河堤段沟槽、顶管深基坑监测方案
深基坑施工监测方案

深基坑施工监测方案深基坑工程是现代城市建设中不可或缺的一部分,它能够为高层建筑、地下通道等大型工程提供稳定的基础支撑。
然而,由于施工过程中的地下水变化、土体变形等因素的存在,深基坑工程在施工过程中存在一定的风险。
因此,对深基坑施工进行监测是至关重要的,可以及时发现和解决施工过程中的问题,确保工程的安全和顺利进行。
一、地质勘察和监测点布置在深基坑工程施工前,必须进行全面详细的地质勘察,有针对性地了解施工区域的地质情况,包括地下水位、土层厚度、土质性质等。
基于地质勘察结果,对监测点的布置进行合理规划。
监测点的数量和位置应能够全面反映施工过程中的变化情况,常见的监测点有地表沉降监测点、竖向位移监测点、孔隙水压力监测点等。
二、地表沉降监测地表沉降是深基坑施工过程中最常见的变形现象之一。
通过地表沉降监测,可以及时发现并纠正可能导致基坑失稳的情况。
地表沉降监测一般采用沉降观测点布设的方法,将观测点设置在基坑周围,通过测量点的位移可以得到地表沉降的情况。
监测结果应及时分析和评估,根据情况进行调整和处理。
三、竖向位移监测深基坑施工过程中地下土体的位移情况是需要密切关注的。
通过竖向位移监测,可以了解土体变形的程度,判断土体的稳定性,并及时采取相应的措施。
竖向位移监测通常采用沉降观测仪器进行,将测点设置在基坑边缘、支护结构等位置。
监测结果可为工程设计和施工提供重要参考。
四、孔隙水压力监测地下水是深基坑施工中最主要的控制因素之一,对其变化进行监测是判断工程稳定性的重要手段。
孔隙水压力监测可以反映地下水的变化情况,及时发现地下水位的上升或下降情况,并采取相应的排水措施。
监测孔隙水压力通常采用水压计进行,将测点设置在基坑周围和下部地层中。
五、应力监测深基坑施工过程中,土体的应力状态是影响工程稳定性的重要因素之一。
通过应力监测,可以了解土体的变形和破坏情况,为工程设计和施工提供依据。
应力监测通常采用应变计进行,将测点设置在基坑边缘、支护结构等位置,监测不同方向上的应力变化。
深基坑施工监测方案

深基坑施工监测方案一、引言深基坑施工是建筑工程中常见的一项重要工作,为了确保施工的安全和质量,监测方案的制定和实施显得尤为重要。
本文将介绍深基坑施工监测方案的编制过程和关键内容,以期为相关工程提供参考和指导。
二、监测目标深基坑施工监测的目标是全面了解基坑周边土体的变形和沉降情况,及时掌握并评估施工过程中可能出现的安全隐患。
监测方案应包括以下几个方面的监测目标:1. 土体沉降监测:记录基坑周边土体的沉降变形情况,分析变形特点和趋势;2. 地下水位监测:监测地下水位变化,评估对基坑土体的影响;3. 周边建筑物、地下管线和交通设施的变形监测:关注基坑施工对周围环境的影响,及时发现并解决变形引起的安全问题。
三、监测方法和仪器设备为了实现监测目标,需要选择合适的监测方法和仪器设备。
根据实际情况,可以采用以下常用监测方法:1. 土体沉降监测:倾斜仪、自动水准仪、全站仪等;2. 地下水位监测:水位计、压力传感器等;3. 建筑物、地下管线和交通设施的变形监测:激光测距仪、位移传感器、摄像机等。
四、监测频率与数据处理监测的频率和数据处理是保证监测效果的重要环节。
监测频率应根据施工进度和环境变化确定,常见的频率包括日、周、月等。
数据处理应包括数据收集、校正、分析和报告输出等环节,确保数据的准确性和实时性。
五、监测预警和控制措施在实际监测过程中,如果发现土体变形或沉降超出预定的控制值,需要及时进行预警和采取有效的控制措施。
预警和控制措施应结合具体情况制定,包括但不限于以下几个方面:1. 增加监测频率,密切关注变形情况;2. 加固、加密现场监测设备;3. 调整施工方案,降低土体变形速度;4. 增加支护结构,提高基坑的稳定性;5. 及时向相关部门报告,寻求支持和解决方案。
六、监测报告为了记录监测的结果和过程,并及时向相关方进行汇报,监测方案中应包含监测报告的要求。
监测报告应包括以下几个方面的内容:1. 工程概况和监测目标的说明;2. 监测方法、设备和频率的描述;3. 监测数据的收集、校正和处理过程;4. 监测结果的分析和评估;5. 预警和控制措施的描述;6. 监测报告的格式和提交要求。
深基坑施工监测方案

深基坑施工监测方案为确保深基坑施工的安全性和可靠性,本文提出了一份深基坑施工监测方案。
该方案包括监测目标、监测内容、监测方法和监测频率等方面。
通过合理的监测手段和措施,能够及时发现并解决施工过程中的问题,保障工程质量,并最大程度地降低施工风险。
1. 监测目标深基坑施工监测的目标是全面掌握工程施工过程中的变形、沉降、应力等情况,确保基坑的稳定和周边环境的安全。
具体目标包括:1.1 基坑变形监测:监测基坑的水平位移、垂直位移和旋转位移等变形情况,及时了解基坑的形变趋势,判断基坑结构的稳定性。
1.2 周边建筑物变形监测:对周边建筑物进行水平位移和沉降监测,以判断基坑施工对周边建筑物的影响,并及时采取相应措施。
1.3 周边地面沉降监测:监测周边地面沉降情况,评估施工对地下水位及地基的影响,保证周边环境的稳定。
1.4 轴力监测:监测基坑支护结构的轴力情况,判断结构的受力状态,及时调整支护结构的施工方案。
2. 监测内容深基坑施工监测的内容涵盖了各个方面的参数和指标。
具体监测内容包括:2.1 基坑变形监测:每隔一定时间对基坑内部和周边地表进行变形监测,使用全站仪或测斜仪进行测量,记录基坑的水平位移、垂直位移和旋转位移等变形数据。
2.2 周边建筑物变形监测:对周边建筑物进行水平位移和沉降监测,使用测点标志和测斜仪等设备定期进行测量,记录建筑物的变形数据。
2.3 周边地面沉降监测:在不同位置设置监测点,使用水准仪或激光水准仪等设备进行地面沉降监测,记录地面沉降情况。
2.4 轴力监测:在基坑支护结构上设置应变片或应变计,监测支护结构的轴力情况,记录轴力数据。
3. 监测方法为了确保监测数据的准确性和可靠性,深基坑施工监测采用了多种监测方法。
具体监测方法包括:3.1 全站仪测量法:通过使用全站仪对基坑内部的参考点和周边地表的监测点进行测量,获取基坑的变形数据。
3.2 测斜仪测量法:在基坑内部和周边地表设置测斜仪,并定期对其进行测量,监测基坑和周边建筑物的变形情况。
管坑深基坑监测方案

一、工程概况本工程管道施工,管线桩号长度约3.48km,拟分段施工,每段150米,管线基坑设计宽度2米,设计开挖深度最大5.8米。
安全等级一级。
根据现行规范规程和设计要求,为确保基坑支护结构及周围环境的安全,在基坑施工的全过程中,要求对支护结构及周围环境(三倍基坑开挖深度范围内)作连续监测。
二、监测方案设计依据(一)本工程监测执行如下规范规程:1、本项目设计文件;2、《工程测量规范》GB 50026-2007,国家标准;3、《建筑基坑支护工程技术规程》DBJ/T 15-20-97,广东省标准;4、《广州地区建筑基坑支护技术规程》GJB 02-98,广州市标准;5、《建筑变形测量规程》JGJ8-2009,行业标准。
6、建筑基坑工程监测技术规范 GB50497-2009 (GB50497-2009)根据设计要求,各监测项目及数量详如下:(二)管道监测设置序号观测项目数量单位备注1 管线基坑支护结构顶部水平位移及沉降350 点观测点距20米2 管线基坑支护结构周围土体测斜350 孔观测点距20米,深度为15~20米3 管线基坑外地下水位350 孔观测点距20米,深度为15米4 民用建筑物沉降12 点5 25 点6三、监测技术要求(一)点位布施1、平面控制点设置平面控制网点选在基坑影响范围外(3倍基坑开挖深度以外)已有建筑物或构筑物,每个施工段设置一个平面控制网(3点)。
平面控制点做法:埋设反射棱镜。
2、水准基点设置水准基点即高程起算点,埋设于基坑影响范围之外。
水准基点选在基坑影响范围外(3倍基坑开挖深度以外)已有建筑物或构筑物的首层柱上,被选定的建筑物或构筑物必须采用桩基础,并已建成多年,沉降已经稳定。
每个施工段设置一个独立高程网(3点)。
水准基点做法见大样图。
3、监测点(孔)埋设(二)管道部分1、管线基坑支护结构顶部水平位移及沉降监测点埋设设置监测点500个。
做法:混凝土初凝前埋入Φ18钢筋,在露出地面的钢筋上焊接50×50×3钢板,钢板上粘贴LEICA反射片。
深基坑施工监测方案

深基坑施工监测方案一、项目概述深基坑工程是指土木工程中深度超过3米的基坑挖掘工程,其施工困难度大、风险高,需要进行持续而严密的监测工作。
本监测方案针对深基坑施工监测的全过程进行设计,旨在确保施工的安全性和顺利进行。
二、监测目标1.地质监测:对基坑周边的地质环境进行监测,包括土层的稳定性、地下水位以及地下水流动等情况,提前发现地质灾害隐患。
2.结构监测:对基坑周边的建筑物、道路、管线等结构进行监测,及时了解其受力情况,避免因基坑施工引起的损坏。
3.地下水监测:对基坑内的地下水位、水压等进行监测,确保基坑的排水畅通,从而保证施工的安全性和质量。
三、监测方法1.地质监测:采用地质勘探和地下水位监测等方法,对基坑周边的土层稳定性和地下水位进行实时监测,并定期进行分析和评估。
2.结构监测:采用挠度监测、应变测量以及烘箱干燥法等方法,对基坑周边的建筑物、道路、管线等进行结构监测,并记录监测数据,以便及时发现异常情况。
3.地下水监测:设置地下水位探头、水压计等监测设备,对基坑内部的地下水位和水压进行实时监测,并根据监测数据进行相应的处理和分析。
四、监测频率2.结构监测:在基坑开挖前、挖掘过程中和开挖完成后进行结构监测,根据需要可进行实时监测或定期监测,以确保结构的安全。
3.地下水监测:在基坑开挖前、挖掘过程中和挖掘完成后进行地下水位和水压监测,及时采取排水措施,确保基坑的排水正常。
五、监测报告1.地质监测报告:根据地质监测数据和分析结果,编制地质监测报告,评估基坑周边的地质环境稳定性和地下水位的变化情况,并提出相应的建议和措施。
2.结构监测报告:根据结构监测数据和分析结果,编制结构监测报告,评估基坑周边建筑物、道路、管线等的受力情况,并提出相应的建议和措施。
3.地下水监测报告:根据地下水监测数据和分析结果,编制地下水监测报告,评估基坑内部的地下水位和水压情况,并提出相应的建议和措施。
六、监测责任1.施工方:负责监测设备的安装、维护和数据的收集及整理工作,按照监测方案的要求进行监测,并保证监测设备的正常运行。
深基坑监测方案

深基坑监测方案深基坑监测是建设工程中非常关键的一项工作,目的是确保基坑施工的安全和稳定。
下面给出了一个深基坑监测方案的示例,以供参考。
一、监测目标:1. 监测基坑变形和沉降情况,包括水平位移、垂直变形和沉降速度等参数。
2. 监测基坑周边的地面沉降情况,包括径向沉降和破坏区域的扩展情况。
3. 监测基坑周围的建筑物和地下管线的变形情况,确保安全运营。
二、监测方法:1. 使用水平位移监测仪器对基坑周边的地面进行实时监测,记录并分析监测数据,发现任何异常变化。
2. 使用测斜仪对基坑内部的土体进行定期监测,分析土体的变形和沉降情况。
3. 使用沉降观测点和标高测量方法来监测基坑和周边地面的沉降情况。
4. 使用全站仪对基坑周边的建筑物进行定期监测,记录建筑物的变形情况。
5. 使用地下雷达和超声波探测仪对基坑周边地下管线进行定期监测,确保管线的完整性。
三、监测频率:1. 地面监测:每日监测一次,记录并分析数据。
2. 测斜监测:每周监测一次,记录并分析数据。
3. 沉降监测:每周监测一次,记录并分析数据。
4. 建筑物监测:每月监测一次,记录并分析数据。
5. 管线监测:每季度监测一次,记录并分析数据。
四、监测报告:1. 每次监测后,需要生成监测报告,记录监测数据和分析结果。
2. 每周整理一次监测报告,总结监测情况,并提出相应的建议和措施。
五、紧急预警和应急响应:1. 如果监测发现有任何异常情况,需要立即发出预警,并采取相应的紧急措施。
2. 监测人员需要有相应的培训和技能,能够在紧急情况下做出正确的应急响应。
六、监测人员:1. 由专业的监测公司派遣监测人员进行监测工作。
2. 监测人员应具备相关的专业背景和技能,能够熟练操作监测仪器设备,并能准确分析监测数据。
七、监测费用:1. 监测费用由施工单位承担,包括监测仪器设备的购买和维护,以及监测人员的人力成本。
2. 监测费用应计入工程造价。
以上是一个深基坑监测方案的示例,具体实施方案需要根据具体的工程要求进行调整和补充。
深基坑监测施工方案
深基坑监测施工方案一、项目背景和目的深基坑施工是工程建设中常见的一项工作,其目的是为了解决工程中的土壤支护问题。
随着城市建设的不断发展,深基坑工程日益增多,为此,需要建立一套科学有效的监测施工方案,以确保施工过程的安全性和顺利性。
二、施工前的准备工作在深基坑监测施工方案中,施工前的准备工作至关重要。
首先,需要对基坑的边界和土质进行详细的调查和评估,以确定土层的强度和稳定性情况。
其次,需要制定具体的监测方案和安全措施,以确保施工过程中的监测工作能够有效进行。
三、设计监测方案1.监测点的确定:根据基坑的大小和形状,需要设计合理的监测点布置方案。
监测点应覆盖基坑的各个关键部位,如坑底、坑壁和坑口等。
同时,根据基坑所在地的土质特点,可以选择不同的监测方法,如测斜、测水位和测应力等。
2.监测仪器的选择和安装:根据监测点的位置和监测参数的要求,需要选择合适的监测仪器,并进行正确的安装和校准。
监测仪器的选择应该考虑到其测量范围、测量精度和使用方便程度等因素。
3.数据采集和处理:监测过程中得到的数据需要进行实时采集和处理。
可以通过传感器和数据采集系统实现数据的实时采集,并利用专业的监测软件对数据进行分析和处理。
同时,需要建立完善的数据备份和存档制度,以保证数据的完整性和可靠性。
四、施工中的监测措施1.现场巡检:深基坑施工过程中,需要安排专人进行现场巡检,以及时发现和处理施工过程中的问题。
巡检的内容包括坑底土层的沉降情况、坑壁的裂缝和滑动情况等。
2.监测数据的实时传输和分析:监测数据应该实时传输到监测中心,并由专业的工程师对数据进行分析和评估。
如果发现数据异常,需要及时采取相应的措施进行处理,以防止事故的发生。
3.应急预案的制定:在施工过程中,可能会遇到突发事件,如降雨、地震等。
为此,需要制定相应的应急预案,以便在紧急情况下能够及时采取措施进行处理,保障工程的安全。
五、监测报告的编制和总结深基坑监测施工结束后,需要编制监测报告,对监测数据进行总结和分析。
深基坑施工监测方案
深基坑施工监测方案一、前言深基坑施工是城市建设中常见的一项工程,由于其施工过程具有一定的风险性,因此需要进行监测以确保工程的安全进行。
本文将介绍深基坑施工监测方案。
二、监测目的深基坑施工监测的目的是通过对基坑周围土体变形、水位变化、支护结构变形等进行实时监测,以判断施工过程中是否存在风险,及时采取相应措施保障工程安全。
三、监测内容与方法1. 土体变形监测通过安装变形监测仪器,如测站、刷卡仪等,定时测量监测点位的变形数据,包括沉降、位移等。
监测点位需根据基坑的情况进行设置,一般包括基坑四周、内外支护结构、重要附属设施等位置。
2. 土体水位监测通过设置水位测点,监测基坑周围水位变化情况。
水位监测需考虑地下水位、降雨情况等因素,确保监测数据准确可靠。
3. 支护结构变形监测通过在支护结构上安装变形仪器,监测支护结构的变形情况。
常见的变形仪器包括支护边墙的倾斜仪、锚杆的应变测计等。
这些仪器能够实时监测支护结构的变形情况,及时预警并采取安全措施。
四、监测频率与报告监测频率应根据具体的施工情况而定,一般来说,在基坑开挖过程中,监测频率可逐渐提高,以便及时发现问题并采取措施。
监测报告应按照一定的时间间隔提交,内容应包括监测数据、分析结果、问题和建议等。
五、应急措施在深基坑施工监测过程中,如果发现存在安全隐患或风险,应立即采取相应的应急措施,保护施工人员和周围环境的安全。
应急措施可能包括停工、加固支护结构、调整施工方案等。
六、总结深基坑施工监测方案对于施工过程的安全控制起到重要作用。
通过对土体变形、水位变化、支护结构变形等的监测,能够及时发现问题并采取相应的措施,确保施工过程的安全。
在实施监测过程中,应按照监测频率提交监测报告,并采取应急措施来应对意外情况。
以上介绍了深基坑施工监测方案的相关内容,希望能对深基坑施工的安全控制提供一定的参考和指导。
通过严谨的监测方案的实施,可以有效降低施工风险,保障工程的顺利进行。
深基基坑监测专项施工方案
深基基坑监测专项施工方案一、项目背景深基坑施工过程中,为确保施工的安全性和稳定性,需要进行深基坑监测。
深基坑监测通过对基坑周边地面沉降、地下水位、地下管线及结构变化等进行实时监测,及时掌握基坑施工的变形和变化情况,从而采取相应的施工措施,确保施工工程的安全进行。
本文旨在制定深基坑监测专项施工方案,为相关监测工作提供指导。
二、监测目标1.测量基坑周边地面沉降变形情况;2.监测基坑内地下水位;3.监测施工过程中的地下管线和结构的变化情况;4.根据监测结果,及时提出应对措施。
三、监测内容和方法1.周边地面沉降监测a.选择适合的监测点进行地面沉降监测;b.使用高精度全站仪或GNSS测量设备,每日固定时刻进行测量;c.测量点布设应保持均匀、合理,覆盖整个基坑范围;d.实时记录沉降数据,并进行数据分析和对比。
2.地下水位监测a.在距基坑边缘一定距离内,选择适宜的井点开挖井眼;b.井眼处安装水位计监测地下水位的变化;c.定期测量地下水位,并记录数据;d.根据地下水位变化情况,及时采取控制措施。
3.地下管线和结构变化监测a.根据基坑周边土质情况和相关图纸,确定地下管线及结构的位置和走向;b.使用地下探测设备进行地下管线和结构的探测,并标定位置并记录相关数据;c.施工过程中,对管线和结构的变化进行定期监测,并记录变化情况;d.如有变化情况超出设定范围,及时采取措施进行修整或处理。
四、数据管理与分析1.成立专门的监测数据管理及分析小组;2.对每次监测得到的数据进行录入、存储和管理;3.利用专业软件对数据进行分析和处理,制作监测报告和图表;4.针对监测数据进行综合分析,及时发现问题并提出解决建议。
五、监测周期和报告1.地面沉降监测:每日测量;2.地下水位监测:每周测量;3.地下管线和结构监测:每周测量;4.每月开会讨论监测数据,并制作监测报告;5.随时根据监测结果调整施工计划。
六、安全措施1.监测设备要符合相关要求、规范,并经过验证和校准;2.监测人员要熟悉操作规程和注意事项,做好个人防护措施;3.在施工现场设置警示标志,防止不相关人员进入监测区域;4.如发现监测数据异常或超过设定范围,应立即上报,暂停施工并采取相应措施;5.高风险时段应加强监测频率和范围,确保施工安全。
深基坑监测专项施工方案
一、工程概况本工程为深基坑施工项目,基坑深度约8米,占地面积约500平方米。
基坑周边环境复杂,包括地下管线、周边建筑物等。
为确保施工安全和工程质量,特制定本深基坑监测专项施工方案。
二、监测目的1. 监测基坑围护结构的变形和稳定性,确保施工安全;2. 监测周边地下管线和建筑物的沉降,防止对周边环境造成影响;3. 为施工提供实时数据,指导施工方案的调整。
三、监测内容1. 基坑围护结构水平位移监测;2. 基坑围护结构竖向位移监测;3. 周边地下管线沉降监测;4. 周边建筑物沉降监测。
四、监测方法1. 水平位移监测:采用测斜仪进行监测,测量基坑围护结构水平位移;2. 竖向位移监测:采用水准仪进行监测,测量基坑围护结构竖向位移;3. 地下管线沉降监测:采用精密水准仪进行监测,测量地下管线沉降;4. 周边建筑物沉降监测:采用精密水准仪进行监测,测量周边建筑物沉降。
五、监测频率1. 基坑围护结构水平位移和竖向位移监测:每日监测一次;2. 地下管线沉降监测:每周监测一次;3. 周边建筑物沉降监测:每周监测一次。
六、监测数据处理1. 对监测数据进行实时记录,确保数据的准确性;2. 对监测数据进行整理和分析,发现异常情况及时报告;3. 对监测数据进行统计和评估,为施工方案的调整提供依据。
七、监测设备配置1. 测斜仪:用于监测基坑围护结构水平位移;2. 水准仪:用于监测基坑围护结构竖向位移、地下管线沉降和周边建筑物沉降;3. 数据采集器:用于实时记录监测数据;4. 软件系统:用于监测数据分析和处理。
八、监测人员要求1. 监测人员应具备相关专业知识和技能,熟悉监测设备的操作和维护;2. 监测人员应严格遵守监测规程,确保监测数据的准确性;3. 监测人员应定期参加培训和考核,提高监测技能。
九、监测安全管理1. 监测现场应设置警示标志,防止人员误入;2. 监测设备应妥善保管,防止损坏和丢失;3. 监测人员应遵守安全操作规程,确保自身安全。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河堤段沟槽、顶管深基坑监测方案
一、大堤段沟槽开挖监测
1、监测目的
通过监测,可以及时掌握沟槽开挖及施工过程中沟槽边坡的实际状态及周边环境的变化情况,做到及时预报,为沟槽边坡和周边的安全和稳定提供监控数据,防患于未然。
通过监测数据与设计参数的对比,可以分析的正确性和合理性,科学合理地安排下一步工序,必要时及时修改设计,使设计更加合理,施工更加安全。
2、水平位移监测
(1)水平位移监测原理
水平位移监测是沟槽监测中最基本的一项。
水平位移的观测可提供沟槽边坡的水平变形量、变形速率和变形分布信息,进而可分析沟槽边坡的稳定性。
水平位移采用经纬仪按照视准线法进行测量。
本工程沟槽水平位移预警值设为坑深的6‰,报警值设为8‰,水平位移变化速率警戒值均设为沟槽深度未变化时连续三天位移率超过5mm/天。
(2)监测仪器
采用经纬仪、全站仪。
(3)监测点的布置
在沟槽的边上每20m布置一个水平位移监测点。
在沟槽上口外50cm位置定桩,桩中间砸钉制作水平位移观测点。
(4)测定方法
观测方法采用视准线法,观测时使每段观测点与两端工作基点布成一条准直线,将仪器设于一端工作基点上,后视另一工作基点,确定各观测点相对于准直线的偏移量。
工作基点应视现场情况布置在变形区以外的稳定地点,以保证测值准确可靠。
观测时,各观测点必须至少测一测回,以保证观测精度。
如现场基准端点布置困难,也可采用全站仪测定法,在开挖前测定监测点坐标,施工中复测监测点坐标,以求得偏差值。
(5)监测频率
土方开挖期间,测量频率为1次/1日。
土方开挖完成及中大雨雪后均需测量。
当相邻两次位移量大于3mm或总变形量达30mm时,应缩短观测周期至2次/1日。
沟槽开挖完毕后,观测周期延长至1次/1周,直至沟槽回填完毕后停止观测。
3、变形信息分析处理
凡在当天监测到的数据,必须当天处理完毕。
并绘制支护结构的变形曲线,实测与设计情况基本吻合的用绿色表示,当天数据超过规范要求的或有一定异常的,用黄色表示,有倾向性偏离,而且偏离值比较大的,用红色表示,并加上不安全的警示标记。
监测人员必须在当天向施工单位技术主管人员进行口头提醒,如有需要应向其主管部门进行通报。
每周将本周的报表进行整理上报。
二、污水顶管监测
1、监测项目
现场施工中,要求通过适当的监测手段,随时掌握周边环境的变化以及顶管通过路面的稳定状态,为设计和施工提供信息。
通过反馈,及时修改,优化支护方案,改善施工工艺,预防事故;同时,监测资料还可作为检验和评价支护结构稳定性的依据。
结合本工程实际,监测项目主要内容如下:
(1)顶管通过路线的地表下沉监测。
(2)基坑结构下沉监测。
(3)基坑结构侧墙位移监测。
(4)目测巡视。
由于本污水顶管管线距离周边建筑物较远,故不考虑建筑物沉降监测;工作坑处采用降水井降水,设专人负责监测降水井水位,保证工作坑干槽作业要求。
2、监测内容及测点布置
(1)根据设计要求和相应的规范规程,为确保施工安全,做到信息化施工,拟定的施工监测项目主要有基坑结构位移、地表下沉等。
(2)具体的监测项目、测点布置、使用仪器设备及观测频率如下表所示。
3、监测点的布设
(1)基准点设置
水准基准点(又称监控点)是沉降观测起始数据的基本控制点,拟布设深埋混凝土结构水准基准点5个,形成监控网。
基准点设置在所观测建筑物50m 的沉降影响变形区以外;工作基点距离拟建建筑物的距离不得小于建筑物基础深度的 1.5-2.0 倍,工作基点与联系点也可在稳定的永久建筑物墙体或基础上设置,要求埋设于车辆、
行人少,通视情况良好且便于保存的地方。
基准点埋设深度应达到原状土层。
采用洛阳铲钻孔,直径为150mm,灌注混凝土,中间埋设直径25mm 左右的螺纹钢筋。
混凝土浇注养护稳定后方能开始引测基准点标高,并进行首次联测。
(2)变形监测点的埋设
根据规范及设计要求,沉降观测点标志制作采用埋设L形螺纹钢(Φ=22mm)的方案,并用红油漆标记编号,每个竖井圈梁四角设置四个变形观测点具体规定按《建筑物变形测量规程》第C.0.2条规定执行。
4、监测点保护措施
(1)监测点是一切测试工作的基础,因此特别加强对各监测点的保护工作,完善检查、验收措施;
(2)在每个监测点埋设完成后,应立即检查埋设质量,发现问题,及时整改;
(3)确认埋好后,埋设人员应及时填写埋设记录,并准确测量初始数据存档,作为开挖时监测的参考;项目负贵人应进行实地验收,并在埋设记录上签字确认;
(4)对于所有预埋监测点的实地位置应做精确记录,露出地坪的应做出醒目标志,并设保护装置。
5、施工监测
(1)基坑施工现场必须组织专职量测小组。
量测小组在施工单位项目部技术负责人领导下,负贵测点埋设、日常量测和数据处理等工作,并及时向主管技术领导和部门反馈量测数据。
(2)五固定:固定观测人员;固定观测仪器;固定观测水准尺;固定观测路线;固定观测方法。
(3)每次观测之前将仪器露天放置30分钟。
(4)烈日下观测使用观测伞;温差变化较大时使用仪器罩。
(5)常规水准观测顺序为后前前后。
(6)在线路上预先测量距离,水准仪与水准尺之间的距离不超过50m,分别在水准尺和水准仪摆设处作相应标志。
(7)竖井支护过程监控测量
基坑支护过程监控测量表
(8)异常情况的判别和对策
制定量测监控方案时应根据有关规范、规程、计算资料和设计文件确定监控量测项目的管理基准值,并把管理基准值的70%时定为监控量测项目的警戒值。
在量控监测的过程中,若发现观测值达到了警戒值,则应进一步加大观测频率,密切观测。
当监测数据达到或超过管理基准值时,应停止施工,报告监理,并向监理报送应急补救措施,修正支护参数后方能继续施工。