实数全章教学案

合集下载

实数全章教学设计北师大版

实数全章教学设计北师大版
(4)实际问题案例:收集一些与实数相关的实际问题,如财务计算、长度测量等,用于课后练习和课堂讨论。
2.拓展建议:
(1)让学生阅读数学绘本,通过故事的形式了解实数的概念和应用,提高学生的学习兴趣。
(2)让学生阅读科普文章,了解实数在现实世界中的重要性,提高学生的数学应用意识。
(3)利用网络资源,让学生自主学习实数相关的知识,通过练习题进行巩固。
(5)教师可组织课后讨论或展示活动,让学生分享自己的拓展学习成果,促进学生之间的相互学习和交流。
(6)教师应鼓励学生积极参与拓展学习,培养学生的自主学习能力和批判性思维能力。
(7)教师应关注学生的学习态度和表现,及时调整拓展学习的内容和难度,以适应学生的个性化学习需求。
八、课堂小结,当堂检测
1. 课堂小结:
七、课后拓展
1.拓展内容:
(1)阅读材料:推荐学生阅读与实数相关的数学故事、科普文章、数学历史等,如《数学家的故事》、《数学与生活》等,增强学生对实数的理解和兴趣。
(2)视频资源:推荐学生观看与实数相关的数学教学视频、纪录片等,如《数学的力量》、《数学之美》等,帮助学生更直观地理解实数的概念和应用。
(3)在线学习平台:鼓励学生登录在线学习平台,如“中国大学MOOC”、“Coursera”等,选择实数相关的课程进行自主学习,提高学生的数学素养。
(4)数学竞赛与活动:鼓励学生参加数学竞赛、数学建模活动等,锻炼学生的数学思维和实际应用能力。
(5)实地考察与实验:组织学生进行实地考察或实验,如测量长度、计算面积等,让学生亲身体验实数的应用。
2.拓展要求:
(1)学生自主选择拓展内容,根据自己的兴趣和学习进度进行学习和探索。
(2)学生可以进行小组讨论或与他人交流,分享自己的学习心得和发现。

七年级上数学集体备课教案实数

七年级上数学集体备课教案实数

七年级上数学集体备课教案实数第一章:实数的概念与分类一、教学目标:1. 理解实数的概念,掌握实数的分类。

2. 能够正确运用实数进行运算。

二、教学内容:1. 实数的概念:有理数、无理数。

2. 实数的分类:整数、分数、正实数、负实数、正有理数、负有理数、正无理数、负无理数。

三、教学重点与难点:1. 实数的概念与分类。

2. 实数的运算规律。

四、教学方法:1. 采用讲授法,讲解实数的概念与分类。

2. 运用案例分析法,分析实数的运算规律。

五、教学步骤:1. 引入实数的概念,讲解有理数和无理数。

2. 介绍实数的分类,包括整数、分数、正实数、负实数、正有理数、负有理数、正无理数、负无理数。

3. 通过例题讲解实数的运算规律。

六、课后作业:1. 复习实数的概念与分类。

2. 练习实数的运算题目。

第二章:实数的运算一、教学目标:1. 掌握实数的运算方法。

2. 能够熟练运用实数进行运算。

二、教学内容:1. 实数的加法、减法、乘法、除法运算。

2. 实数的乘方、开方运算。

三、教学重点与难点:1. 实数的运算规律。

2. 实数的乘方、开方运算。

四、教学方法:1. 采用讲授法,讲解实数的运算方法。

2. 运用案例分析法,分析实数的运算规律。

五、教学步骤:1. 复习实数的概念与分类。

2. 讲解实数的加法、减法、乘法、除法运算。

3. 讲解实数的乘方、开方运算。

六、课后作业:1. 复习实数的运算方法。

2. 练习实数的运算题目。

第三章:实数的大小比较一、教学目标:1. 掌握实数的大小比较方法。

2. 能够熟练运用实数进行大小比较。

二、教学内容:1. 实数的大小比较原则。

2. 实数的大小比较方法。

三、教学重点与难点:1. 实数的大小比较原则。

2. 实数的大小比较方法。

四、教学方法:1. 采用讲授法,讲解实数的大小比较原则。

2. 运用案例分析法,分析实数的大小比较方法。

五、教学步骤:1. 复习实数的概念与分类。

2. 讲解实数的大小比较原则。

3. 讲解实数的大小比较方法。

第二章 实数全章教案-

第二章 实数全章教案-

第二章实数1.数怎么又不够用了第一课时 数怎么又不够用了(1)教学目标1.通过拼图活动,让学生感觉无理数产生的实际背景和学习它的必要性。

2.进一步丰富无理数的实际背景,使学生体会到无理数在实际生活中大量存在,并对无理数产生感性认识。

重点:对无理数的感识难点:对无理数的认识教学过程一、复习1.什么叫有理数,举出例子。

2.勾股定理的内容?若Rt △ABC 的两个直角边分别是5、12,求它的斜边。

二、创设问题情境,引导学生思考,引入课题出示投影(一)P25页首图文1教师指出:随着人类的认识不断发展,人们发现,现实生活中确实存在不同于有理数的数,本章我们将学习元理数、实数、平方根、立方根的概念,学习利用估算或借助计算器求出一个无理数的近似值,并解决有关的实际问题。

出示课题:数怎么不够用了.三、师生共同参与教学活动,获得生活中大量存在的不是有理数的认识1.拼图活动(1)让学生把准备好的两块边长相同的正方形,通过剪一剪、拼一拼,拼成一个大的正方形。

(2)鼓励学生充分思考,交流并给予引导。

(3)教师把学生的几种做法在全班展示。

2.对拼图的结果作进一步分析(1)设大正方形的边长为a ,a 满足什么条件?(2)a 可能是整数吗?说说你的理由。

(3)a 可能是以2为分母的分数吗?可能是以3为分母的分数吗?说说你的理由。

(4)a 可能是分数吗?说说你的理由,并与同伴交流。

教师鼓励学生充分进行思考、交流,给予适时引导。

学生的回答可能是。

“l 2=1,22=4,32=9……越来越大,所以a 不可能是整数。

”“(21)2=41,(32)2=94……结果都是分数,所以a 不可能是分数。

”“两个相同的最简分数的乘积仍然是分数,所以a 不可能是分数”等。

这里只要学生能进行简单的说理即可。

教师归纳:事实上,在等式a 2=2中,a 既不是整数也不是分数,所以a 不是有理数。

说明在生活中存在着不是有理数的数。

3.做一做出示投影(三):P25页“做一做”内容(1)让学生用勾股定理算出以直角三角形的斜边为边的正方形的面积是多少?(2)设正方形的边长为b ,b 满足什么条件? (3)b 是有理数吗?(4)让学生分组交流以上问题后回答。

新人教版七年级下册第六章实数全章教案51621备课讲稿

新人教版七年级下册第六章实数全章教案51621备课讲稿

6.1.1平方根(第一课时)】知识与技能:通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示;过程与方法:通过生活中的实例,总结出算术平方根的概念,通过计算非负数的算术平方根,真正掌握算术平方根的意义。

情感态度与价值观:通过学习算术平方根,认识数与人类生活的密切联系,建立初步的数感和符号感,发展抽象思维,为学生以后学习无理数做好准备。

教学重点:算术平方根的概念和求法。

教学难点:算术平方根的求法。

一、情境引入:问题:学校要举行美术作品比赛,小欧很高兴,他想裁出一块面积为225dm 的正方形画布,画上自己得意的作品参加比赛,这块正方形画布的边长应取多少?二、探索归纳:1.探索:学生能根据已有的知识即正方形的面积公式:边长的平方等于面积,求出正方形画布的边长为dm 5。

接下来教师可以再深入地引导此问题:如果正方形的面积分别是1、9、16、36、254,那么正方形的边长分别是多少呢?学生会求出边长分别是1、3、4、6、52,接下来教师可以引导性地提问:上面的问题它们有共同点吗?它们的本质是什么呢?这个问题学生可能总结不出来,教师需加以引导。

上面的问题,实际上是已知一个正数的平方,求这个正数的问题。

2.归纳:⑴算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即x 2=a 那么这个正数x 叫做a 的算术平方根。

⑵算术平方根的表示方法:a 的算术平方根记为a ,读作“根号a ”或“二次很号a ”,a 叫做被开方数。

三、应用:例1、 求下列各数的算术平方根:⑴100 ⑵6449 ⑶971 ⑷0001.0 ⑸0 注:①根据算术平方根的定义解题,明确平方与开平方互为逆运算;②求带分数的算术平方根,需要先把带分数化成假分数,然后根据定义去求解;③0的算术平方根是0。

由此例题教师可以引导学生思考如下问题:你能求出-1,-36,-100的算术平方根吗?任意一个负数有算术平方根吗?归纳:一个正数的算术平方根有1个;0的算术平方根是0;负数没有算术平方根。

新课标人教版八年级数学上册第十三章实全章教案

新课标人教版八年级数学上册第十三章实全章教案

新课标人教版八年级数学上册第十三章实全章教案
第一章实数
1.1 平方根【第一课时】
教学目标:
【知识与技能】
了解平方根与算术平方根的概念,理解负数没有平方根及非负数开平方的意义。

【过程与方法】
理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示,能用科学计算器求平方根及其近似值。

【情感、态度与价值观】
体会平方与开平方这一对互逆运算的辩证关系,感受平方根在现实世界中的客观存在,增强数学知识的应用意识。

【教学重点】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示。

【教学难点】会用平方根的概念求某些数的平方根,并能用根号加以表示。

【教具准备】小黑板科学计算器
【教学过程】
一、导入
1、通过七年级的学习,相信同学们都对数学这门课程有了更深入的认识,这个学期,我们将一起来学习八年级的数学知识,这个学期的知识将会更加有趣。

2024年华东师大版八年级数学上册教案1122实数

2024年华东师大版八年级数学上册教案1122实数

2024年华东师大版八年级数学上册教案1122实数一、教学内容本节课选自2024年华东师大版八年级数学上册第十一章第二节数学广角,主题为“实数”。

具体内容包括实数的概念、分类和性质,以及实数在数轴上的表示。

教材涉及章节为11.2节。

二、教学目标1. 理解实数的概念,掌握实数的分类及性质。

2. 学会实数在数轴上的表示方法,并能运用其解决实际问题。

3. 培养学生的数感和逻辑思维能力。

三、教学难点与重点教学难点:实数的性质及其在数轴上的表示方法。

教学重点:实数的概念及其分类。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:直尺、圆规、练习本。

五、教学过程1. 引入:通过生活中的实例,如气温、身高等,引导学生了解实数的概念。

2. 新课导入:讲解实数的定义、分类(有理数、无理数)及性质。

3. 例题讲解:讲解实数在数轴上的表示方法,并举例说明。

4. 随堂练习:让学生在数轴上表示给定的实数,并判断其大小关系。

6. 知识拓展:介绍实数在数学及其他学科中的应用。

六、板书设计1. 实数的定义、分类及性质。

2. 实数在数轴上的表示方法。

3. 例题及解答步骤。

七、作业设计1. 作业题目:实数填空题、选择题、解答题。

(1)填空题:填写实数的分类及性质。

(2)选择题:选择正确的实数表示方法。

(3)解答题:求解实数的大小关系,并在数轴上表示。

2. 答案:课后提供标准答案。

八、课后反思及拓展延伸1. 反思:回顾本节课的教学过程,分析学生的掌握情况,针对问题进行改进。

2. 拓展延伸:引导学生了解实数与数的其他概念(如复数、虚数)的关系,激发学生的学习兴趣。

重点和难点解析1. 实数的性质及其在数轴上的表示方法。

2. 实数的概念及其分类。

3. 教学过程中的例题讲解和随堂练习。

4. 作业设计中的解答题和答案。

一、实数的性质及其在数轴上的表示方法实数的有序性:任意两个实数可以比较大小,这是实数在数轴上表示的基础。

实数的封闭性:实数的加、减、乘、除(除数不为零)结果仍为实数。

人教版七年级下册第六章实数教学设计

人教版七年级下册第六章实数教学设计
一、教学目标
1.知识目标:掌握实数的概念与性质,能够实现实数的加减乘除运算。

2.技能目标:能够应用实数进行简单实际问题的解决。

3.情感目标:培养学生的数学思维能力,提高数学学科的探索性与创造
性。

二、教学重点难点
1.教学重点:实数的概念与性质,实数的加减乘除运算。

2.教学难点:实数概念的理解与应用,实数加减乘除运算的实际应用。

三、教学步骤与方法
1. 激发兴趣,导入新课
通过一些有趣、生动的例子,引导学生认识实数的重要性与价值。

例如,通过一些实际应用情景的分析,让学生感受实数的实际应用之处。

2. 知识的教授
(1) 实数的概念与性质
通过教师讲解实数的定义与性质,以引导学生认识实数的本质特征:即包含所有有理数和无理数。

同时,带领学生感受实数与有理数、无理数之间的关系。

(2) 实数的加减运算
通过举例教学与练习,让学生掌握实数的加减运算,了解不同类型的实数加减操作的不同应用。

包括正数加正数、正数加负数、负数加正数、负数加负数的加减乘除运算。

1。

《实数》精品教案

《实数》精品教案一、教学内容本节课选自人教版数学教材八年级下册第十六章《实数》的第一节,内容包括实数的定义、分类及性质。

详细内容如下:1. 实数的定义:有理数和无理数的统称,表示为R。

2. 实数的分类:整数、分数、无理数。

3. 实数的性质:实数具有有序性、稠密性和完备性。

二、教学目标1. 知识与技能:理解实数的定义和分类,掌握实数的性质。

2. 过程与方法:通过例题讲解和随堂练习,提高学生的实数运算能力和解决问题的能力。

3. 情感态度与价值观:培养学生对实数概念的理解,激发学生学习数学的兴趣。

三、教学难点与重点1. 教学难点:实数的定义和性质,尤其是无理数的理解。

2. 教学重点:实数的分类和实数运算。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:练习本、铅笔、橡皮。

五、教学过程1. 引入:通过生活实例,如测量物体长度、计算面积等,引导学生体会实数的必要性。

2. 新课导入:讲解实数的定义、分类及性质,结合多媒体课件进行演示。

3. 例题讲解:选取具有代表性的例题,如实数运算、比较大小等,详细讲解解题思路和方法。

4. 随堂练习:设计具有梯度的问题,让学生独立完成,巩固所学知识。

六、板书设计1. 实数的定义2. 实数的分类1. 整数2. 分数3. 无理数3. 实数的性质4. 实数运算5. 例题及解题方法七、作业设计1. 作业题目:(3)计算:2/3 + √5,(√3 √2)²。

2. 答案:(1)实数:0,3/4,√2,5.6,π,e,…(2)从大到小:e,π,√5,3/2,√3,2(3)2/3 + √5 = 2/3 + √5;(√3 √2)² = 5 2√6。

八、课后反思及拓展延伸1. 课后反思:本节课学生对实数的定义和性质掌握较好,但在实数运算方面还需加强练习。

2. 拓展延伸:引导学生研究实数与数轴的关系,了解实数在数轴上的表示方法,为后续学习函数打下基础。

同时,鼓励学生探索实数在实际问题中的应用,提高学生的数学素养。

第六章实数总(教案)

1.讨论主题:学生将围绕“实数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
突破方法:通过数轴、几何图形等直观手段,帮助学生理解无理数的存在和性质。
(2)实数的运算:尤其是无理数的运算,学生容易混淆运算规则,导致计算错误。
突破方法:总结运算规律,进行大量练习,提高学生的运算技巧和准确性。
(3)实数的大小比较:对于无理数与无理数、有理数与无理数之间的大小比较,学生可能感到困惑。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了实数的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对实数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学过程中,我发现学生们对实数的概念和运算有着一定的好奇心,但同时也存在一些困惑。在讲解实数的分类时,我注意到部分学生对于无理数的理解还不够深入,这可能是因为无理数较为抽象,难以直观感受。在今后的教学中,我需要寻找更多的实例和直观教具,帮助学生更好地理解无理数的性质。
4.注重学生对知识点的内化,鼓励他们用自己的话来总结所学内容。
(3)实数的大小比较:学会比较实数的大小,尤其是无理数与无理数、有理数与无理数之间的大小关系。
举例:比较π与√3的大小,解释原因。
(4)实数在实际问题中的应用:学会将实数应用于解决实际问题,建立数学模型,提高解决问题的能力。

新浙教版七年级数学上册《实数》教案

新浙教版七年级数学上册《实数》教案一、教学内容本节课的教学内容为新浙教版七年级数学上册《实数》章节,具体包括实数的概念、分类和运算规则。

实数包括有理数和无理数,有理数包括整数和分数,无理数为不能表示为分数形式的实数。

本节课将重点讲解实数的分类和运算规则,并通过实例让学生掌握实数的加减乘除运算。

二、教学目标1. 让学生了解实数的概念,掌握实数的分类及特点。

2. 学会实数的运算规则,能熟练进行实数的加减乘除运算。

3. 培养学生的逻辑思维能力,提高学生解决实际问题的能力。

三、教学难点与重点重点:实数的分类和运算规则。

难点:无理数的概念及实数的运算。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。

2. 学具:教材、练习本、铅笔、橡皮。

五、教学过程1. 实践情景引入:以日常生活中购物找零为背景,让学生思考如何用实数表示找零金额。

2. 实数的概念与分类:讲解实数的概念,引导学生理解实数的无限性和连续性。

介绍实数的分类,包括有理数和无理数,并讲解它们的特点。

3. 实数的运算规则:讲解实数的加减乘除运算规则,并通过例题让学生掌握运算方法。

4. 随堂练习:布置一些有关实数运算的练习题,让学生独立完成,巩固所学知识。

六、板书设计1. 实数的概念与分类实数:有理数、无理数有理数:整数、分数无理数:不能表示为分数形式的实数2. 实数的运算规则加法:a + b减法:a b乘法:a × b除法:a ÷ b(b ≠ 0)七、作业设计2,3,0.5,√33 + 4.52 1.56 × (2)10 ÷ 2答案:1. 2(整数),3(整数),0.5(分数),√3(无理数)2. 7.5,3.5,12,5八、课后反思及拓展延伸本节课通过实例让学生掌握了实数的分类和运算规则,但在讲解无理数的概念时,部分学生可能仍存在理解困难。

课后可以布置一些有关无理数的练习题,帮助学生巩固知识。

同时,可以引导学生思考实数在实际生活中的应用,提高学生解决实际问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《实数1》教学案
学习目标:
1.了解实数的意义。

2. 能对实数按要求进行分类。

3. 了解实数范围内,相反数、倒数、绝对值的意义。

学习重点:正确理解实数的概念.
学习难点:理解实数的概念.
学习过程
一、预习导学:
①使用计算器计算,把下列有理数写成小数的形式,你有什么发现?
347911535811909
-,,,,, 3= - 35 = 478 = 911 = 1190 = 59
=
二、研习探究:
1、归纳:上面的有理数都可以写成 或 的形式.
事实上, 一个有理数都可以写成有限小数或无限循环小数的形式.
2、新概念:
阅读教材82-83页,填空:
①在前面两节的学习中,我们知道,许多数的平方根和立方根都是无限不循环小数,它们不能化成分数.我们给无限不循环小数起个名,叫 . 有理数和无理数统称为 。

②实数的分类(请尝试画出实数的分类图.)
3、尝试应用(试一试,你一定能行!)
(1)你能尝试着找出三个无理数吗? 、 、 .
(2)下列各数中,哪些是有理数?哪些是无理数?
1 3.13π-,,,0.8080080008 (2)
π, 小结:用根号形式表示的数一定是无理数吗?答:
(3).把下列各数填入相应的集合内:
32,41,7,π,25-,2,3
20,5-,38-,0, 9
4, 0.3737737773……(相邻两个3之间7的个数逐次增加1) 整数集合 { ···}
负分数集合{ ···}
正数集合 { ···}
负数集合 { ···}
有理数集合{ ···}
无理数集合{ ···}
4.阅读教材83-84页并合作完成:
①我们知道在有理数中只有符号不同的两个数叫做互为 ,如3和-3,实数的相反数
的意义与有理数一样. 32的相反数是
②在有理数中绝对值的意义.例如,|-3|=3 ,00=.实数绝对值的意义和有理数的绝对值的意义相同. 33= ,|- 5 |= 5
③试一试:完成教材第84页思考题.
归纳结论:数a 的相反数是 .(这里的a 表示任意一个实数)
一个正实数的绝对值是 ;一个负实数绝对值是 ;0的绝对值是 .
5、例题
(1) 分别写出 - 7 ,π-3.14 的相反数
(2)指出 - 5 ,1-33 的相反数。

(3) 求3-27 的绝对值。

(4)已知一个数的绝对值是 10 ,求这个数。

6、尝试应用:求下列各数的相反数、绝对值:
(1)
3 (2)21- (3)π- (4)3100
27 (5)3.8
三、拓展提高:
1. 判断下列说法是否正确:
(1)无限小数都是无理数;( )(2)无理数都是无限小数; ( )(3)带根号的数都是无理( )
2.(1
3、若|a-b|=a-b,那么a 与b 的大小关系是 ;若|a-b|=b-a ,那么a 与b 的大小关系是
四、教学反思:。

相关文档
最新文档