) b

X (k1) (D L)1UX (k ) (D L)1b

BG (D L)1U
(称为高斯-赛德尔(Gauss-Seidel)迭代矩阵),
雅可比迭代矩阵
0 0.2 0.1 BJ 0.2 0 0.1
0.2 0.4 0
BJ 0.6 1 雅可比迭代过程必收敛;
高斯-赛德尔迭代矩阵
0 BG 0
0
0.2 0.04 0.056
0.1
0.12

0.068
BG 0.3 1 高斯-赛德尔迭代过程也收敛。

研究生数值分析(12)高斯-赛德尔(Gauss-Seidel)迭代法

研究生数值分析(12)高斯-赛德尔(Gauss-Seidel)迭代法
如在例8例9中,由于系数矩阵A是严格对角 占优,由定理4立即可断定用雅可比迭代法与高斯 -赛德尔迭代法求解时,迭代过程都收敛。
4 2 2
又如矩阵
A


2
2 3
2 3 14
是对称正定阵(实对称阵是正定阵的,如果实二次型
f (x1, x2 ,L , xn ) X T AX
10 2 1 2 10 1 0 2 5
即 (500 2 54 2) 0
解得
1

0, 2

27
1729 500
, 3

27
1729 500
于是
(BG )

27 1729 500

0.1372
1
因而高斯-赛德尔迭代公式是收敛的。
上式左端为将系数矩阵 A 的对角线及对角线
以下元素同乘以 λ 后所得新矩阵的行列式。
例9 用高斯-赛德尔迭代法解方程组
10x1 2x2 x3 3 2x1 10x2 x3 15 x1 2x2 5x3 10
解:相应的高斯-赛德尔迭代公式为


x (k 1) 1
x (k 1) 2

0.2x2(k) 0.1x3(k) 0.3 0.2x1(k1) 0.1x3(k) 1.5

x3(k
1)

0.2 x1( k 1)
0.4x2(k1)
2
取迭代初值
X (0)

(
x1(
0)
,
x2(0
)
,
x (0) 3
)T
(0, 0, 0)T
按此迭代公式进行迭代,计算结果为

高斯-塞德尔(Gauss-Seidel)迭代法

高斯-塞德尔(Gauss-Seidel)迭代法

将A分裂成A =L+D+U,则 Ax b 等价于
( L+D+U )x = b
于是,则高斯—塞德尔迭代过程
Dx(k1) Lx(k1) Ux(k) b
因为 D 0 ,所以 D L D 0

(D L)x(k1) Ux (k) b
x(k1) (D L)1Ux (k) (D L)1b
数值计算方法
高斯-塞德尔(Gauss-Seidel)迭代法
1.1 高斯-塞德尔迭代法的基本思想
在Jacobi迭代法中,每次迭代只用到前一次的 迭代值,若每次迭代充分利用当前最新的迭代值,
即在求
x (k 1) i
时用新分量
x1( k
1)
,
x
(k 2
1)
,,
x (k 1) i 1
代替旧分量
x1(
k
)
,
x1(k
x
(k 2
1) 1)
( x2(k ) x3(k ) (2x1(k1)
1) / 8 x3(k) 4) /10
x3(k
1)
( x1(k 1)
x (k 1) 2
3) / 5
取初始迭代向量 x(0) (0 ,0 ,0)T ,迭代结果为:
1.2 Gauss—Seidel 迭代法的矩阵表示
令 G1 (D L)1U , d1 (D L)1b
则高斯-塞德尔迭代形式为:
x (k 1) G1 x (k ) d1
1.3 高斯—塞德尔迭代算法实现
高斯-塞德尔迭代算法的计算步骤与流程图与
雅可比迭代法大致相同,只是一旦求出变元 xi
的某个新值
后, x (k1) i
就改用新值

高斯赛德尔迭代矩阵

高斯赛德尔迭代矩阵

高斯赛德尔迭代矩阵高斯赛德尔迭代矩阵是一种常用的数学计算方法,可在矩阵求解的过程中提高计算效率,是数学领域中的重要类算法之一。

本文将对高斯赛德尔迭代矩阵进行全面、生动阐述,以及指导意义。

一、什么是高斯赛德尔迭代矩阵?高斯赛德尔迭代矩阵,英文缩写为GS,全称为Gauss-Seidel Iterative Matrix,又称为高斯赛德尔迭代法。

在数学计算中,经常需要求解n元线性方程组,通过高斯赛德尔迭代矩阵方法,可以将系数矩阵迭代地更新,进行求解。

二、高斯赛德尔迭代矩阵的原理高斯赛德尔迭代矩阵的求解原理,可以简单概括为如下步骤:1. 首先通过高斯消元法将系数矩阵分解得到上三角矩阵,即$A=L+D+U$,其中L为主对角线以下的矩阵,U为主对角线以上的矩阵,D为主对角线矩阵。

2. 设定初值$x_0$,然后迭代更新$x_i$,得到$x_{i+1}$。

3. 在每次迭代中,将$x_i$代入到式子(1.1)中进行求解,其中$b$为方程组右侧常数向量。

\begin{equation}(Ax=b) \Rightarrow (L+D+U)x = b\end{equation}4. 将式子(1.2)进一步转化为\begin{equation}(D+L)x_{i+1}=-Ux_i+b\end{equation}其中,$D+L$为单位下三角矩阵,此时的式子,可以快速地进行迭代求解,求解速度快。

三、高斯赛德尔迭代矩阵的优缺点高斯赛德尔迭代矩阵的优点在于,对于大规模的线性方程组求解,可以有效地降低计算量,缩短计算时间。

此外,高斯赛德尔迭代矩阵也可以用于解决其他数学问题,如求解矩阵的特征值等。

但是,高斯赛德尔迭代矩阵也存在一些缺点。

例如,无法对具有一定规律性的系数矩阵进行有效的求解,甚至会出现发散现象,即系数矩阵的条件数较大。

此外,在高维矩阵上,高斯赛德尔迭代矩阵的计算时间会随着矩阵维度的增加而呈指数级别的增长。

四、高斯赛德尔迭代矩阵的应用高斯赛德尔迭代矩阵的应用非常广泛,可以用于解决计算数学问题,如计算机视觉中的信号和图像处理、机器学习中的最小二乘问题、逆问题的求解等。

高斯塞德尔法迭代矩阵

高斯塞德尔法迭代矩阵一、高斯塞德尔法迭代矩阵的定义高斯塞德尔法迭代矩阵是一种用于解线性方程组的迭代方法,它是从雅可比迭代法发展而来的。

它的基本思想是在每次迭代中,先使用前面已经求得的未知数值来更新方程组中某些未知数的值,然后再利用这些新更新过的未知数值来更新方程组中其他未知数的值。

这样不断重复直到满足精度要求为止。

二、高斯塞德尔法迭代矩阵的推导假设线性方程组为Ax=b,其中A是一个n×n矩阵,b是一个n维列向量,x是一个n维列向量。

将A分解为三部分:D、L和U。

其中D 是A的对角线元素构成的对角矩阵;L是A中除了对角线元素外下三角部分构成的矩阵;U是A中除了对角线元素外上三角部分构成的矩阵。

则有:Ax = b 可以写成 (D-L-U)x = b移项得:Dx = (L+U)x + b将x表示为前一次迭代结果x(k)和当前未知数值x(k+1)之和:x = x(k) + x(k+1)代入上式得:D(x(k)+x(k+1)) = (L+U)(x(k)+x(k+1))+b移项得:x(k+1) = -D^(-1)(L+U)x(k) + D^(-1)b其中D^(-1)表示矩阵D的逆矩阵,即对角线元素取倒数。

三、高斯塞德尔法迭代矩阵的计算过程高斯塞德尔法迭代矩阵的计算过程如下:1. 初始化向量x(0),设置精度要求ε和最大迭代次数kmax。

2. 计算向量x(1):将向量x(0)代入公式:x(1)=-D^(-1)(L+U)x(0)+D^(-1)b,得到向量x(1)。

3. 计算向量x(2),以此类推:将向量x(1)代入公式:x(2)=-D^(-1)(L+U)x(1)+D^(-1)b,得到向量x(2)。

4. 直到满足精度要求或达到最大迭代次数为止。

5. 输出结果向量x(n),其中n为最后一次迭代的次数。

四、高斯塞德尔法迭代矩阵的收敛性和收敛速度高斯塞德尔法迭代矩阵的收敛性和收敛速度与矩阵A的特征值有关。

如果矩阵A是对称正定的,则高斯塞德尔法迭代矩阵一定收敛,且收敛速度比雅可比迭代法更快。

高斯-赛得尔迭代法


0

L~ D 1L, U~ D1U
于是 I L~ D1D D1L D1(D L) (3 16)
7
解线性方程组的迭代法
x(k1) (I L~)1U~x(k ) (I L~)1 g I L~ D1D D1L D1(D L) L~ D 1L, U~ D1U
将式(3-16)代入式(3-15)得
b1n xn(k)
g1
x2(k
1)
b x (k1) 21 1
b23x3(k) L
b x (k 2n1 n1
)
b2nxn(k)
g2
M
x (k1) n
b x (k1) n1 1
bn2x2(k1)
bn3x3(k1)
L
b x (k1) nn1 n1
gn
(3 13)
p4
2
解线性方程组的迭代法
b2n xn(k )
g2
M
x (k 1) n
bn1x1(k )
bn2 x2(k )
bn3 x3(k )
L
bnn
1xn
( 1
k
)
gn
其中
bij
aij aii
,
gi
bi aii
(i j,i, j 1, 2,L , n),
(i 1, 2,L , n).
(3 12)
1
解线性方程组的迭代法
因此,在Jacobi迭代法的计算过程中,要同时保留
即每算出新近似解的一个分量
x , ( k 1) i
再算下一个
x 分量
x(k 1) i 1
时,用新分量
x(k 1) i
代替老分量
(k ) i
进行计算。这样,在整个计算过程中,只需用n个

雅克比迭代法和高斯赛德尔迭代法的算法描述

雅克比迭代法和高斯赛德尔迭代法的算法描述一. 雅克比迭代法雅克比迭代法(Jacobi Iteration)是计算数值解的一种迭代方法,它遵循一个简单的步骤:给定问题的初始值,按照一定的规则,用求出某一个矩阵元素,替换当前值,得到下一个矩阵值,重复这个步骤,直到满足某一个条件,即为所求解的结果。

雅克比迭代法求解矩阵问题的一般步骤为:(1)给定初始矩阵A和右端值矩阵B,将第i行第j列的元素表示为aij,bi;(2)第i行其它元素之和定义为s(i) =∑(j≠i)|a(i, j)|,亦即∑|aij|;(3)如果s(i)不等于0,则第i行第i列元素的值更新为xi=1 (b(i) ∑(j≠i)[a(i, j)x(j)])/a(i, i)(4)重复步骤3,直到满足|X(i)X(i)|<ε(ε为设定的误差),此时x即为所求解的结果。

二. 高斯-赛德尔迭代法高斯-赛德尔迭代法(Gauss-Seidel Iteration)是另一种迭代方法,算法的基本思想也是:通过迭代,计算出当前矩阵的第i行第j列的元素xi;然后更新第i行第j列元素的值,继续迭代,直到某种条件满足,即可求出矩阵的解。

高斯-赛德尔迭代法的基本步骤为:(1)给定初始矩阵A和右端值矩阵B,将第i行第j列的元素表示为aij,bi;(2)第i行其它元素之和定义为s(i) =∑(j≠i)|a(i, j)|,亦即∑|aij|;(3)如果s(i)不等于0,则第i行第i列元素的值更新为xi=1 (b(i) ∑(j<i)[a(i, j)x(j)]∑(j>i)[a(i,j)x(j)] )/a(i, i)(4)重复步骤3,直到满足|X(i)X(i)|<ε(ε为设定的误差),此时x即为所求解的结果。

总结从上面的对比来看,雅克比迭代法和高斯赛德尔迭代法的步骤基本一致,均采用迭代的方式求解矩阵A的解X,不同的是,高斯赛德尔迭代法在更新矩阵A的第i行第i列元素时,采用把小于i的j元素的值替换成当前迭代求得的值来计算,而雅克比迭代法采用把全部j元素的值替换成当前迭代求得的值来计算。

GaussSeidel迭代法

Gauss Seidel 迭代法:Gauss Seidel 迭代法是逐个分量进行计算的一种方法,考虑线性代数方程组Ax=b 的分量法表示i j j ij b x a==∑n 1 , i=1,2,···,n对于给定的初值)0(x ,Ga迭代法如下: Gauss Seidel 迭代算法:· k=0· 11)(11)1(1/)2(x a x a b n j k j j k ∑=-==+ ·22)(2)1(1212)1(2/)3(x a x a x a b n j k j j k k ∑=--==++· …·1,1)(,12)1(,11)1(1-n /)1(x ----+--+-=-=∑=n n k n n n n j k j j n n k a x a x a b ·nn n j k j nj n k a x a b /)(x 11)1()1(n ∑-++-=== ·2)0()1(2)()1(x x x x k k k -<-++ε停止,否则k=k+1从Gauss Seidel 迭代算法的计算过程可以发现,每计算一个新的分量都需要前面所有新计算出来的分量的结果,这是一个严格的串行过程。

那么,如何设计一个并行计算的方法呢?记)0(1s j n i j ij i x a ∑+== ,i=1,2, …,n-1,s n =0。

并行计算方法如下:并行Gauss Seidel 迭代算法:k=0for i=1,n do0,/)(x )1(=-=+i ii i i k i s a s bfor j=1,n,j ≠i do)1(s ++=k i ji j j x a send{for} end{for}2)0()1(2)()1(x x x x k k k -<-++ε停止,否则k=k+1在并行Gauss Seidel 迭代算法中,每次并行计算j s ,之后可以并行计算截止条件是否满足。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高斯 - 塞德尔迭代法
1.高斯 - 塞德尔迭代法公式的矩阵形式
首先将高斯 - 塞德尔迭代法的公式表示为矩阵形式,为此设
这里是系数矩阵 A 的对角部分,是严格下三角部分,是严格上三角部分,则高斯 - 塞德尔迭代法的公式可表示为
(1)
用矩阵乘等式两边得
再用矩阵乘等式两边得
(2)
其中矩阵称为高斯—塞德尔迭代矩阵。

由此可见,高斯 - 塞德尔迭代法是一般迭代法中迭代矩阵为的
特殊情形。

需要指出的是,由于矩阵难于计算,所以式(2)多用在理论分析中。

2.高斯—塞德尔迭代法计算框图(见图)
高斯—塞德尔迭代法计算框图
3.高斯—塞德尔迭代法计算方法的代码实现(见GaoSiSaiDeEr.c)
4.结果分析:。

相关文档
最新文档